1
|
Gavahian M, Zhou W. Editorial Viewpoint on the Special Issue "Food Process Modeling, Optimisation and Control" from Editorial Board Members' Collection Series. Foods 2025; 14:1039. [PMID: 40232085 PMCID: PMC11942225 DOI: 10.3390/foods14061039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 03/03/2025] [Indexed: 04/16/2025] Open
Abstract
The guest editors, Dr [...].
Collapse
Affiliation(s)
- Mohsen Gavahian
- Department of Food Science, National Pingtung University of Science and Technology, 1, Shuefu Road, Neipu, Pingtung 91201, Taiwan
| | - Weibiao Zhou
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore 117542, Singapore;
| |
Collapse
|
2
|
Mastrella C, Rizzo S, Vito MD, Garzoli S, Mercurio MD, Mariotti M, La Sorda M, Zhiri A, Sanguinetti M, Bugli F. In Vitro Study to Evaluate the Best Conditions Highlighting the Antimicrobial Activity of Carum carvi Essential Oil on Human Pathogen Isolates in Formulations Against the Spread of Antibiotic Resistance. Pharmaceuticals (Basel) 2025; 18:321. [PMID: 40143099 PMCID: PMC11945957 DOI: 10.3390/ph18030321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/15/2025] [Accepted: 02/20/2025] [Indexed: 03/28/2025] Open
Abstract
Background/Objectives: In recent years, antimicrobial resistance has become a major threat to global health, and scientific research aiming to identify new therapeutic resources is a priority. Essential oils (EOs), obtained from spices belonging to the culinary tradition, like Carum carvi essential oil (CC-EO), are of great interest for their antimicrobial activity, but the methods used to evaluate their efficacy need to be standardized. The aims of this work were to evaluate the following: (i) the best microbiological in vitro test; (ii) the best surfactant; and (iii) the best microbiological target of CC-EO and its method of administration. Methods: CC-EO quality was evaluated using gas chromatography-mass spectrometry. Antimicrobial susceptibility testing with drugs currently in use was performed. Antimicrobial effectiveness against 70 clinical strains belonging to S. aureus, E. coli, E. faecalis, K. pneumoniae, P. aeruginosa, S. pyogenes, and C. albicans was evaluated. Two microbial tests (broth microdilution tests and disk diffusion), generally used in routine clinical practice, were compared. To choose the best vehicle, Tween80, DMSO, and ethanol were evaluated. The antimicrobial efficacy of vapors was assessed using a microatmosphere test. Results: The broth microdilution test is confirmed as the best in evaluating the antimicrobial activity of EOs. The most suitable EOs vehicle for antimicrobial testing was Tween80. CC-EO and its vapors were effective against GRAM+ and C. albicans strains, both sensible and resistant, and ineffective against GRAM-. Conclusions: In the future, it may be possible to include CC-EO in topical or spray formulations for the treatment of GRAM+ and C. albicans infections.
Collapse
Affiliation(s)
- Carolina Mastrella
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy (S.R.); (M.D.M.); (M.M.); (M.S.); (F.B.)
| | - Silvia Rizzo
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy (S.R.); (M.D.M.); (M.M.); (M.S.); (F.B.)
| | - Maura Di Vito
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy (S.R.); (M.D.M.); (M.M.); (M.S.); (F.B.)
| | - Stefania Garzoli
- Dipartimento di Chimica e Tecnologie del Farmaco, Università di Roma Sapienza, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| | - Mattia Di Mercurio
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy (S.R.); (M.D.M.); (M.M.); (M.S.); (F.B.)
| | - Melinda Mariotti
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy (S.R.); (M.D.M.); (M.M.); (M.S.); (F.B.)
| | - Marilena La Sorda
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy;
| | - Abdesselam Zhiri
- R&D Department, Pranarom International, 37 Avenue des Artisans, 7822 Ghislenghien, Belgium;
- Plant Biotechnology, Université Libre de Bruxelles (ULB), CP300, Rue Prof. Jeener & Brachet 12, 6041 Gosselies, Belgium
| | - Maurizio Sanguinetti
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy (S.R.); (M.D.M.); (M.M.); (M.S.); (F.B.)
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy;
| | - Francesca Bugli
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy (S.R.); (M.D.M.); (M.M.); (M.S.); (F.B.)
