1
|
Hazarika G, Das R, Sarma D. Citrus Symphony: Antibacterial Efficacy of Essential Oils Against Aeromonas jandaei. Curr Microbiol 2025; 82:209. [PMID: 40131509 DOI: 10.1007/s00284-025-04180-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 03/09/2025] [Indexed: 03/27/2025]
Abstract
The rise of antibiotic resistance among pathogenic bacteria has prompted the exploration of alternative antimicrobial agents. Essential oils, known for their potent bioactive properties, have emerged as promising candidates. This study investigates the antibacterial efficacy of essential oils derived from various citrus plants against Aeromonas jandaei, a common pathogen affecting Anabas testudineus. Essential oils from Citrus medica and Citrus aurantium were extracted and characterized using gas chromatography-mass spectrometry (GC-MS). The antibacterial activity was assessed through agar diffusion and broth microdilution methods to determine the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). This study emphasizes the potential of citrus essential oils as effective antibacterial agents against A. jandaei, presenting a natural and sustainable alternative to conventional antibiotics.
Collapse
Affiliation(s)
- Gayatree Hazarika
- Department of Zoology, Gauhati University, Guwahati, Assam, 781014, India
- Department of Zoology, PDUAM, Tulungia, Bongaigaon, 783383, India
| | - Rajdeep Das
- Department of Zoology, Gauhati University, Guwahati, Assam, 781014, India
- Department of Zoology, Dudhnoi College, Dudhnoi, 783124, India
| | - Dandadhar Sarma
- Department of Zoology, Gauhati University, Guwahati, Assam, 781014, India.
| |
Collapse
|
2
|
Djenane D, Khaled BM, Ben Miri Y, Metahri MS, Montañés L, Aider M, Ariño A. Improved Functionality, Quality, and Shelf Life of Merguez-Type Camel Sausage Fortified with Spirulina as a Natural Ingredient. Foods 2024; 14:59. [PMID: 39796348 PMCID: PMC11719629 DOI: 10.3390/foods14010059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/18/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025] Open
Abstract
The objective of the present work was to examine the effect of incorporating spirulina powder (SP) in merguez-type sausages made exclusively with camel meat, as well as to evaluate its physicochemical, microbiological, and sensory quality attributes and its prebiotic potential. The final purpose was to offer an innovative meat product to increase camel meat consumption. Several innovative fresh sausage formulations were developed using SP (00, 100, 250, and 500 mg/kg) and stored under vacuum conditions with refrigeration at 1 ± 1 °C for 35 days. A control group of camel sausage without SP was also stored overwrapped (OW) under aerobic conditions, to serve as the negative control. The addition of SP to the vacuum-packed camel sausages extended their shelf life by 20 to 35 days compared to the control group, which was completely spoiled by the fifth day of storage. These results were more pronounced the higher the percentage of SP incorporated into the camel sausage formulation, as indicated by the following parameters: 2-thiobarbituric acid-reactive substances TBARS (1.46 vs. 2.89 mg MDA/kg), CIE a* (14.65 vs. 10.12), total volatile basic nitrogen TVB-N (13.02 vs. 15.09 mg/kg), total psychrotrophic bacteria TPB (5.71 vs. 6.34 log CFU/g), and overall acceptability score (3.17 vs. 2.5). The study of prebiotic potential suggested that the addition of SP to camel sausages promoted the growth of probiotic strains, which in turn were able to inhibit the growth of pathogenic microorganisms such as S. aureus and E. coli O157:H7. In conclusion, this study highlighted how SP, as a clean label ingredient, based on its rich composition and its antioxidant, antibacterial, and prebiotic effects, may represent a source of beneficial substances for human health and offer an alternative approach to producing a new traditional merguez-type sausage with improved acceptance.
Collapse
Affiliation(s)
- Djamel Djenane
- Meat Quality and Meat Safety Laboratory, University Mouloud Mammeri, Tizi Ouzou 15000, Algeria;
| | - Boumediène Méghit Khaled
- Laboratoire de Nutrition, Pathologie, Agro-Biotechnologie et Santé (Lab-NuPABS), Department of Biology, Faculty of Natural Sciences and Life, Djillali Liabès University, Sidi Bel Abbès 22005, Algeria;
| | - Yamina Ben Miri
- Meat Quality and Meat Safety Laboratory, University Mouloud Mammeri, Tizi Ouzou 15000, Algeria;
- Department of Biochemistry and Microbiology, Faculty of Sciences, Mohamed Boudiaf University, M’sila 28000, Algeria
| | - Mohammed Said Metahri
- Faculty of Biological and Agricultural Sciences, Mouloud Mammeri University of Tizi-Ouzou, Tizi Ouzou 15000, Algeria;
| | - Luis Montañés
- Laboratorios Valero Analítica S.L., 50011 Zaragoza, Spain;
| | - Mohammed Aider
- Department of Soil Sciences and Agri-Food Engineering, Université Laval, Quebec City, QC G1V 0A6, Canada;
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Agustín Ariño
- Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza-CITA, 50013 Zaragoza, Spain;
| |
Collapse
|
3
|
Pierozan MB, Oliveira Filho JGD, Cappato LP, Costa AC, Egea MB. Essential Oils Against Spoilage in Fish and Seafood: Impact on Product Quality and Future Challenges. Foods 2024; 13:3903. [PMID: 39682976 DOI: 10.3390/foods13233903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/29/2024] [Accepted: 11/30/2024] [Indexed: 12/18/2024] Open
Abstract
The preservation of fish and seafood represents a significant challenge for the food industry due to these products' high susceptibility to microbial spoilage. Essential oils (EOs), classified as Generally Recognized as Safe (GRAS), have become a natural alternative to synthetic preservatives due to their antimicrobial and antioxidant properties. This review aims to analyze the specific potential of EOs in extending the shelf life of fish and seafood products, offering a natural and effective preservation solution. It provides a detailed overview of EOs applications and mechanisms, highlighting their role in controlling spoilage microorganisms while maintaining product quality. The main methods of EOs application include immersion, spraying, and pipetting, with antimicrobial effectiveness influenced by factors such as concentration, exposure time, and food characteristics like chemical composition and biofilms. Direct EOs application shows challenges that can be countered by exploring nanoemulsion technology as an effective strategy to enhance EOs stability and controlled release, maximizing their preservation impact. Additionally, coatings made from chitosan, gelatin, Farsi gum, and carrageenan, combined with EOs such as oregano, clove, and thyme have shown efficacy in preserving species like rainbow trout, mackerel, and shrimp. However, the commercial feasibility of using EOs in fish preservation depends on consumer acceptance and regulatory compliance. This review offers valuable insights for the industry and researchers by highlighting the practical applications and commercial challenges of EOs in seafood products, underscoring the importance of consumer acceptance and regulatory adherence for market viability.
Collapse
Affiliation(s)
- Matheus Barp Pierozan
- Instituto Federal de Educação, Ciência e Tecnologia Goiano, Campus Rio Verde, Rio Verde 75901-970, GO, Brazil
| | | | - Leandro Pereira Cappato
- Instituto Federal de Educação, Ciência e Tecnologia Goiano, Campus Rio Verde, Rio Verde 75901-970, GO, Brazil
| | - Adriano Carvalho Costa
- Instituto Federal de Educação, Ciência e Tecnologia Goiano, Campus Rio Verde, Rio Verde 75901-970, GO, Brazil
| | - Mariana Buranelo Egea
- Instituto Federal de Educação, Ciência e Tecnologia Goiano, Campus Rio Verde, Rio Verde 75901-970, GO, Brazil
| |
Collapse
|
4
|
Elhawary EA, Nilofar N, Zengin G, Eldahshan OA. Variation of the essential oil components of Citrus aurantium leaves upon using different distillation techniques and evaluation of their antioxidant, antidiabetic, and neuroprotective effect against Alzheimer's disease. BMC Complement Med Ther 2024; 24:73. [PMID: 38308284 PMCID: PMC10835836 DOI: 10.1186/s12906-024-04380-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/26/2024] [Indexed: 02/04/2024] Open
Abstract
Citrus fruit essential oil is considered one of the widely studied essential oils while its leaves attract less attention although being rich in nearly the same composition as the peel and flowers. The leaves of bitter orange or sour orange (Citrus aurantium L.) were extracted using three different techniques namely; hydrodistillation (HD), steam distillation (SD), and microwave-assisted distillation (MV) to compare their chemical composition. The three essential oil samples were analyzed through GC/FID and GC/MS analyses. The samples were tested in vitro using different antioxidant techniques (DPPH, ABTS, CUPRAC, FRAP, PBD, and MCA), neuroprotective enzyme inhibitory activities (acetylcholine and butyl choline enzymes), and antidiabetic activities (α-amylase and α-glucosidase). The results showed that thirty-five volatile ingredients were detected and quantified. Monoterpenes represented the most abundant class in the three essential oils followed by sesquiterpenes. C. aurantium essential oil carried potential antioxidant activity where SD exhibited the highest antioxidant activity, with values arranged in the following order: FRAP (200.43 mg TE/g), CUPRAC (138.69 mg TE/g), ABTS (129.49 mg TE/g), and DPPH (51.67 mg TE/g). SD essential oil also presented the most potent α-amylase (0.32) inhibition while the MV essential oil showed the highest α-glucosidase inhibition (2.73 mmol ACAE/g), followed by HD (2.53 mmol ACAE/g), and SD (2.46 mmol ACAE/g). The SD essential oil exhibited the highest BChE and AChE inhibitory activities (3.73 and 2.06 mg GALAE/g), respectively). Thus, bitter orange essential oil can act as a potential source of potent antioxidant, antidiabetic, and neuroprotective activities for future drug leads.
Collapse
Affiliation(s)
- Esraa A Elhawary
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, 11566, Egypt
| | - Nilofar Nilofar
- Department of Biology, Science Faculty, Selcuk University, Campus, Konya, Turkey
- Department of Pharmacy, Botanic Garden "Giardino dei Semplici", Università degli Studi "Gabriele d'Annunzio", via dei Vestini 31, Chieti, 66100, Italy
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Campus, Konya, Turkey
| | - Omayma A Eldahshan
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, 11566, Egypt.
- Center for Drug Discovery Research and Development, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, 11566, Egypt.
| |
Collapse
|
5
|
Wu W, Li G, Zhou W, Wang E, Zhao X, Song X, Zhao Y. Comparison of Composition, Free-Radical-Scavenging Capacity, and Antibiosis of Fresh and Dry Leave Aqueous Extract from Michelia shiluensis. Molecules 2023; 28:5935. [PMID: 37630187 PMCID: PMC10457956 DOI: 10.3390/molecules28165935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/01/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
Numerous plants of medicinal value grow on Hainan Island (China). Given the lack of knowledge on the phytochemical and pharmacological properties of Michelia shiluensis Chun and Y. F. Wu (M. shiluensis), the application of natural antioxidants and antimicrobials in the food industry has attracted increasing interest. This study aimed to compare the chemical composition, free-radical-scavenging capacity, and antibiosis of aqueous extracts of the fresh and dried leaves of M. shiluensis. The aqueous extract of the leaves of M. shiluensis was obtained using steam distillation, and its chemical components were separated and identified via gas chromatography-mass spectrometry (GC-MS). The free-radical-scavenging capacity and antibiosis were determined. Further, 28 and 20 compounds were isolated from the fresh leaf aqueous extract of M. shiluensis (MSFLAE) and dried leaf aqueous extract of M. shiluensis (MSDLAE), respectively. The free-radical-scavenging capacity of MSFLAE and MSDLAE was determined by the 2,2-diphenyl-1 picrylhydrazyl (DPPH) method, which was 43.43% and 38.74%, respectively. The scavenging capacity of MSFLAE and MSDLAE determined by the 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonate (ABTS)) method was 46.90% and 25.99%, respectively. The iron ion reduction capacity of MSFLAE and MSDLAE was determined by the ferric-reducing antioxidant power (FRAP) method as 94.7 and 62.9 μmol Fe2⁺/L, respectively. This indicated that the two leaf aqueous extracts had a certain free-radical-scavenging capacity, and the capacity of MSFLAE was higher than that of MSDLAE. The antibiosis of the two leaf aqueous extracts on the three foodborne pathogenic bacteria was low, but the antimicrobial effects on Gram-positive bacteria were better than those on Gram-negative bacteria. The antibiosis of MSFLAE on Escherichia coli and Staphylococcus aureus was greater than that of MSDLAE. Finally, MSFLAE and MSDLAE both had certain free-radical-scavenging capacities and antibiosis, confirming that the use of this plant in the research and development of natural antioxidants and antibacterial agents was reasonable. Plant aqueous extracts are an essential source of related phytochemistry and have immense pharmacological potential.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ying Zhao
- Hainan Key Laboratory of Biology of Tropical Flowers and Trees Resources, Forestry Institute, Hainan University, Haikou 570228, China; (W.W.); (G.L.); (W.Z.); (E.W.); (X.Z.); (X.S.)
