1
|
Shirkhan F, Mirdamadi S, Mirzaei M, Akbari-adergani B, Nasoohi N. In-vitro investigation of antidiabetic and antioxidants properties of major prebiotics and plant based dietary fibers. J Diabetes Metab Disord 2025; 24:105. [PMID: 40248820 PMCID: PMC11999920 DOI: 10.1007/s40200-025-01610-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 03/14/2025] [Indexed: 04/19/2025]
Abstract
Objectives Consuming prebiotics and plant-based dietary fibers are important as an emerging approach to diabetes and oxidative stress control. In this study, the functional properties of major prebiotics and dietary fibers were evaluated. Methods The hypoglycemic properties were analyzed by inhibiting α-amylase and α-glucosidase, glucose adsorption capacity, and glucose diffusion. Antioxidant capacity, total phenolic (TP), and flavonoid (TF) content were also measured. Results The results showed that among prebiotics, isomaltulose and pectin had antidiabetic activity by α-amylase (IC50 = 11.36 mg/mL) and α-glucosidase (IC50 = 2.38 mg/mL) inhibition. Isomaltulose and pectin exhibited the ability to adsorb glucose capacity. Inulin HP showed the ability to inhibit glucose diffusion. The results also showed that all prebiotics impart antioxidant activity and TP, and TF content in a dose-dependent manner (p < 0.05). Pectin showed a higher ability to scavenge 1,1-diphenyl-2 picrylhydrazyl (DPPH) and 2,2'-azino-bis (3-ethylbenzthiazoline-6-sul-fonate (ABTS) radicals with higher phenolic compound (p < 0.05). Therefore, it seems that pectin was able to reduce the rate of glucose adsorption, regulate glucose adsorption by enzyme activity inhibition, and increase antioxidant capacity. Conclusion The results revealed that the prebiotics were efficient in their antidiabetic potential and could act as bio-functional materials. Using prebiotics in functional foods and nutraceutical medicines is strongly recommended.
Collapse
Affiliation(s)
- Faezeh Shirkhan
- Department of Food Science and Technology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, 19496-35881 Iran
| | - Saeed Mirdamadi
- Department of Biotechnology, Iranian Research Organization for Science & Technology (IROST), Tehran, 33131-93685 Iran
| | - Mahta Mirzaei
- Centre for Food Chemistry and Technology, Ghent University Global Campus, 119-5 Songdomunhwa-Ro, Yeonsu-Gu, Incheon, South Korea
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent, B-9000 Belgium
| | - Behrouz Akbari-adergani
- Water Safety Research Center, Food and Drug Administration, Ministry of Health and Medical Education, Tehran, 11136-15911 Iran
| | - Nikoo Nasoohi
- Department of Biochemistry and Biophysics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, 19396-77511 Iran
| |
Collapse
|
2
|
He L, Li X, Jiang S, Ou Y, Wang S, Shi N, Yang Z, Yuan JL, Silverman G, Niu H. The influence of the gut microbiota on B cells in autoimmune diseases. Mol Med 2025; 31:149. [PMID: 40264032 PMCID: PMC12016346 DOI: 10.1186/s10020-025-01195-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 04/01/2025] [Indexed: 04/24/2025] Open
Abstract
Mounting evidence shows that gut microbiota communities and the human immune system coexist and influence each other, and there are a number of reports of a correlation between specific changes in gut microbiota and the occurrence of autoimmune diseases. B lymphocytes play a central role in the regulation of both gut microbiota communities and in autoimmune diseases. Here, we summarize evidence of the influence of gut microbiota-B cell pathways on autoimmune diseases and how B cells regulate microorganisms, which provides mechanistic insights with relevance for identification of potential therapeutic targets and related fields.
