1
|
Zhang D, Zhang F, Zhang X, Cao Z, Song X, Zhang T, Yang Z. Metabolomics revealed the characteristics of the unique flavor substances of Alxa Allium mongolicum. Food Chem X 2024; 24:101979. [PMID: 39641113 PMCID: PMC11617693 DOI: 10.1016/j.fochx.2024.101979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 12/07/2024] Open
Abstract
Allium mongolicum is a wild vegetable with high nutritional value and is famous for its taste and aroma. This study used headspace solid-phase microextraction-mass spectrometry coupled with gas chromatography-mass spectrometry techniques to study the metabolic profile of A. mongolicum in different ecological environments. A total of 624 volatile organic compounds (VOCs) were identified. Ester compounds, heterocyclic compounds and terpenoids are the key metabolites that determine flavor differences. KEGG analysis showed that monoterpenoid biosynthesis, zein biosynthesis, α-linolenic acid metabolism and secondary metabolite biosynthesis were the most important metabolic pathways. Compared with Minqin A. mongolicum and Tengger A. mongolicum, Alxa A. mongolicum flavor substance notes sensory flavor has more green, fruity, sweet, floral, spicy, metallic, rose, almond, apple, grassy, tropical, citrus, fresh, herbal and other flavor combinations. Overall, this study reveals the main reason for the unique flavor of Alxa A. mongolicum through metabolomic evidence.
Collapse
Affiliation(s)
- Dong Zhang
- College of Horticultural and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Wild Peculiar Vegetable Germplasm Resource and Germplasm Enhancement, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Fenglan Zhang
- College of Horticultural and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Wild Peculiar Vegetable Germplasm Resource and Germplasm Enhancement, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Xiaoyan Zhang
- College of Horticultural and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Wild Peculiar Vegetable Germplasm Resource and Germplasm Enhancement, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Zhenyu Cao
- College of Horticultural and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Wild Peculiar Vegetable Germplasm Resource and Germplasm Enhancement, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Xiaoqing Song
- College of Horticultural and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Wild Peculiar Vegetable Germplasm Resource and Germplasm Enhancement, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Tong Zhang
- College of Horticultural and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Wild Peculiar Vegetable Germplasm Resource and Germplasm Enhancement, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Zhongren Yang
- College of Horticultural and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Wild Peculiar Vegetable Germplasm Resource and Germplasm Enhancement, Inner Mongolia Agricultural University, Hohhot 010018, China
| |
Collapse
|
2
|
Böckstiegel L, Schaumann T, Egert B, Kulling SE, Weinert CH. Development of an Untargeted Method for the Analysis of the Volatile Profile of Onions via Solid-Phase Microextraction Arrow-Headspace-Gas Chromatography-Mass Spectrometry Using Design of Experiments. J Sep Sci 2024; 47:e202400305. [PMID: 39363479 DOI: 10.1002/jssc.202400305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/31/2024] [Accepted: 09/05/2024] [Indexed: 10/05/2024]
Abstract
The distinctive aroma of onions, consisting primarily of sulfur-containing compounds, is one of the reasons for the popularity of the vegetable. The rapid enzymatic and chemical reactions that occur after the destruction of onion bulb tissue render the analysis of the volatile profile challenging. Therefore, sample preparation is a crucial step in the analysis of the onion volatilome, but it often does not receive the necessary attention in the literature. In this work, we focused on two aspects: Firstly, we compared different sample preparation approaches to maximize the volatile yield and to enable the description of the onion volatile profile as it would emerge after a solid-phase microextraction (SPME) Arrow sampling procedure. For headspace (HS)-gas chromatography-mass spectrometry analysis, onion juice with the addition of an ammonium sulfate solution proved to be the best option. Secondly, we optimized the HS sampling and desorption parameters (enrichment time, enrichment temperature, agitator speed, desorption time) for onion volatiles using the efficient design of experiments (DoE) approach. The optimal conditions for the analysis with HS-SPME Arrow were an enrichment time of 75 min at 60°C with an agitator speed of 713 rpm and a desorption time of 120 s.
