1
|
Lana VSD, Estevam PN, de Castro TB, de São José VPB, Brito-Oliveira TC, Santos PH, Oliveira CAS, Corrêa CB, Rostagno MA, Martino HSD, de Carvalho IMM. Nutritional and technological potential of umbu-caja and soursop co-product flours. Food Res Int 2025; 200:115520. [PMID: 39779150 DOI: 10.1016/j.foodres.2024.115520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 10/08/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025]
Abstract
Umbu-caja and soursop from the Northeast region of Brazil are rich in nutrients and bioactive compounds and are widely processed by the fruit agroindustry. However, there is a lack of research examining the composition and nutritional/technological potential of these co-product fruits. The present study evaluated the nutritional and technological characteristics of umbu-caja and soursop co-product flours (UCF and SCF, respectively), in addition to cytotoxicity in healthy cells. The results demonstrated that they are rich in dietary fiber (approximately 53 %), low in protein (approximately 8.0 %), and have minimal moisture content (<15 %). The mineral composition of the flours exhibited a notable presence of copper, iron, zinc, manganese, and boron. The evaluation of antioxidant capacity using the DPPH, ABTS, and FRAP methods demonstrated the presence of antioxidants that resisted processing, indicated by a high antioxidant capacity. Furthermore, the flours were found to contain phenolic compounds, predominantly rutin (UCF) and p-coumaric acid (SCF). The cytotoxicity test demonstrated that both co-product flours did not exert detrimental effects on healthy cells according to the MTT assay. The technological analyses highlighted low pH values (2.38 and 3.61 for UCF and SCF, respectively), which is favorable for a greater shelf life and suggests applications in fermented products. In addition, the flours have good water and oil holding capacity and low foaming, and they could be incorporated into food products that require these properties. The results demonstrated promising qualities of the UCF and SCF for incorporation into the human diet and product development, mainly due to their high fiber content, antioxidant capacity and low cytotoxicity.
Collapse
Affiliation(s)
- Valeria Silva de Lana
- Department of Nutrition and Health, Federal University of Viçosa, Viçosa, MG, Brazil
| | | | | | | | - Thais Carvalho Brito-Oliveira
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas, São Paulo, Brazil
| | - Pedro Henrique Santos
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas, São Paulo, Brazil
| | | | | | - Mauricio Ariel Rostagno
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas, São Paulo, Brazil
| | | | | |
Collapse
|
2
|
Araújo CM, Sampaio KB, da Silva JYP, de Oliveira JN, de Albuquerque TMR, Lima MDC, Lima MDS, do Nascimento YM, da Silva EF, da Silva MS, Tavares JF, de Souza EL, de Oliveira MEG. Exploiting tropical fruit processing coproducts as circular resources to promote the growth and maintain the culturability and functionality of probiotic lactobacilli. Food Microbiol 2024; 123:104596. [PMID: 39038898 DOI: 10.1016/j.fm.2024.104596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/01/2024] [Accepted: 07/04/2024] [Indexed: 07/24/2024]
Abstract
This study evaluated the use of acerola (Malpighia glabra L., CACE), cashew (Anacardium occidentale L., CCAS), and guava (Psidium guayaba L., CGUA) fruit processing coproducts as substrates to promote the growth, metabolite production, and maintenance of the viability/metabolic activity of the probiotics Lactobacillus acidophilus LA-05 and Lacticaseibacillus paracasei L-10 during cultivation, freeze-drying, storage, and exposure to simulated gastrointestinal digestion. Probiotic lactobacilli presented high viable counts (≥8.8 log colony-forming units (CFU)/mL) and a short lag phase during 24 h of cultivation in CACE, CCAS, and CGUA. Cultivation of probiotic lactobacilli in fruit coproducts promoted sugar consumption, medium acidification, and production of organic acids over time, besides increasing the of several phenolic compounds and antioxidant activity. Probiotic lactobacilli cultivated in fruit coproducts had increased survival percentages after freeze-drying and during 120 days of refrigerated storage. Moreover, probiotic lactobacilli cultivated and freeze-dried in fruit coproducts had larger subpopulations of live and metabolically active cells when exposed to simulated gastrointestinal digestion. The results showed that fruit coproducts not only improved the growth and helped to maintain the viability and metabolic activity of probiotic strains but also enriched the final fermented products with bioactive compounds, being an innovative circular strategy for producing high-quality probiotic cultures.