Collapse
Affiliation(s)
- Lun He
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education; Guangzhou Key Laboratory for Germ-free Animals and Microbiota Application, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Xin Li
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education; Guangzhou Key Laboratory for Germ-free Animals and Microbiota Application, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Shan Jiang
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education; Guangzhou Key Laboratory for Germ-free Animals and Microbiota Application, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Yanhua Ou
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education; Guangzhou Key Laboratory for Germ-free Animals and Microbiota Application, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Shanshan Wang
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education; Guangzhou Key Laboratory for Germ-free Animals and Microbiota Application, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Na Shi
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education; Guangzhou Key Laboratory for Germ-free Animals and Microbiota Application, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Zhongshan Yang
- Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, 650500, China
| | - Jia-Li Yuan
- Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, 650500, China.
| | - Gregg Silverman
- Division of Rheumatology, New York University School of Medicine, New York, NY, 10016, USA.
| | - Haitao Niu
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education; Guangzhou Key Laboratory for Germ-free Animals and Microbiota Application, School of Medicine, Jinan University, Guangzhou, 510632, China.
- Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, 650500, China.
| |
Collapse
|
3
|
Yang Y, Kumrungsee T, Okazaki Y, Watanabe T, Inoue J, Iguchi T, Fukuda S, Kuroda M, Nishio K, Yamaguchi S, Kato N. Potential Roles of Exogenous Proteases and Lipases as Prebiotics. Nutrients 2025; 17:924. [PMID: 40077794 PMCID: PMC11902181 DOI: 10.3390/nu17050924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 03/04/2025] [Accepted: 03/05/2025] [Indexed: 03/14/2025] Open
Abstract
Digestive enzymes, such as proteases and lipases, are widely recognized for their crucial roles in the ripening and production of fermented foods. Digestive enzymes are also used as supplements in nonruminant livestock to enhance feed digestion and promote animal growth. However, information on the effects of exogenous digestive enzymes on gut health and disease remains limited. Notably, recent studies show that consuming proteases and lipases can increase the levels of beneficial bacteria and short-chain fatty acids in rodent gut. These findings led us to hypothesize that intestinal proteases and lipases play beneficial roles by enriching beneficial bacteria. To examine this hypothesis, we reviewed recent studies on the potential effects of exogenous digestive enzymes on gut microbiota composition and overall health. Consistent with the hypothesis, all 13 studies in this review reported significant improvements in animal gut microbiota composition with the dietary supplementation of proteases and lipases. Additionally, the possible mechanisms of the prebiotic-like effects of the enzymes through increased nutrient digestion were discussed. This review explores how exogenous proteases and lipases influence gut microbiota composition and overall health. This is the first review to provide insights into the potential roles of exogenous digestive enzymes as prebiotics.
Collapse
Affiliation(s)
- Yongshou Yang
- School of Life Sciences, Anhui University, Hefei 230036, China;
| | - Thanutchaporn Kumrungsee
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
| | - Yukako Okazaki
- Faculty of Human Life Sciences, Fuji Women’s University, Ishikari 061-3204, Japan;
| | - Toshiro Watanabe
- Faculty of Human Health, Sonoda Women’s University, Amagasaki 661-0012, Japan;
| | - Junji Inoue
- Ahjikan Co., Ltd., Shoko Center, Hiroshima 733-0833, Japan;
| | - Takafumi Iguchi
- R & D Division Yaegaki Biotechnology, Inc., Himeji 679-4298, Japan;
| | - Shinji Fukuda
- Institute for Advanced Biosciences, Keio University, Tsuruoka 997-0052, Japan;
- Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
- Gut Environmental Design Group, Kanagawa Institute of Industrial Science and Technology, Kawasaki 210-0821, Japan
| | - Manabu Kuroda
- Amano Enzyme Inc., Nagoya 460-8630, Japan; (M.K.); (K.N.); (S.Y.)
| | - Kyoichi Nishio
- Amano Enzyme Inc., Nagoya 460-8630, Japan; (M.K.); (K.N.); (S.Y.)
