1
|
Pierozan MB, Oliveira Filho JGD, Cappato LP, Costa AC, Egea MB. Essential Oils Against Spoilage in Fish and Seafood: Impact on Product Quality and Future Challenges. Foods 2024; 13:3903. [PMID: 39682976 DOI: 10.3390/foods13233903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/29/2024] [Accepted: 11/30/2024] [Indexed: 12/18/2024] Open
Abstract
The preservation of fish and seafood represents a significant challenge for the food industry due to these products' high susceptibility to microbial spoilage. Essential oils (EOs), classified as Generally Recognized as Safe (GRAS), have become a natural alternative to synthetic preservatives due to their antimicrobial and antioxidant properties. This review aims to analyze the specific potential of EOs in extending the shelf life of fish and seafood products, offering a natural and effective preservation solution. It provides a detailed overview of EOs applications and mechanisms, highlighting their role in controlling spoilage microorganisms while maintaining product quality. The main methods of EOs application include immersion, spraying, and pipetting, with antimicrobial effectiveness influenced by factors such as concentration, exposure time, and food characteristics like chemical composition and biofilms. Direct EOs application shows challenges that can be countered by exploring nanoemulsion technology as an effective strategy to enhance EOs stability and controlled release, maximizing their preservation impact. Additionally, coatings made from chitosan, gelatin, Farsi gum, and carrageenan, combined with EOs such as oregano, clove, and thyme have shown efficacy in preserving species like rainbow trout, mackerel, and shrimp. However, the commercial feasibility of using EOs in fish preservation depends on consumer acceptance and regulatory compliance. This review offers valuable insights for the industry and researchers by highlighting the practical applications and commercial challenges of EOs in seafood products, underscoring the importance of consumer acceptance and regulatory adherence for market viability.
Collapse
Affiliation(s)
- Matheus Barp Pierozan
- Instituto Federal de Educação, Ciência e Tecnologia Goiano, Campus Rio Verde, Rio Verde 75901-970, GO, Brazil
| | | | - Leandro Pereira Cappato
- Instituto Federal de Educação, Ciência e Tecnologia Goiano, Campus Rio Verde, Rio Verde 75901-970, GO, Brazil
| | - Adriano Carvalho Costa
- Instituto Federal de Educação, Ciência e Tecnologia Goiano, Campus Rio Verde, Rio Verde 75901-970, GO, Brazil
| | - Mariana Buranelo Egea
- Instituto Federal de Educação, Ciência e Tecnologia Goiano, Campus Rio Verde, Rio Verde 75901-970, GO, Brazil
| |
Collapse
|
2
|
Pierozan MB, Alves JDS, Horn LD, dos Santos PA, da Silva MAP, Egea MB, Minafra C, Cappato LP, Costa AC. Inactivation of Salmonella Typhimurium, Escherichia coli, and Staphylococcus aureus in Tilapia Fillets ( Oreochromis niloticus) with Lactic and Peracetic Acid through Fogging and Immersion. Foods 2024; 13:1520. [PMID: 38790821 PMCID: PMC11121398 DOI: 10.3390/foods13101520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/01/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
This study investigated the antimicrobial effects of lactic acid (LA) (3%) and peracetic acid (PA) (300 ppm) on tilapia fillets (Oreochromis niloticus) by fogging (15 min) or by immersion (2 s) in a pool of Escherichia coli (NEWP 0022, ATCC 25922, and a field-isolated strain), Staphylococcus aureus (ATCC 25923 and a field-isolated strain), and Salmonella Typhimurium (ATCC 13311 and ATCC 14028), as well as the effects on the physicochemical characteristics of the fillets. Fogging was effective and the best application method to control S. Typhimurium regardless of the acid used, promoting reductions of 1.66 and 1.23 log CFU/g with PA and LA, respectively. Regarding E. coli, there were significant reductions higher than 1 log CFU/g, regardless of the treatment or acid used. For S. aureus, only immersion in PA showed no significant difference (p < 0.05). For other treatments, significant reductions of 0.98, 1.51, and 1.17 log CFU/g were observed for nebulized PA, immersion, and LA fogging, respectively. Concerning the pH of the samples, neither of the acids used differed from the control. However, treatments with LA, and fogging with PA, reduced the pH compared to immersion in PA. As for color parameters, L* and a* values showed changes regardless of the acid or method used, resulting in an improved perception of fillet quality. These results indicate that fogging and immersion are alternatives for reducing S. Typhimurium, E. coli, and S. aureus in tilapia fillets.