Collapse
Affiliation(s)
- Caroliny Mesquita Araújo
- Laboratory of Food Microbiology, Department of Nutrition, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Karoliny Brito Sampaio
- Laboratory of Food Microbiology, Department of Nutrition, Federal University of Paraíba, João Pessoa, PB, Brazil
| | | | - Jordana Nunes de Oliveira
- Post-Graduate Program in Nutrition Sciences, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | | | - Maiara da Costa Lima
- Laboratory of Food Microbiology, Department of Nutrition, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Marcos Dos Santos Lima
- Department of Food Technology, Federal Institute of Sertão de Pernambuco, Petrolina, PE, Brazil
| | | | - Evandro Ferreira da Silva
- Institute for Research in Drugs and Medicines - IPeFarM, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Marcelo Sobral da Silva
- Institute for Research in Drugs and Medicines - IPeFarM, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Josean Fechine Tavares
- Institute for Research in Drugs and Medicines - IPeFarM, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Evandro Leite de Souza
- Laboratory of Food Microbiology, Department of Nutrition, Federal University of Paraíba, João Pessoa, PB, Brazil
| | | |
Collapse
|
3
|
Romano Spica V, Volpini V, Valeriani F, Carotenuto G, Arcieri M, Platania S, Castrignanò T, Clementi ME, Michetti F. In Silico Predicting the Presence of the S100B Motif in Edible Plants and Detecting Its Immunoreactive Materials: Perspectives for Functional Foods, Dietary Supplements and Phytotherapies. Int J Mol Sci 2024; 25:9813. [PMID: 39337302 PMCID: PMC11431829 DOI: 10.3390/ijms25189813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/06/2024] [Accepted: 09/08/2024] [Indexed: 09/30/2024] Open
Abstract
The protein S100B is a part of the S100 protein family, which consists of at least 25 calcium-binding proteins. S100B is highly conserved across different species, supporting important biological functions. The protein was shown to play a role in gut microbiota eubiosis and is secreted in human breast milk, suggesting a physiological trophic function in newborn development. This study explores the possible presence of the S100B motif in plant genomes, and of S100B-like immunoreactive material in different plant extracts, opening up potential botanical uses for dietary supplementation. To explore the presence of the S100B motif in plants, a bioinformatic workflow was used. In addition, the immunoreactivity of S100B from vegetable and fruit samples was tested using an ELISA assay. The S100B motif was expected in silico in the genome of different edible plants belonging to the Viridiplantae clade, such as Durio zibethinus or Malus domestica and other medicinal species. S100B-like immunoreactive material was also detected in samples from fruits or leaves. The finding of S100B-like molecules in plants sheds new light on their role in phylogenesis and in the food chain. This study lays the foundation to elucidate the possible beneficial effects of plants or derivatives containing the S100B-like principle and their potential use in nutraceuticals.
Collapse
Affiliation(s)
- Vincenzo Romano Spica
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", 00135 Rome, Italy
| | - Veronica Volpini
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", 00135 Rome, Italy
| | - Federica Valeriani
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", 00135 Rome, Italy
| | - Giovanni Carotenuto
- Department of Ecological and Biological Sciences, University of Tuscia, Viale dell'Università s.n.c., 01100 Viterbo, Italy
| | - Manuel Arcieri
- Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Serena Platania
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", 00135 Rome, Italy
- Genes, Via Venti Settembre 118, 00187 Roma, Italy
| | - Tiziana Castrignanò
- Department of Ecological and Biological Sciences, University of Tuscia, Viale dell'Università s.n.c., 01100 Viterbo, Italy
| | - Maria Elisabetta Clementi
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" SCITEC-CNR, L.go F. Vito 1, 00168 Rome, Italy
| | - Fabrizio Michetti
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", 00135 Rome, Italy
- Genes, Via Venti Settembre 118, 00187 Roma, Italy
- Department of Medicine, LUM University, 70010 Casamassima, Italy
| |
Collapse
|
4
|
de Luna Freire MO, Cruz Neto JPR, de Albuquerque Lemos DE, de Albuquerque TMR, Garcia EF, de Souza EL, de Brito Alves JL. Limosilactobacillus fermentum Strains as Novel Probiotic Candidates to Promote Host Health Benefits and Development of Biotherapeutics: A Comprehensive Review. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10235-1. [PMID: 38393628 DOI: 10.1007/s12602-024-10235-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2024] [Indexed: 02/25/2024]
Abstract
Fruits and their processing by-products are sources of potentially probiotic strains. Limosilactobacillus (L.) fermentum strains isolated from fruit processing by-products have shown probiotic-related properties. This review presents and discusses the results of the available studies that evaluated the probiotic properties of L. fermentum in promoting host health benefits, their application by the food industry, and the development of biotherapeutics. The results showed that administration of L. fermentum for 4 to 8 weeks promoted host health benefits in rats, including the modulation of gut microbiota, improvement of metabolic parameters, and antihypertensive, antioxidant, and anti-inflammatory effects. The results also showed the relevance of L. fermentum strains for application in the food industry and for the formulation of novel biotherapeutics, especially nutraceuticals. This review provides evidence that L. fermentum strains isolated from fruit processing by-products have great potential for promoting host health and indicate the need for a translational approach to confirm their effects in humans using randomized, double-blind, placebo-controlled trials.
Collapse
Affiliation(s)
- Micaelle Oliveira de Luna Freire
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, Campus I-Jd. Cidade Universitária, João Pessoa, PB, 58051-900, Brazil
| | - José Patrocínio Ribeiro Cruz Neto
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, Campus I-Jd. Cidade Universitária, João Pessoa, PB, 58051-900, Brazil
| | | | | | - Estefânia Fernandes Garcia
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, Campus I-Jd. Cidade Universitária, João Pessoa, PB, 58051-900, Brazil
| | - Evandro Leite de Souza
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, Campus I-Jd. Cidade Universitária, João Pessoa, PB, 58051-900, Brazil
| | - José Luiz de Brito Alves
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, Campus I-Jd. Cidade Universitária, João Pessoa, PB, 58051-900, Brazil.
| |
Collapse
|
5
|
de Brito Alves JL, de Souza EL. Functional Foods with Modulating Action on Metabolic Risk Factors. Foods 2023; 12:4043. [PMID: 37959162 PMCID: PMC10649328 DOI: 10.3390/foods12214043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 11/15/2023] Open
Abstract
Health-related metabolic risk factors, such as elevated blood pressure, hyperglycemia, obesity, and dyslipidemia, can lead to metabolic syndrome and increased risk of cardiovascular disease, stroke, and death [...].
Collapse
Affiliation(s)
| | - Evandro Leite de Souza
- Department of Nutrition, Federal University of Paraiba, João Pessoa 58051-900, PB, Brazil;
| |
Collapse
|