| | | | - Norihisa Kato
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
| |
Collapse
|
4
|
Hosseini E, Mokhtari Z, Askari G. Effect of Prebiotic Supplementation on Health Status in Adults with Prediabetes: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. J Nutr 2025:S0022-3166(25)00007-0. [PMID: 39800313 DOI: 10.1016/j.tjnut.2025.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 12/14/2024] [Accepted: 01/02/2025] [Indexed: 02/01/2025] Open
Abstract
Prediabetes with a considerable progression rate is a primary risk factor for type 2 diabetes if left untreated. Dietary interventions examining the health effects of prebiotic consumption on health status have been studied in subjects with prediabetes, but the results are controversial. This study aimed to investigate whether prebiotic consumption can favorably alter metabolic status as well as anthropometric features in subjects with prediabetes. Electronic databases were searched up to January 2024, and randomized clinical trials examining the effect of prebiotic consumption on glycemic status, lipid profile, and/or anthropometric features in adults with prediabetes were selected. Data from 10 selected studies were extracted. In total, 546 subjects were included in our analysis, of whom 258 were allocated to prebiotic supplemented group and 288 to control group. Our results demonstrated a significant reduction in body fat (BF) percentage (standardized mean difference: -1.27 %, 95% confidence interval: -2.33, -0.22) after prebiotic supplementation. We found no significant alterations in metabolic indices, including fasting plasma glucose, insulin, glycosylated hemoglobin A1c, homeostasis model assessment of insulin resistance, total cholesterol, triglyceride, and low- and high-density lipoprotein cholesterol concentrations. In addition, we did not notice a significant effect of prebiotic consumption on other anthropometrics, including body mass index and waist circumference. There was no fair evidence that prebiotic consumption could improve metabolic and anthropometric features in subjects with prediabetes. Yet, a significant reduction in BF might support the beneficial effect of prebiotics when aiming at preventing diabetes through lifestyle modifications and weight management. In addition, the reduction in BF can be of clinical significance, indicating the potential of prebiotics to increase insulin sensitivity, which can positively affect people with prediabetes. Nevertheless, current findings should be taken with caution due to the very low certainty in the pooled estimate for the majority of outcomes. Future studies are needed to investigate the effect of prebiotics on health status in people with prediabetes. This trial was registered at PROSPERO as CRD42023473082.
Collapse
Affiliation(s)
- Elham Hosseini
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zeinab Mokhtari
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Gholamreza Askari
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
5
|
Pedrosa LDF, de Vos P, Fabi JP. From Structure to Function: How Prebiotic Diversity Shapes Gut Integrity and Immune Balance. Nutrients 2024; 16:4286. [PMID: 39770907 PMCID: PMC11678351 DOI: 10.3390/nu16244286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/06/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
The microbiota stability, diversity, and composition are pillars for an efficient and beneficial symbiotic relationship between its host and itself. Microbial dysbiosis, a condition where a homeostatic bacterial community is disturbed by acute or chronic events, is a predisposition for many diseases, including local and systemic inflammation that leads to metabolic syndrome, diabetes, and some types of cancers. Classical dysbiosis occurs in the large intestine. During this period, pathogenic strains can multiply, taking advantage of the compromised environment. This overgrowth triggers an exaggerated inflammatory response from the human immune system due to the weakened integrity of the intestinal barrier. Such inflammation can also directly influence higher polyp formation and/or tumorigenesis. Prebiotics can be instrumental in preventing or correcting dysbiosis. Prebiotics are molecules capable of serving as substrates for fermentation processes by gut microorganisms. This can promote returning the intestinal environment to homeostasis. Effective prebiotics are generally specific oligo- and polysaccharides, such as FOS or inulin. However, the direct effects of prebiotics on intestinal epithelial and immune cells must also be taken into consideration. This interaction happens with diverse prebiotic nondigestible carbohydrates, and they can inhibit or decrease the inflammatory response. The present work aims to elucidate and describe the different types of prebiotics, their influence, and their functionalities for health, primarily focusing on their ability to reduce and control inflammation in the intestinal epithelial barrier, gut, and systemic environments.