Collapse
Affiliation(s)
- Lea Böckstiegel
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Karlsruhe, Germany
| | - Theresa Schaumann
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Karlsruhe, Germany
| | - Björn Egert
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Karlsruhe, Germany
| | - Sabine E Kulling
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Karlsruhe, Germany
| | - Christoph H Weinert
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Karlsruhe, Germany
| |
Collapse
|
3
|
Wang J, Qiao L, Liu B, Wang J, Wang R, Zhang N, Sun B, Chen H, Yu Y. Characteristic aroma-active components of fried green onion (Allium fistulosum L.) through flavoromics analysis. Food Chem 2023; 429:136909. [PMID: 37516048 DOI: 10.1016/j.foodchem.2023.136909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/28/2023] [Accepted: 07/12/2023] [Indexed: 07/31/2023]
Abstract
Green onion (Allium fistulosum L.) is a perennial herb with a characteristic allium aroma. Meanwhile, fried green onion oil has a rich flavor that is popular in traditional Chinese cuisine. In this work, the key aroma components of fried green onion oil were focused via flavoromics analysis. The oil samples had a low score of a green aroma but a high score of salty, greasy aromas. Whereafter, a total of 36 aroma-active substances with flavor dilution (FD) factors ranging from 1 to 6561 were identified in fried green onion oil, while 42 were detected in fried green onion residue with FD factors ranging from 1 to 19683. Additionally, the recombination and omission tests revealed that furaneol, dimethyl trisulfide, allyl methyl trisulfide, (E,E)-2,4-decadienal, etc., were the key aroma compounds in fried green onion oil. Furthermore, the observation of the reaction of thioethers at high temperatures revealed that dimethyl disulfide undergoes polymerization to form dimethyl trisulfide. The research results can provide a theoretical basis for the standardization and industrial production of Chinese cuisine.
Collapse
Affiliation(s)
- Jing Wang
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology & Business University, Beijing 100048, China.
| | - Lina Qiao
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology & Business University, Beijing 100048, China.
| | - Bing Liu
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology & Business University, Beijing 100048, China.
| | - Junyi Wang
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology & Business University, Beijing 100048, China.
| | - Ruifang Wang
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology & Business University, Beijing 100048, China.
| | - Ning Zhang
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology & Business University, Beijing 100048, China; Beijing Laboratory of Food Quality and Safety, Beijing Technology & Business University, Beijing 100048, China.
| | - Baoguo Sun
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology & Business University, Beijing 100048, China; Beijing Laboratory of Food Quality and Safety, Beijing Technology & Business University, Beijing 100048, China.
| | - Haitao Chen
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology & Business University, Beijing 100048, China.
| | - Yang Yu
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology & Business University, Beijing 100048, China.
| |
Collapse
|
4
|
Delbaere SM, Bernaerts T, Vangrunderbeek M, Vancoillie F, Hendrickx ME, Grauwet T, Van Loey AM. The volatile profile of pasteurized leek (Allium ampeloprasum var. porrum) and Brussels sprouts (Brassica oleracea var. gemmifera) (products), as a witness to (bio)chemical reactivity, influenced by pretreatment and successive refrigerated storage. Food Res Int 2023; 169:112864. [PMID: 37254313 DOI: 10.1016/j.foodres.2023.112864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 06/01/2023]
Abstract
Processing can affect (bio)chemical conversions in vegetables and can act on their volatile properties accordingly. In this study, the integrated effect of pretreatment and pasteurization on the volatile profile of leek and Brussels sprouts and the change of this profile upon refrigerated storage were investigated. Pretreatments were specifically selected to steer biochemical reactivities to different extents. Volatile profiles were analyzed by headspace-solid phase microextraction-gas chromatography-mass spectrometry. For both vegetables, it was observed that different pretreatments prior to a pasteurization step led to diverse volatile profiles. The differences in volatile profiles observed in the different samples were presumably attributed to the different degrees of enzymatic conversions, further conversions of enzymatically formed products and thermally induced reactivities. Interestingly, the observed initial relative differences between volatile profiles of differently pretreated pasteurized samples were still observed after a refrigerated storage of 4 weeks at 4 °C. In conclusion, refrigerated storage only limitedly affected the resulting volatile profile.