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy;
| |
Collapse
|
3
|
Daza LD, Umaña M, Eim VS. Effect of the addition of Chachafruto flour on the stability of oil-in-water emulsions and the physicochemical properties of spray-drying microcapsules. Food Chem 2025; 462:141025. [PMID: 39213966 DOI: 10.1016/j.foodchem.2024.141025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
This study aimed to assess the suitability of Chachafruto flour (CHF) as a stabilizing agent for an oil-in-water emulsion and its impact on the physicochemical properties of the emulsion after spray drying. Emulsions with varying CHF concentrations (2 %, 3 %, and 4 %) were prepared and compared to a control. The results from the creaming index and particle size (emulsion) analyses indicated that the highest emulsion stability was achieved with 4 %CHF, attributed to its protein content (20.5 %). The encapsulates exhibited spherical and rough surface morphologies but without holes on the surface. Low moisture content (MC < 5 %) and water activity (aw < 0.2) were associated with powder stability. The encapsulates added with CHF showed good reconstitution properties. FTIR confirmed the absence of chemical interactions during the encapsulation process, contributing to the stability. Furthermore, the addition of CHF improved the thermal stability of the encapsulates. This study represents the first investigation on the emulsifying potential of Chachafruto flour.
Collapse
Affiliation(s)
- Luis Daniel Daza
- Department of Chemistry, University of the Balearic Islands, Ctra Valldemossa, km 7.5, Palma de Mallorca, 07122, Baleares, Spain.
| | - Mónica Umaña
- Department of Chemistry, University of the Balearic Islands, Ctra Valldemossa, km 7.5, Palma de Mallorca, 07122, Baleares, Spain.
| | - Valeria Soledad Eim
- Department of Chemistry, University of the Balearic Islands, Ctra Valldemossa, km 7.5, Palma de Mallorca, 07122, Baleares, Spain.
| |
Collapse
|
4
|
Hanan E, Dar AH, Shams R, Goksen G. New insights into essential oil nano emulsions loaded natural biopolymers recent development, formulation, characterization and packaging applications: A comprehensive review. Int J Biol Macromol 2024; 280:135751. [PMID: 39304053 DOI: 10.1016/j.ijbiomac.2024.135751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 08/29/2024] [Accepted: 09/15/2024] [Indexed: 09/22/2024]
Abstract
Customer demand for wholesome diets has spurred researchers to explore preservative-free methods for maintaining food product quality. Nano emulsion-based coatings and films are seen as sustainable solutions for extending the shelf life of fresh produce. These innovations are driving progress in various industries. Nano emulsion techniques offer effective encapsulation of bioactive compounds due to their small droplet size, stability, and enhanced activity. This review highlights the preparation and manufacturing methods of biopolymer-based nano emulsions containing essential oils, which are used as edible coatings and films over the past decade, representing the first comprehensive review paper on this topic to encompass research from the past ten years. The characterization and application of these coatings and films are also discussed. It has been revealed that essential oils can be successfully incorporated into nano emulsion delivery system with different biopolymers. These edible coatings and films help delay or prevent oxidation in various food products, enhancing their quality and safety during storage. They present a green, sustainable, and biodegradable solution for protecting fresh foods in the industry. Essential oil biopolymer nano emulsions not only extend shelf life but also offer protection against hazards, contributing to consumer trust in food safety and quality. This technology holds promise for delivering healthier food options in the marketplace. The current review thus provides an updated overview of the latest literature on EO nano emulsions as active agents in the advancement of edible coatings and films.
Collapse
Affiliation(s)
- Entesar Hanan
- Department of Nutrition and Dietetics, School of Allied Health Sciences, Manav Rachna International Institute of Research and Studies, Faridabad Haryana, India
| | - Aamir Hussain Dar
- Department of Food Technology, Islamic University of Science and Technology, Kashmir, India.
| | - Rafeeya Shams
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab, India
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, 33100, Mersin, Turkey.