Collapse
Affiliation(s)
- Lucas de Freitas Pedrosa
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil;
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands;
| | - Paul de Vos
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands;
| | - João Paulo Fabi
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil;
- Food and Nutrition Research Center (NAPAN), University of São Paulo, São Paulo 05508-000, SP, Brazil
- Food Research Center (FoRC), CEPID-FAPESP (Research, Innovation, and Dissemination Centers), São Paulo 05508-080, SP, Brazil
- Food Research Center (FoRC), CEPIX-USP, University of São Paulo, São Paulo 05508-000, SP, Brazil
| |
Collapse
|
6
|
An X, He J, Bi B, Wu G, Xu J, Yu W, Ren Z. The role of astrocytes in Alzheimer's disease: a bibliometric analysis. Front Aging Neurosci 2024; 16:1481748. [PMID: 39665038 PMCID: PMC11632101 DOI: 10.3389/fnagi.2024.1481748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/11/2024] [Indexed: 12/13/2024] Open
Abstract
Background Alzheimer's disease (AD) is a neurodegenerative disorder marked by cognitive decline and memory loss. Recent research underscores the crucial role of astrocytes in AD. This study reviews research trends and contributions on astrocytes in AD from 2000 to 2024, shedding light on the evolving research landscape. Methods We conducted a bibliometric analysis using data from the Web of Science Core Collection, covering publications from January 1, 2000, to July 6, 2024, on "Alzheimer's disease" and "astrocytes." We identified 5,252 relevant English articles and reviews. For data visualization and analysis, we used VOSviewer, CiteSpace, and the R package "bibliometrix," examining collaboration networks, co-citation networks, keyword co-occurrence, and thematic evolution. Results Between 2000 and 2024, 5,252 publications were identified, including 4,125 original research articles and 1,127 review articles. Publications increased significantly after 2016. The United States had the most contributions (1,468), followed by China (836). Major institutions were the University of California system (517) and Harvard University (402). The Journal of Alzheimer's Disease published the most articles (215). Verkhratsky A was the top author with 51 papers and 1,585 co-citations. Conclusion Our extensive bibliometric analysis indicates a significant increase in research on astrocytes in AD over the past 20 years. This study emphasizes the growing acknowledgment of astrocytes' crucial role in AD pathogenesis and points to future research on their mechanisms and therapeutic potential.
Collapse
Affiliation(s)
- Xiaoqiong An
- Department of Laboratory Medicine, The Second People's Hospital of Guizhou Province, Guiyang, China
| | - Jun He
- Department of Laboratory Medicine, The Second People's Hospital of Guizhou Province, Guiyang, China
- Key Laboratory of Molecular Biology, Guizhou Medical University, Guiyang, Guizhou, China
| | - Bin Bi
- Key Laboratory of Human Brain Bank for Functions and Diseases of Department of Education of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou, China
| | - Gang Wu
- Key Laboratory of Human Brain Bank for Functions and Diseases of Department of Education of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou, China
| | - Jianwei Xu
- Guizhou Provincial Center for Clinical Laboratory, Guiyang, China
- Center for Tissue Engineering and Stem Cell Research, Guizhou Medical University, Guiyang, China
| | - Wenfeng Yu
- Psychosomatic Department, The Second People's Hospital of Guizhou Province, Guiyang, China
- Department of Pharmacology, School of Basic Medicine, Guizhou Medical University, Guiyang, China
| | - Zhenkui Ren
- Department of Laboratory Medicine, The Second People's Hospital of Guizhou Province, Guiyang, China
| |
Collapse
|
7
|
de Oliveira DP, Todorov SD, Fabi JP. Exploring the Prebiotic Potentials of Hydrolyzed Pectins: Mechanisms of Action and Gut Microbiota Modulation. Nutrients 2024; 16:3689. [PMID: 39519522 PMCID: PMC11547739 DOI: 10.3390/nu16213689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/20/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
The intestinal microbiota is a complex ecosystem where the microbial community (including bacteria) can metabolize available substrates via metabolic pathways specific to each species, often related in symbiotic relations. As a consequence of using available substrates and microbial growth, specific beneficial metabolites can be produced. When this reflects the health benefits for the host, these substrates can be categorized as prebiotics. Given that most prebiotic candidates must have a low molecular weight to be further metabolized by the microbiota, the role in the preliminary biological pretreatment is crucial. To provide proper substrates to the intestinal microbiota, a strategy could be to decrease the complexity of polysaccharides and reduce the levels of polymerization to low molecular weight for the target molecules, driving better solubilization and the consequent metabolic use by intestinal bacteria. When high molecular weight pectin is degraded (partially depolymerized), its solubility increases, thereby improving its utilization by gut microbiota. With regards to application, prebiotics have well-documented advantages when applied as food additives, as they improve gut health and can enhance drug effects, all shown by in vitro, in vivo, and clinical trials. In this review, we aim to provide systematic evidence for the mechanisms of action and the modulation of gut microbiota by the pectin-derived oligosaccharides produced by decreasing overall molecular weight after physical and/or chemical treatments and to compare with other types of prebiotics.