| |
Collapse
|
6
|
Djenane D, Ben Miri Y, Ariño A. Use of Algerian Type Ras El-Hanout Spices Mixture with Marination to Increase the Sensorial Quality, Shelf Life, and Safety of Whole Rabbit Carcasses under Low-O 2 Modified Atmosphere Packaging. Foods 2023; 12:2931. [PMID: 37569200 PMCID: PMC10418402 DOI: 10.3390/foods12152931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/29/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023] Open
Abstract
This study aimed to evaluate the effect of combined treatments with Ras El-Hanout spices mixture and marinade solution containing extra virgin olive oil, onion, garlic, and concentrated lemon juice on sensorial quality, shelf life, and safety of whole rabbit carcasses under low-O2 modified atmosphere packaging (MAP). The values of pH, water holding capacity, shear force, thiobarbituric acid reactive substances, total volatile basic nitrogen, color (CIE L*a*b*), sensorial tests, and spoilage microorganisms were determined in rabbit meat at 0, 5, 10, 15, and 20 days during a retail display at 7 ± 1 °C. The results indicated that the marination process using the Ras El-Hanout blend of spices improved the water-holding capacity of meat maintaining optimum pH values. This combined treatment delayed the growth of major spoilage microorganisms, lipid oxidation, protein degradation, and undesirable color changes compared to unmarinated samples from the fifth to the twentieth day of retail exposure. The shelf life of rabbit carcasses under low-O2 MAP could be extended to 20 days of retail display, while rabbit carcasses under aerobic display presented a shorter shelf life of 5 to 10 days. Instrumental and sensorial tests showed that low-O2 MAP enhanced the tenderness of whole rabbit carcasses, with those marinated with Ras El-Hanout being the most positively perceived by the panelists. Marination also inhibited the pathogen Campylobacter jejuni, thus increasing the microbiological safety of the packaged product. The overall results indicated that low-O2 MAP combined with the Ras El-Hanout spice blend and marinade solution may represent a promising strategy for retail establishments to improve the quality, shelf life, and safety of rabbit carcasses.
Collapse
Affiliation(s)
- Djamel Djenane
- Food Quality and Food Safety Research Laboratory, Department of Food Sciences, Mouloud Mammeri University, P.O. Box 17, Tizi Ouzou 15000, Algeria;
| | - Yamina Ben Miri
- Food Quality and Food Safety Research Laboratory, Department of Food Sciences, Mouloud Mammeri University, P.O. Box 17, Tizi Ouzou 15000, Algeria;
- Department of Biochemistry and Microbiology, Faculty of Sciences, Mohamed Boudiaf University, P.O. Box 166, M’sila 28000, Algeria
| | - Agustín Ariño
- Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza-CITA, 50013 Zaragoza, Spain;
| |
Collapse
|
7
|
Saghir SA, Alnaimat SM, Dmour SM, Al-Tarawni AH, Abdelnour SA, Ahmeda AF, Arisha AH, Hawwal MF, Alanzi AR, Mothana RA, Lindequist U. The ameliorative effect of bergamot oil nano-emulsion in stressed rabbit bucks: Influence on blood biochemical parameters, redox status, immunity indices, inflammation markers, semen quality, testicular changes and the expression of HSPs genes. Saudi Pharm J 2023; 31:101691. [PMID: 37457368 PMCID: PMC10345481 DOI: 10.1016/j.jsps.2023.06.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/23/2023] [Indexed: 07/18/2023] Open
Abstract
This work explored the activities of bergamot oil nano-emulsion (NBG) in modulating blood biochemical parameters, redox status, immunity indices, inflammation markers, semen quality, testicular changes and the expression of HSPs genes in stressed rabbit bucks. Twenty-four mature rabbit bucks (5 months) were randomly divided into three groups; control group (NBG0) received 1 ml of distilled water, while the other two groups received NBG orally at doses of 50 and 100 mg/kg (bw) twice a week. The present study's findings revealed that treated groups had lower values of total and direct bilirubin, triglyceride, lactate dehydrogenase, and creatinine compared with NBG0 group (p < 0.05). NBG100 group recorded the greatest of total protein, albumin, GPx, T3 and T4 values as well as the lowest values of uric acid, MDA, and indirect bilirubin. Both treated groups showed significantly reduced 8-OhDG, Amyloid A, TLR 4, while significantly increased nitric oxide, IgA, IgM, TAC, and SOD levels. Semen characteristics such as volume, sperm count, sperm motility, normal sperm, and vitality were significantly higher in the NBG100 group compared to the NBG50 and NBG0 groups, whereas sperm abnormalities and dead sperm were significantly reduced. HSP70, HSP72, and HSPA9 gene overexpression showed that testicular integrity was maintained after buck received oral doses of 50 or 100 mg/kg of NBG. Existing findings indicate that oral administration of NBG improves heat tolerance in rabbit bucks primarily as e result of its antioxidant and anti-inflammatory effects.
Collapse
Affiliation(s)
- Sultan A.M. Saghir
- Department of Medical Analysis. Princess Aisha Bint Al-Hussein College of Nursing and Medical Sciences, Al-Hussein Bin Talal University, Ma‘an 71111, Jordan
| | - Sulaiman M. Alnaimat
- Department of Medical Analysis. Princess Aisha Bint Al-Hussein College of Nursing and Medical Sciences, Al-Hussein Bin Talal University, Ma‘an 71111, Jordan
- Department of Biology Department, Al-Hussein Bin Talal University, Ma’an, Jordan
| | - Saif M. Dmour
- Department of Medical Analysis. Princess Aisha Bint Al-Hussein College of Nursing and Medical Sciences, Al-Hussein Bin Talal University, Ma‘an 71111, Jordan
| | | | - Sameh A. Abdelnour
- Department of Animal Production, Faculty of Agriculture, Zagazig University, 44519 Zagazig, Egypt
| | - Ahmad F. Ahmeda
- Department of Basic Medical Sciences, College of Medicine, Ajman University, Ajman 346, United Arab Emirates
- Center of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman 346, United Arab Emirates
| | - Ahmed H. Arisha
- Department of Animal Physiology and Biochemistry, Faculty of Veterinary Medicine, Badr University in Cairo, Badr City 11829, Egypt
- Department of Physiology, Laboratory of Biotechnology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Mohammed F. Hawwal
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah R. Alanzi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ramzi A. Mothana
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ulrike Lindequist
- Department of Pharmaceutical Biology, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| |
Collapse
|
8
|
Pereira JAM, Berenguer CV, Câmara JS. Delving into Agri-Food Waste Composition for Antibacterial Phytochemicals. Metabolites 2023; 13:metabo13050634. [PMID: 37233675 DOI: 10.3390/metabo13050634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/20/2023] [Accepted: 05/06/2023] [Indexed: 05/27/2023] Open
Abstract
The overuse of antibiotics in the healthcare, veterinary, and agricultural industries has led to the development of antimicrobial resistance (AMR), resulting in significant economic losses worldwide and a growing healthcare problem that urgently needs to be solved. Plants produce a variety of secondary metabolites, making them an area of interest in the search for new phytochemicals to cope with AMR. A great part of agri-food waste is of plant origin, constituting a promising source of valuable compounds with different bioactivities, including those against antimicrobial resistance. Many types of phytochemicals, such as carotenoids, tocopherols, glucosinolates, and phenolic compounds, are widely present in plant by-products, such as citrus peels, tomato waste, and wine pomace. Unveiling these and other bioactive compounds is therefore very relevant and could be an important and sustainable form of agri-food waste valorisation, adding profit for local economies and mitigating the negative impact of these wastes' decomposition on the environment. This review will focus on the potential of agri-food waste from a plant origin as a source of phytochemicals with antibacterial activity for global health benefits against AMR.
Collapse
Affiliation(s)
- Jorge A M Pereira
- CQM-Centro de Química da Madeira, Campus da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal
| | - Cristina V Berenguer
- CQM-Centro de Química da Madeira, Campus da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal
| | - José S Câmara
- CQM-Centro de Química da Madeira, Campus da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal
- Departamento de Química, Faculdade de Ciências Exatas e da Engenharia, Campus da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal
| |
Collapse
|
9
|
Silva BN, Bonilla-Luque OM, Possas A, Ezzaky Y, Elmoslih A, Teixeira JA, Achemchem F, Valero A, Cadavez V, Gonzales-Barron U. Meta-Analysis of In Vitro Antimicrobial Capacity of Extracts and Essential Oils of Syzygium aromaticum, Citrus L. and Origanum L.: Contrasting the Results of Different Antimicrobial Susceptibility Methods. Foods 2023; 12:foods12061265. [PMID: 36981191 PMCID: PMC10048651 DOI: 10.3390/foods12061265] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
Diffusion methods, including agar disk-diffusion and agar well-diffusion, as well as dilution methods such as broth and agar dilution, are frequently employed to evaluate the antimicrobial capacity of extracts and essential oils (EOs) derived from Origanum L., Syzygium aromaticum, and Citrus L. The results are reported as inhibition diameters (IDs) and minimum inhibitory concentrations (MICs), respectively. In order to investigate potential sources of variability in antimicrobial susceptibility testing results and to assess whether a correlation exists between ID and MIC measurements, meta-analytical regression models were built using in vitro data obtained through a systematic literature search. The pooled ID models revealed varied bacterial susceptibilities to the extracts and in some cases, the plant species and methodology utilised impacted the measurements obtained (p < 0.05). Lemon and orange extracts were found to be most effective against E. coli (24.4 ± 1.21 and 16.5 ± 0.84 mm, respectively), while oregano extracts exhibited the highest level of effectiveness against B. cereus (22.3 ± 1.73 mm). Clove extracts were observed to be most effective against B. cereus and demonstrated the general trend that the well-diffusion method tends to produce higher ID (20.5 ± 1.36 mm) than the disk-diffusion method (16.3 ± 1.40 mm). Although the plant species had an impact on MIC, there is no evidence to suggest that the methodology employed had an effect on MIC (p > 0.05). The ID–MIC model revealed an inverse correlation (R2 = 47.7%) and highlighted the fact that the extract dose highly modulated the relationship (p < 0.0001). The findings of this study encourage the use of extracts and EOs derived from Origanum, Syzygium aromaticum, and Citrus to prevent bacterial growth. Additionally, this study underscores several variables that can impact ID and MIC measurements and expose the correlation between the two types of results.
Collapse
Affiliation(s)
- Beatriz Nunes Silva
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (B.N.S.)