Collapse
Affiliation(s)
- Sophie M Delbaere
- Laboratory of Food Technology, Department of Microbial and Molecular Systems, KU Leuven, Kasteelpark Arenberg 22, B-3001 Leuven, Belgium.
| | - Tom Bernaerts
- Laboratory of Food Technology, Department of Microbial and Molecular Systems, KU Leuven, Kasteelpark Arenberg 22, B-3001 Leuven, Belgium.
| | - Mirte Vangrunderbeek
- Laboratory of Food Technology, Department of Microbial and Molecular Systems, KU Leuven, Kasteelpark Arenberg 22, B-3001 Leuven, Belgium.
| | - Flore Vancoillie
- Laboratory of Food Technology, Department of Microbial and Molecular Systems, KU Leuven, Kasteelpark Arenberg 22, B-3001 Leuven, Belgium.
| | - Marc E Hendrickx
- Laboratory of Food Technology, Department of Microbial and Molecular Systems, KU Leuven, Kasteelpark Arenberg 22, B-3001 Leuven, Belgium.
| | - Tara Grauwet
- Laboratory of Food Technology, Department of Microbial and Molecular Systems, KU Leuven, Kasteelpark Arenberg 22, B-3001 Leuven, Belgium.
| | - Ann M Van Loey
- Laboratory of Food Technology, Department of Microbial and Molecular Systems, KU Leuven, Kasteelpark Arenberg 22, B-3001 Leuven, Belgium.
| |
Collapse
|
5
|
V González-de-Peredo A, Vázquez-Espinosa M, Espada-Bellido E, Ferreiro-González M, Carrera C, Palma M, F Barbero G. Application of Direct Thermal Desorption-Gas Chromatography-Mass Spectrometry for Determination of Volatile and Semi-Volatile Organosulfur Compounds in Onions: A Novel Analytical Approach. Pharmaceuticals (Basel) 2023; 16:ph16050715. [PMID: 37242498 DOI: 10.3390/ph16050715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/27/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
The population is now more aware of their diets due to the connection between food and general health. Onions (Allium cepa L.), common vegetables that are minimally processed and grown locally, are known for their health-promoting properties. The organosulfur compounds present in onions have powerful antioxidant properties and may decrease the likelihood of developing certain disorders. It is vital to employ an optimum approach with the best qualities for studying the target compounds to undertake a thorough analysis of these compounds. In this study, the use of a direct thermal desorption-gas chromatography-mass spectrometry method with a Box-Behnken design and multi-response optimization is proposed. Direct thermal desorption is an environmentally friendly technique that eliminates the use of solvents and requires no prior preparation of the sample. To the author's knowledge, this methodology has not been previously used to study the organosulfur compounds in onions. Likewise, the optimal conditions for pre-extraction and post-analysis of organosulfur compounds were as follows: 46 mg of onion in the tube, a desorption heat of 205 °C for 960 s, and a trap heat of 267 °C for 180 s. The repeatability and intermediate precision of the method were evaluated by conducting 27 tests over three consecutive days. The results obtained for all compounds studied revealed CV values ranging from 1.8% to 9.9%. The major compound reported in onions was 2,4-dimethyl-thiophene, representing 19.4% of the total area of sulfur compounds. The propanethial S-oxide, the principal compound responsible for the tear factor, accounted for 4.5% of the total area.