Collapse
Affiliation(s)
- Débora Preceliano de Oliveira
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil;
- Food Research Center (FoRC), CEPID-FAPESP (Research, Innovation and Dissemination Centers, São Paulo Research Foundation), São Paulo 05508-080, SP, Brazil;
| | - Svetoslav Dimitrov Todorov
- Food Research Center (FoRC), CEPID-FAPESP (Research, Innovation and Dissemination Centers, São Paulo Research Foundation), São Paulo 05508-080, SP, Brazil;
- ProBacLab, Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil
- Food Research Center (FoRC), CEPIX-USP, University of São Paulo, São Paulo 05508-080, SP, Brazil
| | - João Paulo Fabi
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil;
- Food Research Center (FoRC), CEPID-FAPESP (Research, Innovation and Dissemination Centers, São Paulo Research Foundation), São Paulo 05508-080, SP, Brazil;
| |
Collapse
|
8
|
Vajdi M, Khorvash F, Askari G. A randomized, double-blind, placebo-controlled parallel trial to test the effect of inulin supplementation on migraine headache characteristics, quality of life and mental health symptoms in women with migraine. Food Funct 2024; 15:10088-10098. [PMID: 39291634 DOI: 10.1039/d4fo02796e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Migraine is a complex neurovascular disorder characterized by recurrent headache attacks that are often accompanied by symptoms such as vomiting, nausea, and sensitivity to sound or light. Preventing migraine attacks is highly important. Recent research has indicated that alterations in gut microbiota may influence the underlying mechanisms of migraines. This study aimed to investigate the effects of inulin supplementation on migraine headache characteristics, quality of life (QOL), and mental health symptoms in women with migraines. In a randomized double-blind placebo-controlled trial, 80 women with migraines aged 20 to 50 years were randomly assigned to receive 10 g day-1 of inulin or a placebo supplement for 12 weeks. Severity, frequency, and duration of migraine attacks, as well as depression, anxiety, stress, QOL, and headache impact test (HIT-6) scores, were examined at the start of the study and after 12 weeks of intervention. In this study, the primary outcome focused on the frequency of headache attacks, while secondary outcomes encompassed the duration and severity of headache attacks, QOL, and mental health. There was a significant reduction in severity (-1.95 vs. -0.84, P = 0.004), duration (-6.95 vs. -2.05, P = 0.023), frequency (-2.09 vs. -0.37, P < 0.001), and HIT-6 score (-10.30 vs. -6.52, P < 0.023) in the inulin group compared with the control. Inulin supplementation improved mental health symptoms, including depression (-4.47 vs. -1.45, P < 0.001), anxiety (-4.37 vs. -0.70, P < 0.001), and stress (-4.40 vs. -1.50, P < 0.001). However, no significant difference was observed between the two groups regarding changes in QOL score. This study provides evidence supporting the beneficial effects of inulin supplement on migraine symptoms and mental health status in women with migraines. Further studies are necessary to confirm these findings. Trial registration: Iranian Registry of Clinical Trials (https://www.irct.ir) (ID: IRCT20121216011763N58).