- Laboratório para a Sustentabilidade e Tecnologia em Regiões de Montanha, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
| | - Olga María Bonilla-Luque
- Departamento de Bromatología y Tecnología de los Alimentos, UIC Zoonosis y Enfermedades Emergentes ENZOEM, ceiA3, Campus Rabanales, Universidad de Córdoba, 14014 Córdoba, Spain
| | - Arícia Possas
- Departamento de Bromatología y Tecnología de los Alimentos, UIC Zoonosis y Enfermedades Emergentes ENZOEM, ceiA3, Campus Rabanales, Universidad de Córdoba, 14014 Córdoba, Spain
| | - Youssef Ezzaky
- Bioprocess and Environment Team, LASIME Lab., Agadir Superior School of Technology, Ibn Zohr University, Agadir 80150, Morocco
| | - Abdelkhaleq Elmoslih
- Bioprocess and Environment Team, LASIME Lab., Agadir Superior School of Technology, Ibn Zohr University, Agadir 80150, Morocco
| | - José António Teixeira
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
| | - Fouad Achemchem
- Bioprocess and Environment Team, LASIME Lab., Agadir Superior School of Technology, Ibn Zohr University, Agadir 80150, Morocco
| | - Antonio Valero
- Departamento de Bromatología y Tecnología de los Alimentos, UIC Zoonosis y Enfermedades Emergentes ENZOEM, ceiA3, Campus Rabanales, Universidad de Córdoba, 14014 Córdoba, Spain
| | - Vasco Cadavez
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (B.N.S.)
- Laboratório para a Sustentabilidade e Tecnologia em Regiões de Montanha, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Ursula Gonzales-Barron
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (B.N.S.)
- Laboratório para a Sustentabilidade e Tecnologia em Regiões de Montanha, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Correspondence: ; Tel.: +351-273-303-325
| |
Collapse
|
10
|
The Use of D-Optimal Mixture Design in Optimizing Formulation of a Nutraceutical Hard Candy. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2023; 2023:7510452. [PMID: 36968159 PMCID: PMC10033211 DOI: 10.1155/2023/7510452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 12/02/2022] [Accepted: 02/17/2023] [Indexed: 03/17/2023]
Abstract
The aim of this study was to optimize the formulation of hard candy with antiviral herbal extracts and flowered with Citrus limon peel essential oils. To substitute water fraction, the D-optimal mixture design was used. The optimized mixture fractions of the best hard candy formulation contain Curcuma longa extract (10%), Artemisia herba-alba Asso extract (3.33%), Glycyrrhiza glabra extract (1.66%), and Zingiber officinale extract (1.66%) and flowered by 20 μL/100 gram of Citrus limon essential oils. The effect of the addition had been investigated on the sensory, physicochemical, and phytochemical of the hard candy according to the optimal formulation. The main component of Citrus limon essential oil is limonene (52.47%), which has a pleasant lemon fragrance. The mixture of herbal extract added increased the total phenols, the flavonoid, and the ash content of the formulated hard candy (
mg GAE/g,
mg CE/g, and
, respectively). The measurement of the DPPH free radical activity reveals a good antioxidant activity (26.4%). Furthermore, the sensory analysis has shown a good appreciation. Thus, formulated hard candy is a sensorially and therapeutically interesting product.
Collapse
|
11
|
Magalhães D, Vilas-Boas AA, Teixeira P, Pintado M. Functional Ingredients and Additives from Lemon by-Products and Their Applications in Food Preservation: A Review. Foods 2023; 12:foods12051095. [PMID: 36900612 PMCID: PMC10001058 DOI: 10.3390/foods12051095] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/24/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Citrus trees are among the most abundant fruit trees in the world, with an annual production of around 124 million tonnes. Lemons and limes are among the most significant contributors, producing nearly 16 million tonnes per year. The processing and consumption of citrus fruits generates a significant amount of waste, including peels, pulp, seeds, and pomace, which represents about 50% of the fresh fruit. Citrus limon (C. limon) by-products are composed of significant amounts of bioactive compounds, such as phenolic compounds, carotenoids, vitamins, essential oils, and fibres, which give them nutritional value and health benefits such as antimicrobial and antioxidant properties. These by-products, which are typically discarded as waste in the environment, can be explored to produce new functional ingredients, a desirable approach from a circular economy perspective. The present review systematically summarizes the potential high-biological-value components extracted from by-products to achieve a zero-waste goal, focusing on the recovery of three main fractions: essential oils, phenolic compounds, and dietary fibres, present in C. limon by-products, and their applications in food preservation.
Collapse
|
12
|
Chemical Composition, Antimicrobial and Antioxidant Activity of Essential Oil from Allium tenuissimum L. Flowers. Foods 2022; 11:foods11233876. [PMID: 36496684 PMCID: PMC9739426 DOI: 10.3390/foods11233876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 12/04/2022] Open
Abstract
Allium tenuissimum L. as a kind of food condiment in northern China, is popular among more and more consumers owning to its special flavor from the flower. However, its composition has not been widely studied. Hence, the aim of this study was to investigate the chemical composition and antimicrobial and antioxidant activity of essential oil from Allium tenuissimum L. flowers. Gas chromatography−mass spectrometry (GC-MS) was applied to detect the chemical composition. The antimicrobial activity against foodborne pathogens was evaluated by measuring the zones of inhibition (ZOI), the minimal inhibitory concentration (MIC), and the minimal bactericidal concentration (MBC). The antioxidant effect was tested by the scavenging capacity on DPPH, ABTS+•, and •OH. The results of GC-MS showed that 72 volatile components were isolated and the structures 68 of them were identified, which comprised about 91.92% of the total composition of the oil. Among these compounds, terpenoid compounds and sulfurous compounds had the highest contents, especially dimethyl trisulfide. Our investigation demonstrated that the essential oil has better antimicrobial efficiency to Staphylococcus aureus, Bacillus subtilis, Escherichia coli, Aspergillus flavus, and Saccharomyces cerevisiae. In addition, the essential oil had a strong stability to UV. Furthermore, the essential oil exhibited a high radical-scavenging effect on DPPH, ABTS+•, and •OH, which is significant for application in the food industry. In conclusion, the essential oil could be used as an inexpensive and natural antibacterial and antioxidant agent in food.
Collapse
|
13
|
Eliopoulos C, Markou G, Langousi I, Arapoglou D. Reintegration of Food Industry By-Products: Potential Applications. Foods 2022; 11:3743. [PMID: 36429335 PMCID: PMC9689787 DOI: 10.3390/foods11223743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/06/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022] Open
Abstract
Numerous studies have indicated that fruits and vegetables are considered as significant sources of bioactive compounds. The generated by-products, which are derived from the food industry, reveal similar or higher antioxidant activity. On the other hand, intense industrialization results in the production of large volumes of by-products, raising serious environmental issues. Therefore, this situation creates the necessity to develop new strategies in order to exploit the generated wastes, securing the ability to develop new high-added-value products. This review aims to summarize the exploitation of fruit wastes, namely, apple and citrus, as well as vegetable by-products which are derived from tomato, potato and carrot cultivation. All the aforementioned by-products have found wide applications in the development of new high-added-value products in the food and feed industry owing to their improved nutritional profiles. Furthermore, these wastes are characterized by a strong antioxidant activity, justifying their valorization in other fields such as cosmetics and pharmaceutical industries.
Collapse
Affiliation(s)
| | | | | | - Dimitrios Arapoglou
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization—Demeter, L. Sof. Venizelou 1, 14123 Lykovryssi, Greece
| |
Collapse
|
14
|
Visakh NU, Pathrose B, Chellappan M, Ranjith M, Sindhu P, Mathew D. Chemical characterisation, insecticidal and antioxidant activities of essential oils from four Citrus spp. fruit peel waste. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
15
|
Li Y, Liu S, Zhao C, Zhang Z, Nie D, Tang W, Li Y. The Chemical Composition and Antibacterial and Antioxidant Activities of Five Citrus Essential Oils. Molecules 2022; 27:molecules27207044. [PMID: 36296637 PMCID: PMC9607008 DOI: 10.3390/molecules27207044] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/06/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022] Open
Abstract
Increasing concerns over the use of antimicrobial growth promoters in animal production has prompted the need to explore the use of natural alternatives such as phytogenic compounds and probiotics. Citrus EOs have the potential to be used as an alternative to antibiotics in animals. The purpose of this research was to study the antibacterial and antioxidant activities of five citrus EOs, grapefruit essential oil (GEO), sweet orange EO (SEO), bergamot EO (BEO), lemon EO (LEO) and their active component d-limonene EO (DLEO). The chemical composition of EOs was analyzed by gas chromatography–mass spectrometry (GC-MS). The antibacterial activities of the EOs on three bacteria (Escherichia coli, Salmonella and Lactobacillus acidophilus) were tested by measuring the minimum inhibitory concentration (MIC), minimal bactericidal concentration (MBC) and inhibition zone diameter (IZD). The antioxidant activities of EOs were evaluated by measuring the free radical scavenging activities of DPPH and ABTS. We found that the active components of the five citrus EOs were mainly terpenes, and the content of d-limonene was the highest. The antibacterial test showed that citrus EOs had selective antibacterial activity, and the LEO had the best selective antibacterial activity. Similarly, the LEO had the best scavenging ability for DPPH radicals, and DLEO had the best scavenging ability for ABTS. Although the main compound of the five citrus EOs was d-limonene, the selective antibacterial and antioxidant activity of them might not be primarily attributed to the d-limonene, but some other compounds’ combined action.
Collapse
|
16
|
Kakoei H, Mortazavian AM, Mofid V, Gharibzahedi SMT, Hosseini H. Single and combined hydrodistillation techniques of microwave and ultrasound for extracting bio-functional hydrosols from Iranian Eryngium caucasicum Trautv. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02474-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Singh S, Chaurasia PK, Bharati SL. Functional roles of Essential oils as an effective alternative of synthetic food preservatives: A review. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Sunita Singh
- Department of Chemistry, Navyug Kanya Mahavidyalaya University of Lucknow Lucknow, Uttar Pradesh India
| | - Pankaj Kumar Chaurasia
- P.G. Department of Chemistry, L.S. College B.R.A. Bihar University Muzaffarpur, Bihar India
| | - Shashi Lata Bharati
- Department of Chemistry North Eastern Regional Institute of Science and Technology Nirjuli, Arunachal Pradesh India
| |
Collapse
|
18
|
Antibacterial Activities and Synergistic Interaction of Citrus Essential Oils and Limonene with Gentamicin against Clinically Isolated Methicillin-Resistant Staphylococcus aureus. ScientificWorldJournal 2022; 2022:8418287. [PMID: 35264915 PMCID: PMC8901352 DOI: 10.1155/2022/8418287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/04/2022] [Indexed: 12/19/2022] Open
Abstract
Citrus reticulata Blanco and Citrus aurantifolia are the edible plants which contain several biological properties including antibacterial activity. The aims of the present study were to determine the chemical compositions and evaluate antibacterial activities of citrus essential oils extracted from the fruit peels of C. reticulata (CREO) and C. aurantifolia (CAEO), alone and in combination with gentamicin, against a panel of clinically isolated methicillin-resistant S. aureus (MRSA) (n = 40) and methicillin-susceptible S. aureus (MSSA) (n = 45). Gas chromatography-mass spectrometry analysis revealed that 12 and 25 compounds were identified in CREO and CAEO with the most predominant compound of limonene (62.9-72.5%). The antibacterial activities were determined by agar disk diffusion and resazurin-based microdilution methods. The results found that almost all MRSA isolates were resistant to ciprofloxacin, erythromycin, and clindamycin, and some isolates were resistant to gentamicin. CREO and CAEO exhibited inhibitory effects toward clinical isolates (MIC: 1.0-32.0 and 8.0-32.0 mg/mL, respectively), with a similar trend to limonene (MIC: 1.0-32.0 mg/mL). However, the higher antibacterial effects were found in CREO and limonene when compared to CAEO (p < 0.01). In combination effect, the results showed the synergistic interaction of gentamicin with CREO and limonene on the MRSA and MSSA isolates (FIC indexes: 0.012-0.258 and 0.012-0.375), but that interaction of gentamicin with CAEO was observed only on MRSA (FIC index: 0.012-0.016). These findings demonstrated the potential of these citrus essential oils as natural antibacterial agents that may contribute to reduce the emerging of antimicrobial-resistant bacteria.