Collapse
Affiliation(s)
- Matheus Barp Pierozan
- Campus Rio Verde, Instituto Federal Goiano, Rio Verde 75901-970, Brazil; (M.B.P.); (J.d.S.A.); (L.D.H.); (P.A.d.S.); (M.A.P.d.S.); (M.B.E.); (A.C.C.)
| | - Jordana dos Santos Alves
- Campus Rio Verde, Instituto Federal Goiano, Rio Verde 75901-970, Brazil; (M.B.P.); (J.d.S.A.); (L.D.H.); (P.A.d.S.); (M.A.P.d.S.); (M.B.E.); (A.C.C.)
| | - Liege Dauny Horn
- Campus Rio Verde, Instituto Federal Goiano, Rio Verde 75901-970, Brazil; (M.B.P.); (J.d.S.A.); (L.D.H.); (P.A.d.S.); (M.A.P.d.S.); (M.B.E.); (A.C.C.)
| | - Priscila Alonso dos Santos
- Campus Rio Verde, Instituto Federal Goiano, Rio Verde 75901-970, Brazil; (M.B.P.); (J.d.S.A.); (L.D.H.); (P.A.d.S.); (M.A.P.d.S.); (M.B.E.); (A.C.C.)
| | - Marco Antônio Pereira da Silva
- Campus Rio Verde, Instituto Federal Goiano, Rio Verde 75901-970, Brazil; (M.B.P.); (J.d.S.A.); (L.D.H.); (P.A.d.S.); (M.A.P.d.S.); (M.B.E.); (A.C.C.)
| | - Mariana Buranelo Egea
- Campus Rio Verde, Instituto Federal Goiano, Rio Verde 75901-970, Brazil; (M.B.P.); (J.d.S.A.); (L.D.H.); (P.A.d.S.); (M.A.P.d.S.); (M.B.E.); (A.C.C.)
| | - Cíntia Minafra
- Campus Samambaia, Universidade Federal de Goiás, Goiânia 74605-450, Brazil;
| | - Leandro Pereira Cappato
- Campus Rio Verde, Instituto Federal Goiano, Rio Verde 75901-970, Brazil; (M.B.P.); (J.d.S.A.); (L.D.H.); (P.A.d.S.); (M.A.P.d.S.); (M.B.E.); (A.C.C.)
| | - Adriano Carvalho Costa
- Campus Rio Verde, Instituto Federal Goiano, Rio Verde 75901-970, Brazil; (M.B.P.); (J.d.S.A.); (L.D.H.); (P.A.d.S.); (M.A.P.d.S.); (M.B.E.); (A.C.C.)
| |
Collapse
|
3
|
Remya S, Sivaraman GK, Joseph TC, Parmar E, Sreelakshmi KR, Mohan CO, Ravishankar CN. Influence of corn starch based bio-active edible coating containing fumaric acid on the lipid quality and microbial shelf life of silver pomfret fish steaks stored at 4 °C. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:3387-3398. [PMID: 35875210 PMCID: PMC9304496 DOI: 10.1007/s13197-021-05322-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 09/12/2021] [Accepted: 11/07/2021] [Indexed: 06/15/2023]
Abstract
The present study aimed at assessing the impact of addition of fumaric acid (0.5%), as an active agent, in a corn starch (2%) based edible coating, on the lipid quality and microbial shelf life of silver pomfret (Pampus argenteus) fish steaks stored at 4 °C. Treating fish steaks with FA resulted in a bacteriostatic effect leading to reduced counts of total mesophilic and psychrotrophic bacteria, H2S producing bacteria and Pseudomonas spp. The total mesophilic bacterial count of uncoated control sample exceeded the permissible limit of 7 log cfu g-1 on 6th day and had the lowest microbial shelf life. FA incorporation in the CS coating improved the microbial stability of fish steaks resulting in a shelf life of 15 days. The outcomes of the study suggest that CS based coating is beneficial in delaying lipid oxidation as displayed by the lower TBA and PV values while FA is an effective agent for further increasing the preservative action of CS coating by significantly inhibiting microbial growth as well as lipid quality deterioration, which could be exploited by the seafood industry as an active packaging component.