Collapse
Affiliation(s)
- Ana V González-de-Peredo
- Department of Analytical Chemistry, Faculty of Sciences, Wine and Agrifood Research Institute (IVAGRO), University of Cadiz, Agrifood Campus of International Excellence (ceiA3), 11510 Puerto Real, Spain
| | - Mercedes Vázquez-Espinosa
- Department of Analytical Chemistry, Faculty of Sciences, Wine and Agrifood Research Institute (IVAGRO), University of Cadiz, Agrifood Campus of International Excellence (ceiA3), 11510 Puerto Real, Spain
| | - Estrella Espada-Bellido
- Department of Analytical Chemistry, Faculty of Sciences, Wine and Agrifood Research Institute (IVAGRO), University of Cadiz, Agrifood Campus of International Excellence (ceiA3), 11510 Puerto Real, Spain
| | - Marta Ferreiro-González
- Department of Analytical Chemistry, Faculty of Sciences, Wine and Agrifood Research Institute (IVAGRO), University of Cadiz, Agrifood Campus of International Excellence (ceiA3), 11510 Puerto Real, Spain
| | - Ceferino Carrera
- Department of Analytical Chemistry, Faculty of Sciences, Wine and Agrifood Research Institute (IVAGRO), University of Cadiz, Agrifood Campus of International Excellence (ceiA3), 11510 Puerto Real, Spain
| | - Miguel Palma
- Department of Analytical Chemistry, Faculty of Sciences, Wine and Agrifood Research Institute (IVAGRO), University of Cadiz, Agrifood Campus of International Excellence (ceiA3), 11510 Puerto Real, Spain
| | - Gerardo F Barbero
- Department of Analytical Chemistry, Faculty of Sciences, Wine and Agrifood Research Institute (IVAGRO), University of Cadiz, Agrifood Campus of International Excellence (ceiA3), 11510 Puerto Real, Spain
| |
Collapse
|
6
|
Wang J, Qiao L, Wang R, Zhang N, Liu Y, Chen H, Sun J, Wang S, Zhang Y. Effect of Frying Process on the Flavor Variations of Allium Plants. Foods 2023; 12:foods12071371. [PMID: 37048190 PMCID: PMC10093356 DOI: 10.3390/foods12071371] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/08/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
The Allium plant is widely used in cuisines around the world for its characteristic flavor. The general profile of the plant changes a lot and presents quite different smells after the frying process. In this work, five Allium plants and their fried oils were compared to find out how the frying process impacts the general flavor profile. The results of sensory analysis indicated that the frying process could substantially increase the flavor acceptability of fresh Allium plants. Meanwhile, according to gas chromatography-mass spectrometry (GC-MS) analysis, fewer volatile compounds were detected in fresh Allium plants than in their fried oils. Furthermore, contents of nitrogen-containing compounds (ranging from 0.17 μg/g to 268.97 μg/g), aldehydes (ranging from 71.82 μg/g to 1164.84 μg/g), and lactones (ranging from 0 μg/g to 12.38 μg/g) increased significantly. In addition, more aroma-active substances were identified in the fried Allium oils revealed by gas chromatography-olfactometry (GC-O) analysis. Sulfur-containing compounds were the most abundant in fresh Allium plants, whereas nitrogen-containing compounds dominated in fried oils. The thermal degradation of sugars, amino acids and lipids as well as interactions between carbohydrates, proteins, and fats during the frying process were thought to be the main contributors to these variations. Therefore, this research provides a theoretical basis for the quality control of onion oil flavor and promotes the further development of the onion plant industry. Consequently, the research provided a theoretical basis for the quality control of Allium oils' flavor and promoted the further development of Allium plant industries.
Collapse
Affiliation(s)
- Jing Wang
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology & Business University, Beijing 100048, China
| | - Lina Qiao
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology & Business University, Beijing 100048, China
| | - Ruifang Wang
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology & Business University, Beijing 100048, China
| | - Ning Zhang
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology & Business University, Beijing 100048, China
| | - Yuping Liu
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology & Business University, Beijing 100048, China
| | - Haitao Chen
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology & Business University, Beijing 100048, China
| | - Jie Sun
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology & Business University, Beijing 100048, China
| | - Shuqi Wang
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology & Business University, Beijing 100048, China
| | - Yu Zhang
- College of Food Science, Southwest University, Chongqing 400700, China
| |
Collapse
|
7
|
Sánchez-Bravo P, Noguera-Artiaga L, Gómez-López VM, Carbonell-Barrachina ÁA, Gabaldón JA, Pérez-López AJ. Impact of Non-Thermal Technologies on the Quality of Nuts: A Review. Foods 2022; 11:3891. [PMID: 36496699 PMCID: PMC9739324 DOI: 10.3390/foods11233891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/24/2022] [Accepted: 11/30/2022] [Indexed: 12/04/2022] Open
Abstract
Nuts are widely consumed worldwide, mainly due to their characteristic flavor and texture, ease of consumption, and their functional properties. In addition, consumers increasingly demand natural or slightly processed foods with high quality. Consequently, non-thermal treatments are a viable alternative to thermal treatments used to guarantee safety and long shelf life, which produce undesirable changes that affect the sensory quality of nuts. Non-thermal treatments can achieve results similar to those of the traditional (thermal) ones in terms of food safety, while ensuring minimal loss of bioactive compounds and sensory properties, thus obtaining a product as similar as possible to the fresh one. This article focuses on a review of the main non-thermal treatments currently available for nuts (cold plasma, high pressure, irradiation, pulsed electric field, pulsed light, ultrasound and ultraviolet light) in relation to their effects on the quality and safety of nuts. All the treatments studied have shown promise with regard to the inhibition of the main microorganisms affecting nuts (e.g., Aspergillus, Salmonella, and E. coli). Furthermore, by optimizing the treatment, it is possible to maintain the organoleptic and functional properties of these products.