Collapse
|
19
|
Ceratonia siliqua L. kibbles, seeds and leaves as a source of volatile bioactive compounds for antioxidant food biopackaging applications. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2021.100764] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
20
|
Novel active biopackaging incorporated with macerate of carob (Ceratonia siliqua L.) to extend shelf-life of stored Atlantic salmon fillets (Salmo salar L.). Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.113015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
21
|
Kunová S, Sendra E, Haščík P, Vukovic NL, Vukic M, Kačániová M. Influence of Essential Oils on the Microbiological Quality of Fish Meat during Storage. Animals (Basel) 2021; 11:ani11113145. [PMID: 34827877 PMCID: PMC8614330 DOI: 10.3390/ani11113145] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/28/2021] [Accepted: 11/02/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Fish meat is highly perishable due to its composition and the naturally present microbiota. The food industry aims to provide healthy, safe, and high-quality products to the market. Several strategies, including the use of natural preservatives, may be used to enhance food shelf life, and they can also be combined with others, such as vacuum packaging. This being the case, essential oils are natural plant components that, due to their composition, possess high antimicrobial and antioxidant effects, and are therefore good candidates to be tested as fish preservatives together with vacuum packaging. In the present study, essential oils from Citrus lemon and Cinnamomum camphora were added to rainbow trout meat for evaluating the microbiological quality (counts of bacteria and identification of present microbiota) of the fish when vacuum packed and stored for 7 days at 4 °C. Our results show that lemon (0.5% and 1%) as well as C. camphora essential oils (0.5% and 1%) had a positive effect on the microbiological quality of fish meat, keeping a high microbial quality of the fish fillets during 7 days of cold storage. The use of these essential oils in combination with vacuum packaging is beneficial in extending the shelf life of rainbow trout meat. All isolated species under the tested conditions are identified in the present study; such information will be useful for the future development of preservation methodologies that target isolated microorganisms, which will enable the food industry to enhance the shelf life and safety of fish. Abstract The aim of the present study was to evaluate the microbiological quality of rainbow trout meat treated with essential oils (EOs from Citrus limon and Cinnamomum camphora) at concentrations of 0.5% and 1.0% in combination with vacuum packaging during storage. The composition of the EOs were analyzed by gas chromatography coupled with mass spectrometry, and total viable counts (TVCs), coliform bacteria (CB), and lactic acid bacteria (LAB) were determined on the zeroth, first, third, fifth, and seventh days of storage at 4 °C. Individual species of isolated microorganisms were identified using a MALDI-TOF MS Biotyper. The results show that the major components of the EOs were linalool (98.1%) in C. camphora and α-limonene in C. limon. The highest number of TVCs and CB were 4.49 log CFU/g and 2.65 log CFU/g in aerobically packed samples at the seventh day. The lowest TVCs were those of samples treated with 1% C. camphora EO. For CB the most effective treatment was 1% lemon EO. LAB were only detected in a few samples, and were never present in aerobically packed samples; the highest number of LAB was 1.39 log CFU/g in samples treated with 1% lemon EO at day seven. The most commonly isolated coliform bacteria were Hafnia alvei, Serratia fonticola, Serratia proteamaculans, Pantoea agglomerans, and Yersinia ruckeri. Lactobacillus sakei, Staphylococcus hominis, and Carnobacterium maltaromaticum were the most frequently isolated bacteria from lactic acid bacteria. In conclusion, C. camphora EO at a concentration of 1% showed the highest antimicrobial activity.
Collapse
Affiliation(s)
- Simona Kunová
- Faculty of Biotechnology and Food Sciences, Institute of Food Sciences, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; (S.K.); (P.H.)
| | - Esther Sendra
- Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Escuela Politécnica Superior de Orihuela, Miguel Hernández University, 03312 Orihuela, Spain;
| | - Peter Haščík
- Faculty of Biotechnology and Food Sciences, Institute of Food Sciences, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; (S.K.); (P.H.)
| | - Nenad L. Vukovic
- Department of Chemistry, Faculty of Science, University of Kragujevac, R. Domanovica 12, 34000 Kragujevac, Serbia; (N.L.V.); (M.V.)
| | - Milena Vukic
- Department of Chemistry, Faculty of Science, University of Kragujevac, R. Domanovica 12, 34000 Kragujevac, Serbia; (N.L.V.); (M.V.)
| | - Miroslava Kačániová
- Faculty of Horticulture and Landscape Engineering, Institute of Horticulture, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
- Department of Bioenergetics, Food Analysis and Microbiology, Institute of Food Technology and Nutrition, Rzeszow University, Cwiklinskiej 1, 35-601 Rzeszow, Poland
- Correspondence:
| |
Collapse
|
22
|
Agdar GhareAghaji M, Zomordi S, Gharekhani M, Hanifian S. Effect of edible coating based on salep containing orange (
Citrus sinensis
) peel essential oil on shelf life of rainbow trout (
Oncorhynchus mykiss
) fillets. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Shahin Zomordi
- Department of Engineering Research West Azerbaijan Agricultural and Natural Resources Research and Education Center AREEO Urmia Iran
| | - Mehdi Gharekhani
- Department of Food Science and Technology Tabriz Branch Islamic Azad University Tabriz Iran
| | - Shahram Hanifian
- Department of Food Science and Technology Tabriz Branch Islamic Azad University Tabriz Iran
| |
Collapse
|
23
|
Youcef-Ettoumi K, Zouambia Y, Moulai-Mostefa N. Chemical composition, antimicrobial and antioxidant activities of Algerian Citrus sinensis essential oil extracted by hydrodistillation assisted by electromagnetic induction heating. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2021; 58:3049-3055. [PMID: 34294967 DOI: 10.1007/s13197-020-04808-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 09/01/2020] [Accepted: 09/17/2020] [Indexed: 11/25/2022]
Abstract
Hydro-distillation assisted by electromagnetic induction heating (H-EMIH) was employed to extract essential oil (EO) from Algerian fresh orange peels (Citrus sinensis). H-EMIH was compared with conventional hydro-distillation (C-H) in terms of hydro-distillation time, yield, chemical composition and, antibacterial and antioxidant activities. It was found that extraction of EO with H-EMIH gave a maximal yield of 3.77% in 35 min whereas C-H gave 2.72% in 41 min. The extracts obtained by both techniques were analyzed by Gas Chromatography-Mass Spectrometry. Their chemical compositions are relatively similar; limonene and β-myrcene were found as the principal compounds. The antioxidant activity results demonstrated that EO extracted by H-EMIH showed the highest capacity of radical scavenging than EO isolated by C-H process. Otherwise, it was found that EO extracted by H-EMIH exhibited an antimicrobial potential slightly higher than that extracted by C-H.
Collapse
Affiliation(s)
- Khadidja Youcef-Ettoumi
- Materials and Environmental Laboratory, Faculty of Technology, University of Medea, 26001 Ain D'Heb, Medea Algeria
| | - Yamina Zouambia
- Materials and Environmental Laboratory, Faculty of Technology, University of Medea, 26001 Ain D'Heb, Medea Algeria
| | - Nadji Moulai-Mostefa
- Materials and Environmental Laboratory, Faculty of Technology, University of Medea, 26001 Ain D'Heb, Medea Algeria
| |
Collapse
|
24
|
Raghavan S, Gurunathan J. Citrus species – a golden treasure box of metabolites that is beneficial against disorders. J Herb Med 2021. [DOI: 10.1016/j.hermed.2021.100438] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
25
|
Rathod NB, Ranveer RC, Benjakul S, Kim SK, Pagarkar AU, Patange S, Ozogul F. Recent developments of natural antimicrobials and antioxidants on fish and fishery food products. Compr Rev Food Sci Food Saf 2021; 20:4182-4210. [PMID: 34146459 DOI: 10.1111/1541-4337.12787] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/18/2021] [Accepted: 05/18/2021] [Indexed: 12/23/2022]
Abstract
Fish and fishery products (FFP) are highly perishable due to their high nutritional value and moisture content. The spoilage is mainly caused by microorganisms and chemical reactions, especially lipid oxidation, leading to losses in quality and market value. Microbiological and lipid deteriorations of fishery-derived products directly lower their nutritive value and pose the risk of toxicity for human health. Increasing demand for safe FFP brings about the preservation using additives from natural origins without chemical additives due to their safety and strict regulation. Antimicrobials and antioxidants from natural sources have exhibited an excellent control over the growth of microorganisms causing fish spoilage via different mechanisms. They also play a major role in retarding lipid oxidation by acting at various stages of oxidation. Antimicrobials and antioxidants from natural sources are usually regarded as safe with no detrimental effects on the quality attributes of FFP. This review provides recent literature on the different antioxidant and antimicrobial agents from natural sources, focusing on microbial and oxidative spoilage mechanisms, their inhibition system, and their applications to retard spoilage, maintain safety, and extend the shelf life of FFP. Their applications and benefits have been revisited.
Collapse
Affiliation(s)
- Nikheel Bhojraj Rathod
- Post Harvest Management of Meat, Poultry and Fish, Post Graduate Institute of Post-Harvest Management (Dr. Balasaheb Sawant Konkan Krishi Vidyapeeth), Killa-Roha, Raigad, Maharashtra, 402 116, India
| | - Rahul Chudaman Ranveer
- Post Harvest Management of Meat, Poultry and Fish, Post Graduate Institute of Post-Harvest Management (Dr. Balasaheb Sawant Konkan Krishi Vidyapeeth), Killa-Roha, Raigad, Maharashtra, 402 116, India
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Se-Kwon Kim
- Department of Marine Science & Convergence Engineering, College of Science & Technology Hanyang University Erica, Ansan-si, Gyeonggi-do, South Korea
| | - Asif Umar Pagarkar
- Marine Biological Research Station, (DBSKKV), Ratnagiri, Maharashtra, 415 612, India
| | - Surendra Patange
- Post Harvest Management of Meat, Poultry and Fish, Post Graduate Institute of Post-Harvest Management (Dr. Balasaheb Sawant Konkan Krishi Vidyapeeth), Killa-Roha, Raigad, Maharashtra, 402 116, India
| | - Fatih Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana, Turkey, 01330, Turkey
| |
Collapse
|
26
|
Lin X, Cao S, Sun J, Lu D, Zhong B, Chun J. The Chemical Compositions, and Antibacterial and Antioxidant Activities of Four Types of Citrus Essential Oils. Molecules 2021; 26:molecules26113412. [PMID: 34199966 PMCID: PMC8200181 DOI: 10.3390/molecules26113412] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/30/2021] [Accepted: 05/30/2021] [Indexed: 11/16/2022] Open
Abstract
Nanfeng mandarins (Citrus reticulata Blanco cv. Kinokuni), Xunwu mandarins (Citrus reticulata Blanco), Yangshuo kumquats (Citrus japonica Thunb) and physiologically dropped navel oranges (Citrus sinensis Osbeck cv. Newhall) were used as materials to extract peel essential oils (EOs) via hydrodistillation. The chemical composition, and antibacterial and antioxidant activities of the EOs were investigated. GC-MS analysis showed that monoterpene hydrocarbons were the major components and limonene was the predominate compound for all citrus EOs. The antibacterial testing of EOs against five different bacteria (Bacillus subtilis, Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa and Salmonella typhimurium) was carried out using the filter paper method and the broth microdilution method. Kumquat EO had the best inhibitory effect on B. subtilis, E. coli and S. typhimurium with MIC (minimum inhibitory concentration) values of 1.56, 1.56 and 6.25 µL/mL, respectively. All citrus EOs showed the antioxidant activity of scavenging DPPH and ABTS free radicals in a dose-dependent manner. Nanfeng mandarin EO presented the best antioxidant activity, with IC50 values of 15.20 mg/mL for the DPPH assay and 0.80 mg/mL for the ABTS assay. The results also showed that the antibacterial activities of EOs might not be related to their antioxidant activities.
Collapse
Affiliation(s)
- Xiaocai Lin
- National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou 341000, China; (X.L.); (S.C.); (J.S.); (B.Z.)
| | - Shan Cao
- National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou 341000, China; (X.L.); (S.C.); (J.S.); (B.Z.)
| | - Jingyu Sun
- National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou 341000, China; (X.L.); (S.C.); (J.S.); (B.Z.)
| | - Dongliang Lu
- College of Chemistry, Gannan Normal University, Ganzhou 341000, China;
| | - Balian Zhong
- National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou 341000, China; (X.L.); (S.C.); (J.S.); (B.Z.)
| | - Jiong Chun
- National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou 341000, China; (X.L.); (S.C.); (J.S.); (B.Z.)