Collapse
Affiliation(s)
- Mahdi Vajdi
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Fariborz Khorvash
- Neurology Research Center, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Gholamreza Askari
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
9
|
Bock PM, Martins AF, Schaan BD. Understanding how pre- and probiotics affect the gut microbiome and metabolic health. Am J Physiol Endocrinol Metab 2024; 327:E89-E102. [PMID: 38809510 DOI: 10.1152/ajpendo.00054.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 05/30/2024]
Abstract
The gut microbiome, a complex assembly of microorganisms, significantly impacts human health by influencing nutrient absorption, the immune system, and disease response. These microorganisms form a dynamic ecosystem that is critical to maintaining overall well-being. Prebiotics and probiotics are pivotal in regulating gut microbiota composition. Prebiotics nourish beneficial bacteria and promote their growth, whereas probiotics help maintain balance within the microbiome. This intricate balance extends to several aspects of health, including maintaining the integrity of the gut barrier, regulating immune responses, and producing metabolites crucial for metabolic health. Dysbiosis, or an imbalance in the gut microbiota, has been linked to metabolic disorders such as type 2 diabetes, obesity, and cardiovascular disease. Impaired gut barrier function, endotoxemia, and low-grade inflammation are associated with toll-like receptors influencing proinflammatory pathways. Short-chain fatty acids derived from microbial fermentation modulate anti-inflammatory and immune system pathways. Prebiotics positively influence gut microbiota, whereas probiotics, especially Lactobacillus and Bifidobacterium strains, may improve metabolic outcomes, such as glycemic control in diabetes. It is important to consider strain-specific effects and study variability when interpreting these findings, highlighting the need for further research to optimize their therapeutic potential. The aim of this report is therefore to review the role of the gut microbiota in metabolic health and disease and the effects of prebiotics and probiotics on the gut microbiome and their therapeutic role, integrating a broad understanding of physiological mechanisms with a clinical perspective.
Collapse
Affiliation(s)
- Patricia M Bock
- Pharmacology, Institute of Basic Science, Universidade Federal do Rio Grande, Rio Grande, Brazil
| | - Andreza F Martins
- Microbiology, Department of Microbiology, Immunology, and Parasitology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Beatriz D Schaan
- Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Faculty of Medicine, Department of Internal Medicine, Graduate Program in Medical Sciences: Endocrinology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
10
|
Donadio JLS, Fabi JP. Comparative analysis of pectin and prebiotics on human microbiota modulation in early life stages and adults. Food Funct 2024; 15:6825-6846. [PMID: 38847603 DOI: 10.1039/d4fo01231c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The gut microbiota is essential in human health, influencing various physiological processes ranging from digestion and metabolism to immune function and mental health. Dietary fiber pectins and prebiotics have emerged as key modulators of gut microbiota composition and function, offering potential therapeutic implications for promoting gut health and preventing intestinal inflammatory diseases. In this review, we explore the modulation of gut microbiota by dietary fiber pectins and prebiotics in infants and adults. We begin with an overview of the gut microbiota composition and function in different age groups, highlighting the factors in shaping microbial communities in both age groups, especially the effect of diet. We then delve into the impact of dietary fiber pectins and prebiotics on gut microbiota composition and function, examining their effects on digestive health, intestinal barrier integrity, immune function, metabolic health, and mental health across different life stages. We further compare how aging affects the gut function and immune system, and we discuss the main health outcomes associated with dietary fiber intake and prebiotics, including the impact on digestive health, improvement in immune function, improvement in cholesterol and glucose metabolism, weight management, mental health, and prevention of diseases. Finally, we highlight the challenges and future directions for research. By advancing the understanding of gut microbiota dynamics and translating scientific insights into clinical practice, it could harness the full potential of dietary fiber pectins and prebiotics to optimize gut health, improve overall well-being across the lifespan, and increase longevity.
Collapse
Affiliation(s)
- Janaina Lombello Santos Donadio
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil.
- Food Research Center (FoRC), CEPID-FAPESP (Research, Innovation and Dissemination Centers, São Paulo Research Foundation), São Paulo, Brazil
| | - João Paulo Fabi
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil.