Collapse
Affiliation(s)
- Paola Sánchez-Bravo
- Laboratory of Fitoquímica y Alimentos Saludables (LabFAS), CEBAS-CSIC, University of Murcia, 25, 30100 Murcia, Spain
- Department of AgroFood Technology, Miguel Hernandez University, Carretera de Beniel, km 3.2, 03312 Orihuela, Spain
| | - Luis Noguera-Artiaga
- Department of AgroFood Technology, Miguel Hernandez University, Carretera de Beniel, km 3.2, 03312 Orihuela, Spain
| | - Vicente M. Gómez-López
- Catedra Alimentos Para la Salud, Campus de los Jerónimos, Universidad Católica San Antonio de Murcia (UCAM), 30107 Murcia, Spain
| | | | - José A. Gabaldón
- Catedra Alimentos Para la Salud, Campus de los Jerónimos, Universidad Católica San Antonio de Murcia (UCAM), 30107 Murcia, Spain
| | - Antonio J. Pérez-López
- Department of Food Technology and Nutrition, Catholic University of San Antonio, Campus de los Jerónimos s/n, 30107 Murcia, Spain
| |
Collapse
|
8
|
Comparing the effect of several pretreatment steps, selected to steer (bio)chemical reactions, on the volatile profile of leek (Allium ampeloprasum var. porrum). Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Delbaere SM, Bernaerts T, Vangrunderbeek M, Vancoillie F, Hendrickx ME, Grauwet T, Van Loey AM. The Volatile Profile of Brussels Sprouts ( Brassica oleracea Var. gemmifera) as Affected by Pulsed Electric Fields in Comparison to Other Pretreatments, Selected to Steer (Bio)Chemical Reactions. Foods 2022; 11:foods11182892. [PMID: 36141018 PMCID: PMC9498443 DOI: 10.3390/foods11182892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/09/2022] [Accepted: 09/10/2022] [Indexed: 11/16/2022] Open
Abstract
Pulsed electric fields (PEF) at low field strength is considered a non-thermal technique allowing membrane permeabilization in plant-based tissue, hence possibly impacting biochemical conversions and the concomitant volatile profile. Detailed studies on the impact of PEF at low field strength on biochemical conversions in plant-based matrices are scarce but urgently needed to provide the necessary scientific basis allowing to open a potential promising field of applications. As a first objective, the effect of PEF and other treatments that aim to steer biochemical conversions on the volatile profile of Brussels sprouts was compared in this study. As a second objective, the effect of varying PEF conditions on the volatile profile of Brussels sprouts was elucidated. Volatile fingerprinting was used to deduce whether and which (bio)chemical reactions had occurred. Surprisingly, PEF at 1.01 kV/cm and 2.7 kJ/kg prior to heating was assumed not to have caused significant membrane permeabilization since similar volatiles were observed in the case of only heating, as opposed to mixing. A PEF treatment with an electrical field strength of 3.00 kV/cm led to a significantly higher formation of certain enzymatic reaction products, being more pronounced when combined with an energy input of 27.7 kJ/kg, implying that these PEF conditions could induce substantial membrane permeabilization. The results of this study can be utilized to steer enzymatic conversions towards an intended volatile profile of Brussels sprouts by applying PEF.
