1
|
Liang C, Wang Z, Fan L, Wang Y, Zhou Y, Yang X, Lin J, Ye P, Shi W, Huang H, Yan H, Liu L, Qian J. Rapidly quantification of intact infectious H1N1 virus using ICA-qPCR and PMA-qPCR. BIOSAFETY AND HEALTH 2024; 6:327-336. [PMID: 40078983 PMCID: PMC11895024 DOI: 10.1016/j.bsheal.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/12/2024] [Accepted: 11/15/2024] [Indexed: 03/14/2025] Open
Abstract
The increase in emerging and reemerging infectious diseases has underscored the need for the prompt monitoring of intact infectious viruses and the quick assessment of their infectivity. However, molecular techniques cannot distinguish between intact infectious and noninfectious viruses. Here, two distinct methodologies have been developed for the expeditious and dependable quantification of intact infectious H1N1 virus, and several experiments have been conducted to substantiate their efficacy. One is an integrated cell absorption quantitative polymerase chain reaction (qPCR) method (ICA-qPCR), and the other is a combined propidium monoazide qPCR method (PMA-qPCR). The quantification limit is 100 cell culture infective dose 50 % (CCID50)/mL in ICA-qPCR following a 1.5-hour cell absorption or 126 CCID50/mL after a 15-minute incubation. For PMA-qPCR, the limit was 2,512 CCID50/mL. The number of genome copies quantified by the ICA-qPCR and PMA-qPCR methods was strongly correlated with the infectious titer determined by the CCID50 assay, thereby enabling the estimation of virus infectivity. The ICA-qPCR and PMA-qPCR methods are both suitable for the identification and quantification of intact infectious H1N1 virus in inactivated samples, wastewater, and biological materials. In conclusion, the ICA-qPCR and PMA-qPCR methods have distinct advantages and disadvantages, and can be used to quantify intact infectious viruses rapidly. These methodologies can facilitate the identification of the presence of intact infectious viruses in wastewater or on pathogen-related physical surfaces in high-level biosafety laboratories and medical facilities. Furthermore, these methodologies can also be utilized to detect other highly pathogenic pathogens.
Collapse
Affiliation(s)
- Chudan Liang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Zequn Wang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Linjin Fan
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Yulong Wang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Yuandong Zhou
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiaofeng Yang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Jingyan Lin
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Pengfei Ye
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Wendi Shi
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Hongxin Huang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Huijun Yan
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Linna Liu
- Institute of Infectious Disease, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou 510440, China
| | - Jun Qian
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 514400, China
- Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen 514400, China
- Guangdong Provincial Highly Pathogenic Microorganism Science Data Center, Guangzhou 510440, China
| |
Collapse
|
2
|
Conter M. Recent advancements in meat traceability, authenticity verification, and voluntary certification systems. Ital J Food Saf 2024; 14:12971. [PMID: 39895478 PMCID: PMC11788888 DOI: 10.4081/ijfs.2024.12971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 09/09/2024] [Indexed: 02/04/2025] Open
Abstract
The growing demand for transparency in the food industry has led to significant advancements in meat traceability. Ensuring the authenticity and origin of meat products is critical for consumer trust, public health, and compliance with regulations. This paper reviews recent innovations in meat traceability, with a focus on blockchain technology as a novel approach to ensuring traceability. Additionally, advanced methods for verifying meat authenticity and origin, such as isotope fingerprinting, DNA analysis, and spectroscopic methods, are discussed. The role of voluntary certification schemes in enhancing traceability and authenticity verification in the meat industry is also explored. The findings highlight the importance of integrating cutting-edge technologies and certification schemes to build a robust and transparent meat supply chain.
Collapse
Affiliation(s)
- Mauro Conter
- Department of Veterinary Science, University of Parma.