- Correspondence: ; Tel.: +86-797-839-3608
| |
Collapse
|
27
|
Maurya A, Prasad J, Das S, Dwivedy AK. Essential Oils and Their Application in Food Safety. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.653420] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Food industries are facing a great challenge due to contamination of food products with different microbes such as bacteria, fungi, viruses, parasites, etc. These microbes deteriorate food items by producing different toxins during pre- and postharvest processing. Mycotoxins are one of the most potent and well-studied toxic food contaminants of fungal origin, causing a severe health hazard to humans. The application of synthetic chemicals as food preservatives poses a real scourge in the present scenario due to their bio-incompatibility, non-biodegradability, and environmental non-sustainability. Therefore, plant-based antimicrobials, including essential oils, have developed cumulative interest as a potential alternative to synthetic preservatives because of their ecofriendly nature and generally recognized as safe status. However, the practical utilization of essential oils as an efficient antimicrobial in the food industry is challenging due to their volatile nature, less solubility, and high instability. The recent application of different delivery strategies viz. nanoencapsulation, active packaging, and polymer-based coating effectively addressed these challenges and improved the bioefficacy and controlled release of essential oils. This article provides an overview of essential oils for the preservation of stored foods against bacteria, fungi, and mycotoxins, along with the specialized mechanism of action and technological advancement by using different delivery systems for their effective application in food and agricultural industries smart green preservative.
Collapse
|
28
|
Sani MA, Azizi-Lalabadi M, Tavassoli M, Mohammadi K, McClements DJ. Recent Advances in the Development of Smart and Active Biodegradable Packaging Materials. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1331. [PMID: 34070054 PMCID: PMC8158105 DOI: 10.3390/nano11051331] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 02/06/2023]
Abstract
Interest in the development of smart and active biodegradable packaging materials is increasing as food manufacturers try to improve the sustainability and environmental impact of their products, while still maintaining their quality and safety. Active packaging materials contain components that enhance their functionality, such as antimicrobials, antioxidants, light blockers, or oxygen barriers. Smart packaging materials contain sensing components that provide an indication of changes in food attributes, such as alterations in their quality, maturity, or safety. For instance, a smart sensor may give a measurable color change in response to a deterioration in food quality. This article reviews recent advances in the development of active and smart biodegradable packaging materials in the food industry. Moreover, studies on the application of these packaging materials to monitor the freshness and safety of food products are reviewed, including dairy, meat, fish, fruit and vegetable products. Finally, the potential challenges associated with the application of these eco-friendly packaging materials in the food industry are discussed, as well as potential future directions.
Collapse
Affiliation(s)
- Mahmood Alizadeh Sani
- Food Safety and Hygiene Division, School of Public Health, Tehran University of Medical Sciences, Tehran 1417614411, Iran;
| | - Maryam Azizi-Lalabadi
- Research Center for Environmental Determinants of Health (RCEDH), Kermanshah University of Medical Sciences, Kermanshah 6719851552, Iran;
| | - Milad Tavassoli
- Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz 5166614711, Iran;
| | - Keyhan Mohammadi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran;
| | | |
Collapse
|
29
|
Pascoalino LA, Reis FS, Prieto MA, Barreira JCM, Ferreira ICFR, Barros L. Valorization of Bio-Residues from the Processing of Main Portuguese Fruit Crops: From Discarded Waste to Health Promoting Compounds. Molecules 2021; 26:molecules26092624. [PMID: 33946249 PMCID: PMC8124571 DOI: 10.3390/molecules26092624] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/23/2021] [Accepted: 04/24/2021] [Indexed: 11/25/2022] Open
Abstract
Food processing generates a large amount of bio-residues, which have become the focus of different studies aimed at valorizing this low-cost source of bioactive compounds. High fruit consumption is associated with beneficial health effects and, therefore, bio-waste and its constituents arouse therapeutic interest. The present work focuses on the main Portuguese fruit crops and revises (i) the chemical constituents of apple, orange, and pear pomace as potential sources of functional/bioactive compounds; (ii) the bioactive evidence and potential therapeutic use of bio-waste generated in the processing of the main Portuguese fruit crops; and (iii) potential applications in the food, nutraceutical, pharmaceutical, and cosmetics industries. The current evidence of the effect of these bio-residues as antioxidant, anti-inflammatory, and antimicrobial agents is also summarized. Conclusions of the revised data are that these bio-wastes hold great potential to be employed in specific nutritional and pharmaceutical applications.
Collapse
Affiliation(s)
- Liege A. Pascoalino
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (L.A.P.); (F.S.R.); (I.C.F.R.F.)
| | - Filipa S. Reis
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (L.A.P.); (F.S.R.); (I.C.F.R.F.)
| | - Miguel A. Prieto
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E32004 Ourense, Spain;
| | - João C. M. Barreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (L.A.P.); (F.S.R.); (I.C.F.R.F.)
- Correspondence: (J.C.M.B.); (L.B.); Tel.: +351-2733-30903 (J.C.M.B.); +351-2733-03532 (L.B.)
| | - Isabel C. F. R. Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (L.A.P.); (F.S.R.); (I.C.F.R.F.)
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (L.A.P.); (F.S.R.); (I.C.F.R.F.)
- Correspondence: (J.C.M.B.); (L.B.); Tel.: +351-2733-30903 (J.C.M.B.); +351-2733-03532 (L.B.)
| |
Collapse
|
30
|
Cardoso-Ugarte GA, Sosa-Morales ME. Essential Oils from Herbs and Spices as Natural Antioxidants: Diversity of Promising Food Applications in the past Decade. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1872084] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
| | - María Elena Sosa-Morales
- Departamento De Alimentos, División De Ciencias De La Vida, Campus Irapuato-Salamanca, Universidad De Guanajuato, Irapuato, GTO, Mexico
| |
Collapse
|
31
|
Tavker N, Yadav VK, Yadav KK, Cabral-Pinto MMS, Alam J, Shukla AK, Ali FAA, Alhoshan M. Removal of Cadmium and Chromium by Mixture of Silver Nanoparticles and Nano-Fibrillated Cellulose Isolated from Waste Peels of Citrus Sinensis. Polymers (Basel) 2021; 13:234. [PMID: 33445565 PMCID: PMC7827052 DOI: 10.3390/polym13020234] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 12/30/2020] [Accepted: 01/03/2021] [Indexed: 12/12/2022] Open
Abstract
Nano-fibrillated cellulose (NFC) was extracted by a chemical method involving alkali and acid hydrolysis. The characterisation of the citrus sinensis fruit peel bran and nano-fibrillated cellulose was performed by XRD, FTIR, TEM, and FESEM. XRD confirmed the phase of NFC which showed monoclinic crystal with spherical to rod shape morphology with a size of 44-50 nm. The crystallinity index of treated NFC increased from 39% to 75%. FTIR showed the removal of lignin and hemicellulose from waste peels due to the alkaline treatment. Silver nanoparticles were also synthesised by utilizing extract of citrus sinensis skins as a reducing agent. Pharmaceutical effluent samples from an industrial area were tested by Atomic Absorption Spectrometry. Out of the four metals obtained, cadmium and chromium were remediated by silver nanoparticles with nano-fibrillated cellulose via simulated method in 100 mg/L metal-salt concentrations over a time period of 160 min. The highest removal efficiency was found for cadmium, i.e., 83%, by using silver and NFC together as adsorbents. The second highest was for chromium, i.e., 47%, but by using only NFC. The Langmuir and Freundlich isotherms were well fitted for the sorption of Cd (II) and Cr (II) with suitable high R2 values during kinetic simulation. Thus, the isolation of NFC and synthesis of silver nanoparticles proved efficient for heavy metal sorption by the reuse of waste skins.
Collapse
Affiliation(s)
- Neha Tavker
- School of Nano Sciences, Central University of Gujarat, Gandhinagar 382030, India;
| | | | - Krishna Kumar Yadav
- Institute of Environment and Development Studies, Bundelkhand University, Kanpur Road, Jhansi 284128, India;
| | - Marina MS Cabral-Pinto
- Geobiotec Research Centre, Department of Geosciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Javed Alam
- King Abdullah Institute for Nanotechnology, King Saud University, P.O. Box-2455, Riyadh 11451, Saudi Arabia; (A.K.S.); (M.A.)
| | - Arun Kumar Shukla
- King Abdullah Institute for Nanotechnology, King Saud University, P.O. Box-2455, Riyadh 11451, Saudi Arabia; (A.K.S.); (M.A.)
| | - Fekri Abdulraqeb Ahmed Ali
- Chemical Engineering Department, College of Engineering, King Saud University, P.O. Box-2455, Riyadh 11451, Saudi Arabia;
| | - Mansour Alhoshan
- King Abdullah Institute for Nanotechnology, King Saud University, P.O. Box-2455, Riyadh 11451, Saudi Arabia; (A.K.S.); (M.A.)
- Chemical Engineering Department, College of Engineering, King Saud University, P.O. Box-2455, Riyadh 11451, Saudi Arabia;
| |
Collapse
|
32
|
Kačániová M, Terentjeva M, Galovičová L, Ivanišová E, Štefániková J, Valková V, Borotová P, Kowalczewski PŁ, Kunová S, Felšöciová S, Tvrdá E, Žiarovská J, Benda Prokeinová R, Vukovic N. Biological Activity and Antibiofilm Molecular Profile of Citrus aurantium Essential Oil and Its Application in a Food Model. Molecules 2020; 25:E3956. [PMID: 32872611 PMCID: PMC7504819 DOI: 10.3390/molecules25173956] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/25/2020] [Accepted: 08/28/2020] [Indexed: 12/20/2022] Open
Abstract
The main aim of the study was to investigate the chemical composition, antioxidant, antimicrobial, and antibiofilm activity of Citrus aurantium essential oil (CAEO). The biofilm profile of Stenotrophonomonas maltophilia and Bacillus subtilis were assessed using the mass spectrometry MALDI-TOF MS Biotyper and the antibiofilm activity of Citrus aurantium (CAEO) was studied on wood and glass surfaces. A semi-quantitative composition using a modified version was applied for the CAEO characterization. The antioxidant activity of CAEO was determined using the DPPH method. The antimicrobial activity was analyzed by disc diffusion for two biofilm producing bacteria, while the vapor phase was used for three penicillia. The antibiofilm activity was observed with the agar microdilution method. The molecular differences of biofilm formation on different days were analyzed, and the genetic similarity was studied with dendrograms constructed from MSP spectra to illustrate the grouping profiles of S. maltophilia and B. subtilis. A differentiated branch was obtained for early growth variants of S. maltophilia for planktonic cells and all experimental groups. The time span can be reported for the grouping pattern of B. subtilis preferentially when comparing to the media matrix, but without clear differences among variants. Furthermore, the minimum inhibitory doses of the CAEO were investigated against microscopic fungi. The results showed that CAEO was most active against Penicillium crustosum, in the vapor phase, on bread and carrot in situ.
Collapse
Affiliation(s)
- Miroslava Kačániová
- Department of Fruit Science, Viticulture and Enology, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; (M.K.); (L.G.); (V.V.)
- Department of Bioenergetics, Food Analysis and Microbiology, Institute of Food Technology and Nutrition, University of Rzeszow, Cwiklinskiej 1, 35-601 Rzeszow, Poland
| | - Margarita Terentjeva
- Institute of Food and Environmental Hygiene, Faculty of Veterinary Medicine, Latvia University of Life Sciences and Technologies, K. Helmaņaiela 8, LV-3004 Jelgava, Latvia;
| | - Lucia Galovičová
- Department of Fruit Science, Viticulture and Enology, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; (M.K.); (L.G.); (V.V.)
| | - Eva Ivanišová
- Department of Technology and Quality of Plant Products, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia;
| | - Jana Štefániková
- AgroBioTech Research Centre, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; (J.Š.); (P.B.)
| | - Veronika Valková
- Department of Fruit Science, Viticulture and Enology, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; (M.K.); (L.G.); (V.V.)