Collapse
Affiliation(s)
- S. Remya
- Quality Assurance and Management Division, Indian Council of Agricultural Research-Central Institute of Fisheries Technology, Willingdon Island, Cochin, Kerala 682 029 India
| | - G. K. Sivaraman
- Quality Assurance and Management Division, Indian Council of Agricultural Research-Central Institute of Fisheries Technology, Willingdon Island, Cochin, Kerala 682 029 India
| | - Toms C. Joseph
- Quality Assurance and Management Division, Indian Council of Agricultural Research-Central Institute of Fisheries Technology, Willingdon Island, Cochin, Kerala 682 029 India
| | - Ejaz Parmar
- Veraval Research Centre, ICAR-CIFT, Bhidia, Veraval, Gujarat 362 269 India
| | - K. R. Sreelakshmi
- Quality Assurance and Management Division, Indian Council of Agricultural Research-Central Institute of Fisheries Technology, Willingdon Island, Cochin, Kerala 682 029 India
| | - C. O. Mohan
- Quality Assurance and Management Division, Indian Council of Agricultural Research-Central Institute of Fisheries Technology, Willingdon Island, Cochin, Kerala 682 029 India
| | - C. N. Ravishankar
- Quality Assurance and Management Division, Indian Council of Agricultural Research-Central Institute of Fisheries Technology, Willingdon Island, Cochin, Kerala 682 029 India
| |
Collapse
|
4
|
Rathod NB, Nirmal NP, Pagarkar A, Özogul F, Rocha JM. Antimicrobial Impacts of Microbial Metabolites on the Preservation of Fish and Fishery Products: A Review with Current Knowledge. Microorganisms 2022; 10:773. [PMID: 35456823 PMCID: PMC9028172 DOI: 10.3390/microorganisms10040773] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/15/2022] [Accepted: 04/01/2022] [Indexed: 02/06/2023] Open
Abstract
Microbial metabolites have proven effects to inhibit food spoilage microbiota, without any development of antimicrobial resistance. This review provides a recent literature update on the preservative action of metabolites derived from microorganisms on seafood. Fish and fishery products are regarded as a myriad of nutrition, while being highly prone to spoilage. Several proven controversies (antimicrobial resistance and health issues) related to the use of synthetic preservatives have caused an imminent problem. The demand for minimally processed and naturally preserved clean-label fish and fishery products is on rise. Metabolites derived from microorganisms have exhibited diverse preservation capacities on fish and fishery products' spoilage. Inclusions with other preservation techniques, such as hurdle technology, for the shelf-life extension of fish and fishery products are also summarized.