| |
Collapse
|
3
|
Alvanou MV, Loukovitis D, Melfou K, Giantsis IA. Utility of dairy microbiome as a tool for authentication and traceability. Open Life Sci 2024; 19:20220983. [PMID: 39479351 PMCID: PMC11524395 DOI: 10.1515/biol-2022-0983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/06/2024] [Accepted: 09/16/2024] [Indexed: 11/02/2024] Open
Abstract
Milk microbiome contributes substantially to the formation of specific organoleptic and physicochemical characteristics of dairy products. The assessment of the composition and abundance of milk microbiota is a challenging task strongly influenced by many environmental factors. Specific dairy products may be designated by the Protected Designation of Origin (PDO) and Protected Geographical Indication (PGI) labeling, which however, occasionally fail to differentiate them according to specific quality characteristics, which are defined by different microbiota-driven reactions. Combining the above limitations, the scope of the present study, was to summarize the existing information toward three main issues. First, to assess the influence level of the diet type and grazing to rumen-GI tract, mammary gland, and udder microbiome formation in ruminants. Second, to discuss the factors affecting milk microbiota, as well as the effect of the endo-mammary route on milk microbial taxa. Lastly, to evaluate "milk microbiome" as a tool for product differentiation, according to origin, which will contribute to a more robust PDO and PGI labeling. Although the limitations are still a matter of fact (especially considering the sample collection, process, evaluation, and avoidance of its contamination), significant progress has been made, regarding the identification of the factors affecting dairy products' microbiota and its core composition. In conclusion, although so far not totally efficient in dairy products molecular identification, with the progress in soil, water, plant, and animal host's microbiota assembly's characterization, microbiomics could provide a powerful tool for authentication and traceability of dairy products.
Collapse
Affiliation(s)
- Maria V. Alvanou
- Division of Animal Science, Faculty of Agricultural Sciences, University of Western Macedonia, 53100, Florina, Greece
| | - Dimitrios Loukovitis
- Department of Fisheries and Aquaculture, School of Agricultural Sciences, University of Patras, 30200, Messolonghi, Greece
| | - Katerina Melfou
- Division of Animal Science, Faculty of Agricultural Sciences, University of Western Macedonia, 53100, Florina, Greece
| | - Ioannis A. Giantsis
- Division of Animal Science, Faculty of Agricultural Sciences, University of Western Macedonia, 53100, Florina, Greece
- Department of Animal Science, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, 54621, Thessaloniki, Greece
| |
Collapse
|
4
|
Lee M, Bang WY, Lee HB, Yang SY, Lee KS, Kang HJ, Hong SM, Yang J. Safety Assessment and Evaluation of Probiotic Potential of Lactobacillus bulgaricus IDCC 3601 for Human Use. Microorganisms 2024; 12:2063. [PMID: 39458372 PMCID: PMC11510087 DOI: 10.3390/microorganisms12102063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Lactic acid bacteria (LAB) are probiotic microorganisms widely used for their health benefits in the food industry. However, recent concerns regarding their safety have highlighted the need for comprehensive safety assessments. In this study, we aimed to evaluate the safety of L. bulgaricus IDCC 3601, isolated from homemade plain yogurt, via genomic, phenotypic, and toxicity-based analyses. L. bulgaricus IDCC 3601 possessed a single circular chromosome of 1,865,001 bp, with a GC content of 49.72%, and 1910 predicted coding sequences. No virulence or antibiotic resistance genes were detected. Although L. bulgaricus IDCC 3601 exhibited antibiotic resistance to gentamicin and kanamycin, this resistance is an intrinsic feature of this species. L. bulgaricus IDCC 3601 did not produce biogenic amines and did not exhibit hemolytic activity. Phenotypic analysis of enzyme activity and carbohydrate fermentation profiles revealed the metabolic features of L. bulgaricus IDCC 3601. Moreover, no deaths or abnormalities were observed in single-dose oral toxicity tests, suggesting that L. bulgaricus IDCC 3601 has no adverse effect on human health. Finally, L. bulgaricus IDCC 3601 inhibited the growth of potential carbapenem-resistant Enterobacteriaceae. Therefore, our results suggest that L. bulgaricus IDCC 3601 is a safe probiotic strain for human consumption.
Collapse
Affiliation(s)
- Minjee Lee
- Ildong Bioscience, Pyeongtaek 17957, Republic of Korea; (M.L.); (W.-Y.B.); (H.-B.L.); (S.-Y.Y.)
| | - Won-Yeong Bang
- Ildong Bioscience, Pyeongtaek 17957, Republic of Korea; (M.L.); (W.-Y.B.); (H.-B.L.); (S.-Y.Y.)
| | - Han-Bin Lee
- Ildong Bioscience, Pyeongtaek 17957, Republic of Korea; (M.L.); (W.-Y.B.); (H.-B.L.); (S.-Y.Y.)
| | - Soo-Yeon Yang
- Ildong Bioscience, Pyeongtaek 17957, Republic of Korea; (M.L.); (W.-Y.B.); (H.-B.L.); (S.-Y.Y.)