Collapse
|
10
|
Li Z, Wang T, He C, Cheng K, Zeng R, Song Y. Control of Panama disease of banana by intercropping with Chinese chive (Allium tuberosum Rottler): cultivar differences. BMC PLANT BIOLOGY 2020; 20:432. [PMID: 32943012 PMCID: PMC7499913 DOI: 10.1186/s12870-020-02640-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 09/08/2020] [Indexed: 05/29/2023]
Abstract
Panama disease (Fusarium wilt disease) caused by Fusarium oxysporum f. sp. cubense race 4 (FOC) severely threatens banana (Musa spp.) production worldwide. Intercropping of banana with Allium plants has shown a potential to reduce Panama disease. In this study, six cultivars of Chinese chive (Allium tuberosum Rottler) were selected to compare their differences in antifungal activity and active compounds. Three cultivars Duokang Fujiu 11, Fujiuhuang 2, and Duokang Sijiqing with higher levels of antifungal compounds were further used for intercropping with banana in the pots and field to compare their effects on growth and disease incidence of banana.The six cultivars showed significant differences in antifungal activity against FOC mycelia growth in both leaf volatiles and aqueous leachates. The aqueous leachates displayed stronger antifungal activity than the volatiles. FJH cultivar showed the best inhibitory effect among all six cultivars. Contents of three main antifungal compounds dipropyl trisulfide (DPT), dimethyl trisulfide (DMT), and 2-methyl-2-pentenal (MP) in volatiles and aqueous leachates varied considerably among cultivars. Pot and field experiments showed that intercropping with three selected Chinese chive cultivars significantly improved banana vegetative growth, increased photosynthetic characteristics and yield but decreased disease incidence of Panama disease.Our results indicate that intercropping with Chinese chive shows potential to reduce banana Panama disease and selection of appropriate cultivars is vital for effective disease control.
Collapse
Affiliation(s)
- Zhenfang Li
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Tong Wang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chenling He
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Kelin Cheng
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Rensen Zeng
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yuanyuan Song
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
11
|
Tantamacharik T, Leong SY, Leus MJ, Eyres GT, Burritt DJ, Oey I. Structural Changes Induced by Pulsed Electric Fields Increase the Concentration of Volatiles Released in Red Onion ( Allium cepa L. var. Red Pearl) Bulbs. Foods 2019; 8:foods8090368. [PMID: 31455048 PMCID: PMC6769572 DOI: 10.3390/foods8090368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 08/15/2019] [Accepted: 08/21/2019] [Indexed: 11/16/2022] Open
Abstract
This study investigated whether pulsed electric field (PEF) treatment can induce structural changes of whole, intact red onion bulb (Allium cepa L. var. Red Pearl). Onion bulbs were treated at electric field strengths of 0.6 and 1.2 kV/cm combined with energy inputs of 6 and 60 kJ/kg at different onion orientations with respect to the high voltage electrode. Results showed that onion cells across all fleshy scales experienced uniform cell damage with a higher proportion (>80%) of non-metabolically viable cells after PEF treatment at 1.2 kV/cm when the root end was positioned facing toward the PEF electrode. The findings were supported by cryogenic-scanning electron micrographs (cryo-SEM), where the underlying storage circular cells were completely damaged owing to the PEF treatment. In this study, it was found that the treatment intensity of PEF to induce structural damage across all the scale layers of an onion bulb coincided with an increase in dipropyl disulfide (DPDS) released from the onion bulbs. Therefore, DPDS was used as a volatile marker indicating cellular disruption within whole, intact onion bulbs. A considerable increase of DPDS, up to 52-fold, was detected from PEF-treated onion bulbs compared to untreated bulbs.
Collapse
Affiliation(s)
| | - Sze Ying Leong
- Department of Food Science, University of Otago, PO Box 56, Dunedin 9054, New Zealand
- Riddet Institute, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Michelle J Leus
- Department of Food Science, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Graham T Eyres
- Department of Food Science, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - David J Burritt
- Department of Botany, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Indrawati Oey
- Department of Food Science, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
- Riddet Institute, Private Bag 11 222, Palmerston North 4442, New Zealand.
| |
Collapse
|