- AgroBioTech Research Centre, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; (J.Š.); (P.B.)
| | - Petra Borotová
- AgroBioTech Research Centre, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; (J.Š.); (P.B.)
| | - Przemysław Łukasz Kowalczewski
- Institute of Food Technology of Plant Origin, Poznań University of Life Sciences, 31 Wojska Polskiego St., 60-624 Poznań, Poland;
| | - Simona Kunová
- Department of Food Hygiene and Safety, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia;
| | - Soňa Felšöciová
- Department of Microbiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia;
| | - Eva Tvrdá
- Department of Animal Physiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia;
| | - Jana Žiarovská
- Department of Plant Genetics and Breeding, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia;
| | - Renáta Benda Prokeinová
- Department of Statistics and Operations Research, Faculty of Economic and Management, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia;
| | - Nenad Vukovic
- Department of Chemistry, Faculty of Science, University of Kragujevac, P.O. Box 12, 34000 Kragujevac, Serbia
| |
Collapse
|
33
|
Farag MA, Abib B, Ayad L, Khattab AR. Sweet and bitter oranges: An updated comparative review of their bioactives, nutrition, food quality, therapeutic merits and biowaste valorization practices. Food Chem 2020; 331:127306. [PMID: 32593794 DOI: 10.1016/j.foodchem.2020.127306] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/14/2020] [Accepted: 06/08/2020] [Indexed: 02/06/2023]
Abstract
Sweet and bitter oranges are two of the most commercially-important fruit with a total world production of 75.4 Mt, well-recognized for their unique sensory characters in addition to multiple nutritive and therapeutic attributes due to their highly-valued bioactive ingredients. Hence, their differential qualitative/quantitative phytochemical make-ups are presented for better utilization as therapeutic agents. Sweet orange exhibits therapeutic applications as being effective anti-diabetic, anti-obesity, and hypocholesterolemic agents. Whereas, for anti-osteoporotic products and intestinal dysbiosis treatment, bitter orange is more preferred. Moreover, the review recapitulates on different valorization practices of citrus bio-wastes and utilization of their bioactives as therapeutic agents and in functional food industry. Sweet orange waste functions as a fat replacer and preservative to increase food shelf life with better organoleptic attributes than bitter orange. The detailed action mechanism and safety of Citrus bioactives, as well as processing technologies to further improve its effects are posed as future research perspectives.
Collapse
Affiliation(s)
- Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr el Aini St., P.B. 11562 Cairo, Egypt; Chemistry Department, School of Sciences & Engineering, The American University in Cairo, New Cairo 11835, Egypt.
| | - Bishoy Abib
- Chemistry Department, School of Sciences & Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Laila Ayad
- Chemistry Department, School of Sciences & Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Amira R Khattab
- Pharmacognosy Department, College of Pharmacy, Arab Academy for Science, Technology and Maritime Transport, Alexandria 1029, Egypt
| |
Collapse
|
34
|
Degirmenci H, Erkurt H. Chemical profile and antioxidant potency of Citrus aurantium L. flower extracts with antibacterial effect against foodborne pathogens in rice pudding. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109273] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
35
|
Bora H, Kamle M, Mahato DK, Tiwari P, Kumar P. Citrus Essential Oils (CEOs) and Their Applications in Food: An Overview. PLANTS (BASEL, SWITZERLAND) 2020; 9:E357. [PMID: 32168877 PMCID: PMC7154898 DOI: 10.3390/plants9030357] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/28/2020] [Accepted: 03/02/2020] [Indexed: 12/19/2022]
Abstract
Citrus is a genus belonging to the Rutaceae family and includes important crops like orange, lemons, pummelos, grapefruits, limes, etc. Citrus essential oils (CEOs) consist of some major biologically active compounds like α-/β-pinene, sabinene, β-myrcene, d-limonene, linalool, α-humulene, and α-terpineol belonging to the monoterpenes, monoterpene aldehyde/alcohol, and sesquiterpenes group, respectively. These compounds possess several health beneficial properties like antioxidant, anti-inflammatory, anticancer, etc., in addition to antimicrobial properties, which have immense potential for food applications. Therefore, this review focused on the extraction, purification, and detection methods of CEOs along with their applications for food safety, packaging, and preservation. Further, the concerns of optimum dose and safe limits, their interaction effects with various food matrices and packaging materials, and possible allergic reactions associated with the use of CEOs in food applications were briefly discussed, which needs to be addressed in future research along with efficient, affordable, and "green" extraction methods to ensure CEOs as an ecofriendly, cost-effective, and natural alternative to synthetic chemical preservatives.
Collapse
Affiliation(s)
- Himashree Bora
- Department of Forestry, North Eastern Regional Institute of Science and Technology, Nirjuli 791109, India; (H.B.); (M.K.)
| | - Madhu Kamle
- Department of Forestry, North Eastern Regional Institute of Science and Technology, Nirjuli 791109, India; (H.B.); (M.K.)
| | - Dipendra Kumar Mahato
- School of Exercise and Nutrition Sciences, Deakin University, 221 Burwood Hwy, Burwood, VIC 3125, Australia;
| | - Pragya Tiwari
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea
| | - Pradeep Kumar
- Department of Forestry, North Eastern Regional Institute of Science and Technology, Nirjuli 791109, India; (H.B.); (M.K.)
| |
Collapse
|
36
|
Valdivieso-Ugarte M, Gomez-Llorente C, Plaza-Díaz J, Gil Á. Antimicrobial, Antioxidant, and Immunomodulatory Properties of Essential Oils: A Systematic Review. Nutrients 2019; 11:2786. [PMID: 31731683 PMCID: PMC6893664 DOI: 10.3390/nu11112786] [Citation(s) in RCA: 172] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/06/2019] [Accepted: 11/12/2019] [Indexed: 12/21/2022] Open
Abstract
Essential oils (EOs) are a mixture of natural, volatile, and aromatic compounds obtained from plants. In recent years, several studies have shown that some of their benefits can be attributed to their antimicrobial, antioxidant, anti-inflammatory, and also immunomodulatory properties. Therefore, EOs have been proposed as a natural alternative to antibiotics or for use in combination with antibiotics against multidrug-resistant bacteria in animal feed and food preservation. Most of the results come from in vitro and in vivo studies; however, very little is known about their use in clinical studies. A systematic and comprehensive literature search was conducted in PubMed, Embase®, and Scopus from December 2014 to April 2019 using different combinations of the following keywords: essential oils, volatile oils, antimicrobial, antioxidant, immunomodulation, and microbiota. Some EOs have demonstrated their efficacy against several foodborne pathogens in vitro and model food systems; namely, the inhibition of S. aureus, V. cholerae, and C. albicans has been observed. EOs have shown remarkable antioxidant activities when used at a dose range of 0.01 to 10 mg/mL in cell models, which can be attributed to their richness in phenolic compounds. Moreover, selected EOs exhibit immunomodulatory activities that have been mainly attributed to their ability to modify the secretion of cytokines.
Collapse
Affiliation(s)
- Magdalena Valdivieso-Ugarte
- Institute of Nutrition and Food Technology “José Mataix”, Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n. 18016 Armilla, Granada, Spain; (M.V.-U.); (J.P.-D.); (Á.G.)
| | - Carolina Gomez-Llorente
- Institute of Nutrition and Food Technology “José Mataix”, Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n. 18016 Armilla, Granada, Spain; (M.V.-U.); (J.P.-D.); (Á.G.)
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain
- ibs.GRANADA, Instituto de Investigación Biosanitaria, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
- CIBEROBN (CIBER Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Julio Plaza-Díaz
- Institute of Nutrition and Food Technology “José Mataix”, Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n. 18016 Armilla, Granada, Spain; (M.V.-U.); (J.P.-D.); (Á.G.)
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain
- ibs.GRANADA, Instituto de Investigación Biosanitaria, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
| | - Ángel Gil
- Institute of Nutrition and Food Technology “José Mataix”, Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n. 18016 Armilla, Granada, Spain; (M.V.-U.); (J.P.-D.); (Á.G.)
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain
- ibs.GRANADA, Instituto de Investigación Biosanitaria, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
- CIBEROBN (CIBER Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
37
|
Ciriminna R, Scurria A, Fabiano-Tixier AS, Lino C, Avellone G, Chemat F, Pagliaro M. Omega-3 Extraction from Anchovy Fillet Leftovers with Limonene: Chemical, Economic, and Technical Aspects. ACS OMEGA 2019; 4:15359-15363. [PMID: 31572834 PMCID: PMC6764209 DOI: 10.1021/acsomega.9b01168] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 06/26/2019] [Indexed: 05/15/2023]
Abstract
We investigate selected chemical, technical, and economic aspects of the production of fish oil rich in polyunsaturated omega-3 fatty acids from anchovy filleting leftovers using d-limonene as the extraction solvent at ambient temperature and pressure. Entirely derived from the orange peel prior to orange squeezing for juice production, the bio-based solvent is easily recovered, affording a circular economy process with significant potential for practical applications.
Collapse
Affiliation(s)
- Rosaria Ciriminna
- Istituto
per lo Studio dei Materiali Nanostrutturati, CNR, via U. La Malfa 153, 90146 Palermo, Italy
| | - Antonino Scurria
- Istituto
per lo Studio dei Materiali Nanostrutturati, CNR, via U. La Malfa 153, 90146 Palermo, Italy
| | | | - Claudia Lino
- Istituto
per lo Studio dei Materiali Nanostrutturati, CNR, via U. La Malfa 153, 90146 Palermo, Italy
| | - Giuseppe Avellone
- Dipartimento
di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università degli Studi di Palermo, via Archirafi 32, 90123 Palermo, Italy
| | - Farid Chemat
- Avignon
University, INRA, UMR 408, GREEN Team Extraction, F-84000 Avignon, France
| | - Mario Pagliaro
- Istituto
per lo Studio dei Materiali Nanostrutturati, CNR, via U. La Malfa 153, 90146 Palermo, Italy
| |
Collapse
|
38
|
Wang Q, Xie Y, Li Y, Miao J, Wu H. Oxidative Stability of Stripped Soybean Oil during Accelerated Oxidation: Impact of Monoglyceride and Triglyceride-Structured Lipids Using DHA as sn-2 Acyl-Site Donors. Foods 2019; 8:foods8090407. [PMID: 31547349 PMCID: PMC6769747 DOI: 10.3390/foods8090407] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/03/2019] [Accepted: 09/07/2019] [Indexed: 12/11/2022] Open
Abstract
The current work aimed to clarify the effects of four structured lipids, including monoglycerides with docosahexaenoic acid (2D-MAG), diacylglycerols with caprylic acid (1,3C-DAG), triglyceride with caprylic acid at sn-1,3 and DHA at sn-2 position (1,3C-2D-TAG) and caprylic triglyceride on the oxidative stability of stripped soybean oil (SSO). The results revealed that compared to the blank group of SSO, the oxidation induction period of the sample with 2 wt% 2D-MAG and that with 1,3C-DAG were delayed by 2-3 days under accelerated oxidation conditions (50 °C), indicating that 2D-MAG and 1,3C-DAG prolonged the oxidation induction period of SSO. However, the inhibitory effect of α-tocopherol on SSO oxidation was reduced by 2D-MAG after addition of 2D-MAG to SSO containing α-tocopherol. 2D-MAG exhibited different antioxidative/pro-oxidative effects in the added/non-added antioxidants system. Compared to caprylic triglyceride, DHA at the sn-2 acyl site induced oxidation of structured lipids, thus further promoting the oxidation of SSO. The antioxidant was able to inhibit not only the oxidation of DHA in the SSO, but also the transesterification of sn-2 DHA to sn-1/sn-3 DHA in the structured lipid.
Collapse
Affiliation(s)
- Qiang Wang
- Innovation Center for Lipid Resource and Children's Daily Chemicals, College of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, China.