| | - Kyu-Shik Lee
- Department of Pharmacology, College of Medicine, Dongguk University, Gyeongju 38066, Republic of Korea;
| | - Hae-Ji Kang
- Department of Microbiology, College of Medicine, Dongguk University, Gyeongju 38066, Republic of Korea;
| | - Sun-Mee Hong
- Department of Technology Development, Marine Industry Research Institute for East Sea Rim, Uljin 36315, Republic of Korea
| | - Jungwoo Yang
- Department of Microbiology, College of Medicine, Dongguk University, Gyeongju 38066, Republic of Korea;
| |
Collapse
|
5
|
Shehata HR, Hassane B, Newmaster SG. Real-time PCR methods for identification and stability monitoring of Bifidobacterium longum subsp. longum UABl-14 during shelf life. Front Microbiol 2024; 15:1360241. [PMID: 38706967 PMCID: PMC11066167 DOI: 10.3389/fmicb.2024.1360241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/03/2024] [Indexed: 05/07/2024] Open
Abstract
Bifidobacterium longum subsp. longum UABl-14™ is an important probiotic strain that was found to support digestive health. Here we present the development and validation of real-time PCR methods for strain-specific identification and enumeration of this important strain. The identification method was evaluated for specificity using 22 target samples and 30 non-target samples. All target samples successfully amplified, while no amplification was observed from any non-target samples including other B. longum strains. The identification method was evaluated for sensitivity using three DNA dilution series and the limit of detection was 2 pg. of DNA. Coupled with a viability dye, the method was further validated for quantitative use to enumerate viable cells of UABl-14. The viability dye treatment (PMAxx) was optimized, and a final concentration of 50 μM was found as an effective concentration to inactivate DNA in dead cells from reacting in PCR. The reaction efficiency, linear dynamic range, repeatability, and reproducibility were also evaluated. The reaction efficiency was determined to be 97.2, 95.2, and 95.0% with R2 values of 99%, in three replicates. The linear dynamic range was 1.3 × 102 to 1.3 × 105 genomes. The relative standard deviation (RSD%) for repeatability ranged from 0.03 to 2.80, and for reproducibility ranged from 0.04 to 2.18. The ability of the validated enumeration method to monitor cell counts during shelf life was evaluated by determining the viable counts and total counts of strain UABl-14 in 18 multi-strain finished products. The viable counts were lower than label claims in seven products tested post-expiration and were higher than label claims in products tested pre-expiration, with a slight decrease in viable counts below label claim in three samples that were tested 2-3 months pre-expiration. Interestingly, the total counts of strain UABl-14 were consistently higher than label claims in all 18 products. Thus, the method enables strain-specific stability monitoring in finished products during shelf life, which can be difficult or impossible to achieve using the standard plate count method. The validated methods allow for simultaneous and cost-effective identification and enumeration of strain UABl-14 and represent an advancement in the quality control and quality assurance of probiotics.
Collapse
Affiliation(s)
- Hanan R. Shehata
- Purity-IQ Inc., Guelph, ON, Canada
- Department of Integrative Biology, College of Biological Science, University of Guelph, Guelph, ON, Canada
- Department of Microbiology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | | | - Steven G. Newmaster
- Department of Integrative Biology, College of Biological Science, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
6
|
Quintieri L, Fanelli F, Monaci L, Fusco V. Milk and Its Derivatives as Sources of Components and Microorganisms with Health-Promoting Properties: Probiotics and Bioactive Peptides. Foods 2024; 13:601. [PMID: 38397577 PMCID: PMC10888271 DOI: 10.3390/foods13040601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/31/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Milk is a source of many valuable nutrients, including minerals, vitamins and proteins, with an important role in adult health. Milk and dairy products naturally containing or with added probiotics have healthy functional food properties. Indeed, probiotic microorganisms, which beneficially affect the host by improving the intestinal microbial balance, are recognized to affect the immune response and other important biological functions. In addition to macronutrients and micronutrients, biologically active peptides (BPAs) have been identified within the amino acid sequences of native milk proteins; hydrolytic reactions, such as those catalyzed by digestive enzymes, result in their release. BPAs directly influence numerous biological pathways evoking behavioral, gastrointestinal, hormonal, immunological, neurological, and nutritional responses. The addition of BPAs to food products or application in drug development could improve consumer health and provide therapeutic strategies for the treatment or prevention of diseases. Herein, we review the scientific literature on probiotics, BPAs in milk and dairy products, with special attention to milk from minor species (buffalo, sheep, camel, yak, donkey, etc.); safety assessment will be also taken into consideration. Finally, recent advances in foodomics to unveil the probiotic role in human health and discover novel active peptide sequences will also be provided.
Collapse
Affiliation(s)
| | - Francesca Fanelli
- National Research Council of Italy, Institute of Sciences of Food Production (CNR-ISPA), 70126 Bari, Italy; (L.Q.); (L.M.); (V.F.)
| | | | | |
Collapse
|