- Food Research Center (FoRC), CEPID-FAPESP (Research, Innovation and Dissemination Centers, São Paulo Research Foundation), São Paulo, Brazil
- Food and Nutrition Research Center (NAPAN), University of São Paulo, São Paulo, Brazil
| |
Collapse
|
11
|
Hu H, Zhang P, Liu F, Pan S. Regulations of Citrus Pectin Oligosaccharide on Cholesterol Metabolism: Insights from Integrative Analysis of Gut Microbiota and Metabolites. Nutrients 2024; 16:2002. [PMID: 38999750 PMCID: PMC11243408 DOI: 10.3390/nu16132002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/25/2024] [Accepted: 05/04/2024] [Indexed: 07/14/2024] Open
Abstract
(1) Background: Recently, academic studies are demonstrating that the cholesterol-lowering effects of pectin oligosaccharides (POSs) are correlated to intestinal flora. However, the mechanisms of POS on cholesterol metabolisms are limited, and the observations of intestinal flora are lacking integrative analyses. (2) Aim and methods: To reveal the regulatory mechanisms of POS on cholesterol metabolism via an integrative analysis of the gut microbiota, the changes in gut microbiota structure and metabolite composition after POS addition were investigated using Illumina MiSeq sequencing and non-targeted metabolomics through in vitro gut microbiota fermentation. (3) Results: The composition of fecal gut flora was adjusted positively by POS. POS increased the abundances of the cholesterol-related bacterial groups Bacteroidetes, Bifidobacterium and Lactobacillus, while it decreased conditional pathogenic Escherichia coli and Enterococcus, showing good prebiotic activities. POS changed the composition of gut microbiota fermentation metabolites (P24), causing significant changes in 221 species of fermentation metabolites in a non-targeted metabolomics analysis and promoting the production of short-chain fatty acids. The abundances of four types of cholesterol metabolism-related metabolites (adenosine monophosphate, cyclic adenosine monophosphate, guanosine and butyrate) were significantly higher in the P24 group than those in the control group without POS addition. (4) Conclusion: The abovementioned results may explain the hypocholesterolemic effects of POS and promotion effects on cholesterol efflux of P24. These findings indicated that the potential regulatory mechanisms of citrus POS on cholesterol metabolism are modulated by cholesterol-related gut microbiota and specific metabolites.
Collapse
Affiliation(s)
- Haijuan Hu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Peipei Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Fengxia Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Siyi Pan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
12
|
Barathan M, Ng SL, Lokanathan Y, Ng MH, Law JX. The Profound Influence of Gut Microbiome and Extracellular Vesicles on Animal Health and Disease. Int J Mol Sci 2024; 25:4024. [PMID: 38612834 PMCID: PMC11012031 DOI: 10.3390/ijms25074024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/02/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
The animal gut microbiota, comprising a diverse array of microorganisms, plays a pivotal role in shaping host health and physiology. This review explores the intricate dynamics of the gut microbiome in animals, focusing on its composition, function, and impact on host-microbe interactions. The composition of the intestinal microbiota in animals is influenced by the host ecology, including factors such as temperature, pH, oxygen levels, and nutrient availability, as well as genetic makeup, diet, habitat, stressors, and husbandry practices. Dysbiosis can lead to various gastrointestinal and immune-related issues in animals, impacting overall health and productivity. Extracellular vesicles (EVs), particularly exosomes derived from gut microbiota, play a crucial role in intercellular communication, influencing host health by transporting bioactive molecules across barriers like the intestinal and brain barriers. Dysregulation of the gut-brain axis has implications for various disorders in animals, highlighting the potential role of microbiota-derived EVs in disease progression. Therapeutic approaches to modulate gut microbiota, such as probiotics, prebiotics, microbial transplants, and phage therapy, offer promising strategies for enhancing animal health and performance. Studies investigating the effects of phage therapy on gut microbiota composition have shown promising results, with potential implications for improving animal health and food safety in poultry production systems. Understanding the complex interactions between host ecology, gut microbiota, and EVs provides valuable insights into the mechanisms underlying host-microbe interactions and their impact on animal health and productivity. Further research in this field is essential for developing effective therapeutic interventions and management strategies to promote gut health and overall well-being in animals.
Collapse
Affiliation(s)
- Muttiah Barathan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (Y.L.); (M.H.N.)
| | - Sook Luan Ng
- Department of Craniofacial Diagnostics and Biosciences, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia;
| | - Yogeswaran Lokanathan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (Y.L.); (M.H.N.)
| | - Min Hwei Ng
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (Y.L.); (M.H.N.)
| | - Jia Xian Law
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (Y.L.); (M.H.N.)
| |
Collapse
|