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Yuejie Xie
- Innovation Center for Lipid Resource and Children's Daily Chemicals, College of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, China.
| | - Yuanyuan Li
- Innovation Center for Lipid Resource and Children's Daily Chemicals, College of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, China.
| | - Jianyin Miao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Hongbin Wu
- Institute of Agro-food Science and Technology, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi 832000, China.
| |
Collapse
|
39
|
Aboudaou M, Ferhat MA, Hazzit M, Ariño A, Djenane D. Solvent free-microwave green extraction of essential oil from orange peel (Citrus sinensis L.): effects on shelf life of flavored liquid whole eggs during storage under commercial retail conditions. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2019. [DOI: 10.1007/s11694-019-00239-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
40
|
Adokoh CK, Asante DB, Acheampong DO, Kotsuchibashi Y, Armah FA, Sirikyi IH, Kimura K, Gmakame E, Abdul-Rauf S. Chemical profile and in vivo toxicity evaluation of unripe Citrus aurantifolia essential oil. Toxicol Rep 2019; 6:692-702. [PMID: 31372347 PMCID: PMC6657022 DOI: 10.1016/j.toxrep.2019.06.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 06/19/2019] [Accepted: 06/22/2019] [Indexed: 12/15/2022] Open
Abstract
Citrus aurantifolia (Christm.) Swingle (syn. C. MEDICA var. ACIDA Brandis) (family: Rutaceae) essential oil is one of the cheapest oils found in local markets. Although, it is generally accepted as non-toxic to vital organs and cells, majority of people are cynical about it usage. Herein, the present study reports the chemical composition and in vivo oral toxicity study of unripe C. aurantifolia essential oil found in Ghana. The toxicity of C. aurantifolia essential oil extract was investigated via oral administration using two methods: The acute toxicity single dose study (SDS) and the repeated dose method. The oil exhibited no acute toxicity but in the sub-chronic studies, the effects was dose and time-dependent. Chemical profile investigation of the oil showed 9 constituent of phytochemicals (Germacrene isomers (61.2%), Pineen (14%), Linalool dimmer (2.9%), Bornane (11%), Citral (2.9%), Anethole (1.5%), Anisole (1.1%), Safrole (0.3%) and Demitol (0.6%)). Histopathological studies revealed conditions such as necrosis, edema and inflammatory reaction in the liver, spleen and kidneys. Marginal upsurge of biochemical parameters above normal and elevated levels of lymphocytes (35.20-46.40 g/dL) demonstrated mild toxicity among the 100 mg/kg and 500 mg/kg dose groups at the sub-chronic stage. Low levels of hemoglobin (13.60 to 12.70 g/dL), MCV (34.20-24.0 fL), MCH (40.20-36.40 g/dL) along with high levels of liver enzymes confirmed the mild toxicity of the oil at sub-chronic stage. These results demonstrate that, despite consideration of lime essential oil as safe, it can have mild hematotoxic, nephrotoxic and hepatotoxic effects.
Collapse
Affiliation(s)
- Christian K. Adokoh
- Department of Forensic Sciences, School of Biological Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Du-Bois Asante
- Department of Forensic Sciences, School of Biological Sciences, University of Cape Coast, Cape Coast, Ghana
- School of Medical and Health Sciences, Edith Cowan University, Australia
| | - Desmond O. Acheampong
- Department of Biomedical Sciences, School of Allied Health Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Yohei Kotsuchibashi
- Department of Materials and Life Science, Shizuoka Institute of Science and Technology, 2200-2 Toyosawa, Fukuroi, Shizuoka, 437-8555, Japan
| | - Francis A. Armah
- Department of Biomedical Sciences, School of Allied Health Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Ignatius H. Sirikyi
- Directorate of University Health Service, University of Cape Coast, Cape Coast, Ghana
| | - Keisuke Kimura
- Department of Materials and Life Science, Shizuoka Institute of Science and Technology, 2200-2 Toyosawa, Fukuroi, Shizuoka, 437-8555, Japan
| | - Edward Gmakame
- Department of Biomedical Sciences, School of Allied Health Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Sey Abdul-Rauf
- Department of Biomedical Sciences, School of Allied Health Sciences, University of Cape Coast, Cape Coast, Ghana
| |
Collapse
|
41
|
Yazgan H, Ozogul Y, Kuley E. Antimicrobial influence of nanoemulsified lemon essential oil and pure lemon essential oil on food-borne pathogens and fish spoilage bacteria. Int J Food Microbiol 2019; 306:108266. [PMID: 31319195 DOI: 10.1016/j.ijfoodmicro.2019.108266] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 07/01/2019] [Accepted: 07/09/2019] [Indexed: 02/08/2023]
Abstract
The antimicrobial activities of lemon oil based nanoemulsion and two different concentrations of lemon essential oil (100% and 10%) on food-brne pathogens (Staphylococcus aureus, Klebsiella pneumoniae, Enterococcus faecalis and Salmonella Paratyphi A) and fish spoilage bacteria (Photobacterium damselae, Enterococcus faecalis, Vibrio vulnificus, Proteus mirabilis, Serratia liquefaciens, and Pseudomonas luteola) were compared in terms of disc diffusion, minimum inhibition concentration (MIC) and minimum bactericidal concentration (MBC). The constitutes of extracted lemon essential oil were identified by using GC-MS. Viscosity, the mean droplet size, thermodynamic stability and refractive index of nanoemulsions were determined. The main components detected in the lemon essential oil were d-limonene, p-cymene, β-pinene with percentages of 52.85%, 14.36%, and 13.69%, respectively. It was found that lemon nanoemulsion was more effective on food-borne pathogens except K. pneumoniae than 100% lemon essential oil. 10% lemon essential oil showed the highest inhibition effect on S. Paratyphi A. The conversion of the essential oil into nanoemulsion improved antimicrobial activity. According to value of MIC, both nanoemulsion and 100% essential oil inhibited bacterial growth of all of the pathogen bacteria tested whereas they were less effective on inhibition of fish spoilage bacteria. However, 10% essential oil was more effective on spoilage bacteria than pathogens. MBC showed that nanoemulsion and 100% lemon essential oil presented a noticeable bactericidal activity against S. paratyphi A whereas 10% lemon essential oil was found as ≥25 mg/mL against pathogens and spoilage bacteria. Therefore, the use of nanoemulsion based on lemon essential oil can have potential as a natural antimicrobial agent against food-borne pathogen and spoilage bacteria for fish processing industry.
Collapse
Affiliation(s)
- Hatice Yazgan
- Department of Food Hygiene and Technology, Faculty of Ceyhan Veterinary Medicine, University of Cukurova, Adana, Turkey.
| | - Yesim Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries, University of Cukurova, Adana, Turkey
| | - Esmeray Kuley
- Department of Seafood Processing Technology, Faculty of Fisheries, University of Cukurova, Adana, Turkey
| |
Collapse
|
42
|
Değirmenci H, Erkurt H. Relationship between volatile components, antimicrobial and antioxidant properties of the essential oil, hydrosol and extracts of Citrus aurantium L. flowers. J Infect Public Health 2019; 13:58-67. [PMID: 31296479 DOI: 10.1016/j.jiph.2019.06.017] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/28/2019] [Accepted: 06/17/2019] [Indexed: 01/06/2023] Open
Abstract
INTRODUCTION In the Mediterranean Region, essential oil, hydrosol, and ethanol extract of C. aurantium flowers have a long history of usage in different products such as a flavoring agent and an ingredient of many traditional anti-infectious and skin care products. The present study was undertaken to compare the antimicrobial activity, antioxidant activity and phytochemical composition of essential oil (EO), hydrosol and ethanol extract of Cyprus Citrus aurantium L. flowers. METHOD The chemical composition of samples was determined by GC/MS. The total phenolic and flavonoid contents were determined by Folin-Ciocalteu colorimetric method and aluminum chloride colorimetric assay, respectively. Antioxidant activity was evaluated by 1,1-diphenyl-2-picrylhydrazyl (DPPH) and hydrogen peroxide (H2O2). The antimicrobial activity of the samples was determined by disc diffusion and broth microdilution methods against five foodborne pathogenic bacteria. RESULT The EO and ethanol extract showed significant antimicrobial activity against all tested pathogens which were attributed to the presence of important phytochemical classes such as polyphenols, flavonoids, alkaloids, and terpenes. The EO showed higher antimicrobial activity followed by ethanol extract with minimum inhibitory concentrations ≤1562mg/l and ≤6250mg/l, respectively, against Amoxycillin resistant Bacillus cereus and other test organisms. Significantly (p≤0.05) the higher total phenolic (81.37mg GAE/g) and flavonoid contents (20.34mg QE/g) were obtained in the ethanol extract with the higher antioxidant activity as compared to EO and hydrosol with half maximal inhibitory concentration (IC50) values of 96.07μg/ml in the DPPH and 66.50μg/ml in the H2O2 assay. A significant correlation (R2≥0.94) was found between phenolic content and IC50 values for DPPH and H2O2 assays. β-Cholesta-5,22-dien-3-ol, herboxide isomer and isochiapin-B are reported for the first time for essential oil. CONCLUSION Citrus aurantium L. flowers have strong potential for the isolation of antimicrobial and antioxidant agents for further use in food and medicine industries as natural preservatives.
Collapse
Affiliation(s)
- Huseyin Değirmenci
- Department of Bioengineering, Faculty of Engineering, Cyprus International University, Haspolat, Nicosia, North Cyprus, via Mersin 10, Turkey.
| | - Hatice Erkurt
- Department of Bioengineering, Faculty of Engineering, Cyprus International University, Haspolat, Nicosia, North Cyprus, via Mersin 10, Turkey.
| |
Collapse
|
43
|
Gokoglu N. Novel natural food preservatives and applications in seafood preservation: a review. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:2068-2077. [PMID: 30318589 DOI: 10.1002/jsfa.9416] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/26/2018] [Accepted: 10/10/2018] [Indexed: 05/09/2023]
Abstract
Food preservative additives are natural or synthetic substances which delay degradation in foods caused by microbial growth, enzyme activity, and oxidation. Until recently, the use of synthetic additives in food was more common. However, synthetic additives have not been widely accepted by consumers in recent years due to their assumed adverse effects on their health. Therefore, the tendency of consumers to natural additives is increasing day-by-day. Seafood is an easily perishable food due to its chemical composition. Immediately after harvest, changes in odor, taste, and texture in fishery products can be noticed. For this reason, measures to protect the product must be taken immediately after harvest or catching. Various preservation methods have been developed. In addition to various technological methods, preservative additives are used in fresh or processed seafood as well as in other foods. This review focuses on novel natural preservatives from different sources such as plants, bacteria, fungi, animals and algae, and their use in seafood to protect quality and prolong shelf life. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Nalan Gokoglu
- Department of Fish Processing Technology, Fisheries Faculty, Akdeniz University, Antalya, Turkey
| |
Collapse
|
44
|
Li Y, Wu C, Wu T, Yuan C, Hu Y. Antioxidant and antibacterial properties of coating with chitosan-citrus essential oil and effect on the quality of Pacific mackerel during chilled storage. Food Sci Nutr 2019; 7:1131-1143. [PMID: 30918656 PMCID: PMC6418451 DOI: 10.1002/fsn3.958] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/11/2019] [Accepted: 01/21/2019] [Indexed: 11/30/2022] Open
Abstract
The goal of the study was to investigate whether chitosan-citrus essential oil composite works as an efficient preservative in Pacific mackerel (Pneumatophorus japonicus) during chilling storage. FT-IR analysis showed that chitosan-citrus essential oil coating was successfully prepared. Our results demonstrated that chitosan-citrus essential oil coating possessed significantly higher capability of scavenging reactive oxygen species ( O 2 - and OH-) than chitosan. Furthermore, Pacific mackerel coated with chitosan-citrus essential oil composite could significantly reduce parameters of corruption including physicochemical (drop loss, biogenic amine, and thiobarbituric acid-reactive substances) and microbiological parameters (total viable count), as compared with untreated and chitosan groups after 12 days of storage at -3°C. These results indicated that CS-CEOs could work as efficient preservative for Pacific mackerel storage through ameliorating redox state and inhibiting microbial growth and suggested that chitosan-citrus essential oil composite has great potential in preservation of aquatic products during superchilled storage.