| |
Collapse
|
5
|
Poscente V, Di Gregorio L, Costanzo M, Bernini R, Bevivino A. Flow cytometry: Unravelling the real antimicrobial and antibiofilm efficacy of natural bioactive compounds. J Microbiol Methods 2024; 222:106956. [PMID: 38759758 DOI: 10.1016/j.mimet.2024.106956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/14/2024] [Accepted: 05/14/2024] [Indexed: 05/19/2024]
Abstract
Flow cytometry (FCM) provides unique information on bacterial viability and physiology, allowing a real-time early warning antimicrobial and antibiofilm monitoring system for preventing the spread risk of foodborne disease. The present work used a combined culture-based and FCM approach to assess the in vitro efficacy of essential oils (EOs) from condiment plants commonly used in Mediterranean Europe (i.e., thyme EO, oregano EO, basil EO, and lemon EO) against planktonic and sessile cells of food-pathogenic Listeria monocytogenes 56 LY, and contaminant and alterative species Escherichia coli ATCC 25922 and Pseudomonas fluorescens ATCC 13525. Evaluation of the bacterial response to the increasing concentrations of natural compounds posed FCM as a crucial technique for the quantification of the live/dead, and viable but non-culturable (VBNC) cells when antimicrobial agents exert no real bactericidal action. Furthermore, the FCM results displayed higher numbers of viable bacteria expressed as Active Fluorescent Units (AFUs) with a greater level of repeatability compared with outcomes of the plate-count method. Overall, accurate counting of viable microbial cells is a critically important parameter in food microbiology, and flow cytometry provides an innovative approach with high-throughput potential for applications in the food industry as "flow microbiology".
Collapse
Affiliation(s)
- Valeria Poscente
- Department for Sustainability, Biotechnologies and Agroindustry Division, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Casaccia Research Center, 00123 Rome, Italy; Department of Agriculture and Forest Sciences, University of Tuscia, 01100 Viterbo, Italy
| | - Luciana Di Gregorio
- Department for Sustainability, Biotechnologies and Agroindustry Division, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Casaccia Research Center, 00123 Rome, Italy.
| | - Manuela Costanzo
- Department for Sustainability, Biotechnologies and Agroindustry Division, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Casaccia Research Center, 00123 Rome, Italy
| | - Roberta Bernini
- Department of Agriculture and Forest Sciences, University of Tuscia, 01100 Viterbo, Italy
| | - Annamaria Bevivino
- Department for Sustainability, Biotechnologies and Agroindustry Division, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Casaccia Research Center, 00123 Rome, Italy
| |
Collapse
|
6
|
Lončar B, Pezo L, Knežević V, Nićetin M, Filipović J, Petković M, Filipović V. Enhancing Cookie Formulations with Combined Dehydrated Peach: A Machine Learning Approach for Technological Quality Assessment and Optimization. Foods 2024; 13:782. [PMID: 38472895 DOI: 10.3390/foods13050782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
This study focuses on predicting and optimizing the quality parameters of cookies enriched with dehydrated peach through the application of Support Vector Machine (SVM) and Artificial Neural Network (ANN) models. The purpose of the study is to employ advanced machine learning techniques to understand the intricate relationships between input parameters, such as the presence of dehydrated peach and treatment methods (lyophilization and lyophilization with osmotic pretreatment), and output variables representing various quality aspects of cookies. For each of the 32 outputs, including the parameters of the basic chemical compositions of the cookie samples, selected mineral contents, moisture contents, baking characteristics, color properties, sensorial attributes, and antioxidant properties, separate models were constructed using SVMs and ANNs. Results showcase the efficiency of ANN models in predicting a diverse set of quality parameters with r2 up to 1.000, with SVM models exhibiting slightly higher coefficients of determination for specific variables with r2 reaching 0.981. The sensitivity analysis underscores the pivotal role of dehydrated peach and the positive influence of osmotic pretreatment on specific compositional attributes. Utilizing established Artificial Neural Network models, multi-objective optimization was conducted, revealing optimal formulation and factor values in cookie quality optimization. The optimal quantity of lyophilized peach with osmotic pretreatment for the cookie formulation was identified as 15%.
Collapse
Affiliation(s)
- Biljana Lončar
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia
| | - Lato Pezo
- Institute of General and Physical Chemistry, Studentski trg 12/V, 11000 Belgrade, Serbia
| | - Violeta Knežević
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia
| | - Milica Nićetin
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia
| | - Jelena Filipović
- Institute of Food Technology in Novi Sad, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia
| | - Marko Petković
- Faculty of Agronomy, University of Kragujevac, Cara Dušana 34, 32102 Čačak, Serbia
| | - Vladimir Filipović
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia
| |
Collapse
|