Collapse
Affiliation(s)
- Yuan Li
- National Engineering Laboratory of Intelligent Food Technology and EquipmentKey Laboratory for Agro‐Products Postharvest Handling of Ministry of AgricultureKey Laboratory for Agro‐Products Nutritional Evaluation of Ministry of AgricultureZhejiang Key Laboratory for Agro‐Food ProcessingFuli Institute of Food ScienceCollege of Biosystems Engineering and Food Science Zhejiang UniversityHangzhouChina
- Marine Research Center of ZhoushanZhejiang UniversityZhoushanChina
| | - Chunhua Wu
- National Engineering Laboratory of Intelligent Food Technology and EquipmentKey Laboratory for Agro‐Products Postharvest Handling of Ministry of AgricultureKey Laboratory for Agro‐Products Nutritional Evaluation of Ministry of AgricultureZhejiang Key Laboratory for Agro‐Food ProcessingFuli Institute of Food ScienceCollege of Biosystems Engineering and Food Science Zhejiang UniversityHangzhouChina
- College of Food ScienceFujian Agriculture and Forestry UniversityFuzhouChina
| | - Tiantian Wu
- National Engineering Laboratory of Intelligent Food Technology and EquipmentKey Laboratory for Agro‐Products Postharvest Handling of Ministry of AgricultureKey Laboratory for Agro‐Products Nutritional Evaluation of Ministry of AgricultureZhejiang Key Laboratory for Agro‐Food ProcessingFuli Institute of Food ScienceCollege of Biosystems Engineering and Food Science Zhejiang UniversityHangzhouChina
| | - Chunhong Yuan
- Department of Food Production and Environmental ManagementFaculty of AgricultureIwate UniversityMoriokaJapan
| | - Yaqin Hu
- National Engineering Laboratory of Intelligent Food Technology and EquipmentKey Laboratory for Agro‐Products Postharvest Handling of Ministry of AgricultureKey Laboratory for Agro‐Products Nutritional Evaluation of Ministry of AgricultureZhejiang Key Laboratory for Agro‐Food ProcessingFuli Institute of Food ScienceCollege of Biosystems Engineering and Food Science Zhejiang UniversityHangzhouChina
- Marine Research Center of ZhoushanZhejiang UniversityZhoushanChina
| |
Collapse
|
45
|
Mancuso M, Catalfamo M, Laganà P, Rappazzo AC, Raymo V, Zampino D, Zaccone R. Screening of antimicrobial activity of citrus essential oils against pathogenic bacteria and
Candida
strains. FLAVOUR FRAG J 2019. [DOI: 10.1002/ffj.3491] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Monique Mancuso
- Institute for Biological Resources and Marine Biotechnology (IRBIM) ‐ CNR Section of Messina Spianata San Raineri 86 98122 Messina Italy
| | - Maurizio Catalfamo
- Institute for Biological Resources and Marine Biotechnology (IRBIM) ‐ CNR Section of Messina Spianata San Raineri 86 98122 Messina Italy
| | - Pasqualina Laganà
- Department of Biomedical and Dental Sciences and Morphofunctional ImagingUniversity of Messina Via Consolare Valeria 1 98125 Messina Italy
| | - Alessandro Ciro Rappazzo
- Institute for Biological Resources and Marine Biotechnology (IRBIM) ‐ CNR Section of Messina Spianata San Raineri 86 98122 Messina Italy
| | - Vilfredo Raymo
- Simone Gatto farm S.r.l.Contrada San Biagio 98045 San Pier Niceto (ME) Italy
| | - Daniela Zampino
- Institute of Chemistry and Technology of Polymers (ICTP) Catania Via P. Gaifami 18 95126 Catania Italy
| | - Renata Zaccone
- Institute for Biological Resources and Marine Biotechnology (IRBIM) ‐ CNR Section of Messina Spianata San Raineri 86 98122 Messina Italy
| |
Collapse
|
46
|
Teneva D, Denkova-Kostova R, Goranov B, Hristova-Ivanova Y, Slavchev A, Denkova Z, Kostov G. Chemical composition, antioxidant activity and antimicrobial activity of essential oil from
Citrus aurantium
L zest against some pathogenic microorganisms. ACTA ACUST UNITED AC 2019; 74:105-111. [DOI: 10.1515/znc-2018-0062] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 12/31/2018] [Indexed: 12/24/2022]
Abstract
Abstract
This study aims to investigate the chemical composition, antioxidant, and antimicrobial activity of Citrus aurantium L zest essential oil. The identification of the chemical compounds was done using chromatography analysis. The antioxidant activity was studied by the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging assay. Results showed that the main components of the essential oil were limonene (85.22%), β-myrcene (4.3%), and α-pinene (1.29%). Regarding the DPPH radical scavenging ability, the zest essential oil showed higher activity than limonene. The antimicrobial activity of the essential oil against pathogenic [Staphylococcus aureus NBIMCC 3703, Salmonella sp. (clinical isolate), Pseudomonas aeruginosa NBIMCC 1390, Bacillus subtilis NBIMCC 1208, Escherichia coli NBIMCC 3702] microorganisms by disc-diffusion method was examined. Gram-positive bacteria were more sensitive to the oil (inhibition zones being between 9 and 12.5 mm) and the minimum inhibitory concentration was more than 600 ppm; Gram-negative bacteria were less sensitive. The obtained essential oil displayed promising results for its application as a biopreservative agent.
Collapse
Affiliation(s)
- Desislava Teneva
- Laboratory of Biologically Active Substances – Plovdiv, Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 135 Ruski Blvd , Plovdiv , Bulgaria , Phone: +359 32 642 759, Fax: +359 32 642 759
| | - Rositsa Denkova-Kostova
- Department of Biochemistry and Molecular Biology , University of Food Technologies , 26 Maritza Blvd , Plovdiv 4000 , Bulgaria
| | - Bogdan Goranov
- Department of Microbiology , University of Food Technologies , 26 Maritza Blvd , Plovdiv 4000 , Bulgaria
| | - Yana Hristova-Ivanova
- Department of Food Technologies , Food Research and Development Institute , Plovdiv , Bulgaria
| | - Aleksandar Slavchev
- Department of Microbiology , University of Food Technologies , 26 Maritza Blvd , Plovdiv 4000 , Bulgaria
| | - Zapryana Denkova
- Department of Microbiology , University of Food Technologies , 26 Maritza Blvd , Plovdiv 4000 , Bulgaria
| | - Georgi Kostov
- Department of Wine and Brewing , University of Food Technologies , 26 Maritza Blvd , Plovdiv 4000 , Bulgaria
| |
Collapse
|
47
|
Olive Leaves Extract from Algerian Oleaster ( Olea europaea var. sylvestris) on Microbiological Safety and Shelf-life Stability of Raw Halal Minced Beef during Display. Foods 2018; 8:foods8010010. [PMID: 30587798 PMCID: PMC6352275 DOI: 10.3390/foods8010010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/18/2018] [Accepted: 12/21/2018] [Indexed: 11/17/2022] Open
Abstract
Oleaster (wild olive tree) by-products represent a renewable and low-cost source of biopolyphenols. Leaf extracts (sylv.OLE) of Algerian oleaster, locally called a'hachad (Olea europaea subsp. europaea var. sylvestris), were applied at 1 and 5% (v/w) to raw Halal minced beef (HMB) in order to test its safety and shelf-life prolongation during retail/display. The total phenolic compound content in the extract was 198.7 ± 3.6 mg gallic acid equivalent. Ten compounds were identified in the sylv.OLE by High Performance Liquid Chromatography/Diode Array Detector (HPLC/DAD), of which oleuropein was the most abundant (43.25%). Samples treated with 5% sylv.OLE had significantly higher antimicrobial and antioxidant effects than those treated with 1% extract (p < 0.05). The addition of sylv.OLE reduced psychrotrophic counts as well as the level of pathogens (Salmonella enterica ser. Enteritidis and Shiga toxin-producing Escherichia coli O157:H7). A thiobarbituric acid reactive substance (TBARS) value of 2.42 ± 0.11 was reached throughout six days of retail/display in control samples, while the addition of 5% sylv.OLE reduced TBARS value by 58% (p < 0.05). The presence of sylv.OLE at the tested concentrations did not negatively influence the overall acceptability and bitterness of HMB.
Collapse
|
48
|
Elansary HO, Abdelgaleil SAM, Mahmoud EA, Yessoufou K, Elhindi K, El-Hendawy S. Effective antioxidant, antimicrobial and anticancer activities of essential oils of horticultural aromatic crops in northern Egypt. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 18:214. [PMID: 30005652 PMCID: PMC6044011 DOI: 10.1186/s12906-018-2262-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 06/18/2018] [Indexed: 12/12/2022]
Abstract
Background Identifying ornamental plants as new natural antioxidant and antimicrobial sources is always of great importance for the ornamental and horticultural industries. Methods The antimicrobial activities of leaves and fruits peel essential oils of twelve ornamental and horticultural crops were determined by screening against wide spectrum of fungi and bacteria, and their respective in vitro antioxidant capacity was evaluated. Furthermore, the anticancer activities against several cancer cells, and one normal human cell line (HEK-293) were examined. Results Origanum vulgare L. essential oil showed the best antioxidant, antibacterial and anticancer activities compared to screened crops by means of the DPPH and linoleic acid assays for antioxidants, MIC and MBC values for antibacterial activities and IC50 for antiproliferative activities. Such important activities in O. vulgare was attributed to high pulegone ratio (77.45%) as revealed by the GC/MS assay. Rosmarinus officinallis L. essential oil showed the highest antifungal activities by means of lowest MIC and MFC values which might be attributed to 1, 8-cineole (19.60%), camphor (17.01%) and α-pinene (15.12%). Conclusion We suggest that oxygenated monoterpenes (i.e. linalool, terpinen-4-ol and pulegone) and monoterpene hydrocarbons play an important role in the essential oil antioxidant, antibacterial, antifungal and anticancer activities of diverse Egyptian ornamental and horticultural crops. Some species showed bioactivities similar to standards compounds and might be suitable for pharmaceutical and food industries.
Collapse
|
49
|
Does the Fragrance of Essential Oils Alleviate the Fatigue Induced by Exercise? A Biochemical Indicator Test in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:5027372. [PMID: 29234408 PMCID: PMC5684592 DOI: 10.1155/2017/5027372] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 09/08/2017] [Accepted: 09/25/2017] [Indexed: 01/16/2023]
Abstract
Objective To study the effect of the essential oils of Citrus sinensis L., Mentha piperita L., Syzygium aromaticum L., and Rosmarinus officinalis L. on physical exhaustion in rats. Methods Forty-eight male Wistar rats were randomly divided into a control group, a fatigue group, an essential oil mixture (EOM) group, and a peppermint essential oil (PEO) group. Loaded swimming to exhaustion was used as the rat fatigue model. Two groups were nebulized with EOM and PEO after swimming, and the others were nebulized with distilled water. After continuous inhalation for 3 days, the swimming time, blood glucose, blood lactic acid (BLA), blood urea nitrogen (BUN), superoxide dismutase (SOD), glutathione peroxidase (GSH-PX), and malondialdehyde (MDA) in blood were determined. Results While an increased time to exhaustion and SOD activity were apparent in both the EOM and PEO groups, the BLA and MDA were lower in both groups, in comparison with the fatigue group, and the changes in the EOM group were more dramatic. Additionally, the EOM group also showed marked changes of the rise of blood glucose and the decrease of BUN and GSH-PX. Conclusion The results suggested that the inhalation of an essential oil mixture could powerfully relieve exercise-induced fatigue.
Collapse
|
50
|
Ahmed I, Lin H, Zou L, Brody AL, Li Z, Qazi IM, Pavase TR, Lv L. A comprehensive review on the application of active packaging technologies to muscle foods. Food Control 2017. [DOI: 10.1016/j.foodcont.2017.06.009] [Citation(s) in RCA: 162] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|