Collapse
Affiliation(s)
- Nikheel Bhojraj Rathod
- Department of Post Harvest Management of Meat, Poultry and Fish, PG Institute of Postharvest Management, Dr. Balasaheb Sawant Konkan Krishi Vidyapeeth, Roha, Raigad 402116, Maharashtra, India;
| | - Nilesh Prakash Nirmal
- Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand;
| | - Asif Pagarkar
- Marine Biological Research Station, Dr. Balasaheb Sawant Konkan Krishi Vidyapeeth, Ratnagiri 415612, Maharashtra, India;
| | - Fatih Özogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana 01330, Turkey
| | - João Miguel Rocha
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
5
|
Hussain MA, Sumon TA, Mazumder SK, Ali MM, Jang WJ, Abualreesh MH, Sharifuzzaman S, Brown CL, Lee HT, Lee EW, Hasan MT. Essential oils and chitosan as alternatives to chemical preservatives for fish and fisheries products: A review. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108244] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
6
|
Rathod NB, Ranveer RC, Benjakul S, Kim SK, Pagarkar AU, Patange S, Ozogul F. Recent developments of natural antimicrobials and antioxidants on fish and fishery food products. Compr Rev Food Sci Food Saf 2021; 20:4182-4210. [PMID: 34146459 DOI: 10.1111/1541-4337.12787] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/18/2021] [Accepted: 05/18/2021] [Indexed: 12/23/2022]
Abstract
Fish and fishery products (FFP) are highly perishable due to their high nutritional value and moisture content. The spoilage is mainly caused by microorganisms and chemical reactions, especially lipid oxidation, leading to losses in quality and market value. Microbiological and lipid deteriorations of fishery-derived products directly lower their nutritive value and pose the risk of toxicity for human health. Increasing demand for safe FFP brings about the preservation using additives from natural origins without chemical additives due to their safety and strict regulation. Antimicrobials and antioxidants from natural sources have exhibited an excellent control over the growth of microorganisms causing fish spoilage via different mechanisms. They also play a major role in retarding lipid oxidation by acting at various stages of oxidation. Antimicrobials and antioxidants from natural sources are usually regarded as safe with no detrimental effects on the quality attributes of FFP. This review provides recent literature on the different antioxidant and antimicrobial agents from natural sources, focusing on microbial and oxidative spoilage mechanisms, their inhibition system, and their applications to retard spoilage, maintain safety, and extend the shelf life of FFP. Their applications and benefits have been revisited.
Collapse
Affiliation(s)
- Nikheel Bhojraj Rathod
- Post Harvest Management of Meat, Poultry and Fish, Post Graduate Institute of Post-Harvest Management (Dr. Balasaheb Sawant Konkan Krishi Vidyapeeth), Killa-Roha, Raigad, Maharashtra, 402 116, India
| | - Rahul Chudaman Ranveer
- Post Harvest Management of Meat, Poultry and Fish, Post Graduate Institute of Post-Harvest Management (Dr. Balasaheb Sawant Konkan Krishi Vidyapeeth), Killa-Roha, Raigad, Maharashtra, 402 116, India
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Se-Kwon Kim
- Department of Marine Science & Convergence Engineering, College of Science & Technology Hanyang University Erica, Ansan-si, Gyeonggi-do, South Korea
| | - Asif Umar Pagarkar
- Marine Biological Research Station, (DBSKKV), Ratnagiri, Maharashtra, 415 612, India
| | - Surendra Patange
- Post Harvest Management of Meat, Poultry and Fish, Post Graduate Institute of Post-Harvest Management (Dr. Balasaheb Sawant Konkan Krishi Vidyapeeth), Killa-Roha, Raigad, Maharashtra, 402 116, India
| | - Fatih Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana, Turkey, 01330, Turkey
| |
Collapse
|
7
|
Chen K, Zhang M, Bhandari B, Mujumdar AS. Edible flower essential oils: A review of chemical compositions, bioactivities, safety and applications in food preservation. Food Res Int 2021; 139:109809. [PMID: 33509452 DOI: 10.1016/j.foodres.2020.109809] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 10/10/2020] [Accepted: 10/12/2020] [Indexed: 11/29/2022]
Abstract
In the context of consumers' growing concerns and boycotts of artificial and harmful chemicals, satisfying the demands for good-quality food products possessing clean and safe images is a challenge for food industry. Due to natural and avirulent images, various bioactivities as well as potentials to be used as safer substitutes for chemical preservatives, flower essential oils (EOs) have aroused increasing interests in the recent past. Many literatures have verified the biological activities of flower EOs, and have given high value to the preservative potentials of flower EOs in food systems. In this work, a review is done on the most recent publications associating the chemical constituents, bioactivities (antibacterial, antifungal, antioxidant and anti-pest abilities) and safety of flower EOs. The effects of flower EOs on food flavor are also discussed. Finally, the current combined preservation applications of flower EOs and other technologies are summarized.
Collapse
Affiliation(s)
- Kai Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, Jiangsu, China; Shandong Huamei Biology Science & Technology Co., Ltd., 250400 Pingyin, Shandong, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, Jiangsu, China; Jiangsu Province Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Jiangnan University, China.
| | - Bhesh Bhandari
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Arun S Mujumdar
- Department of Bioresource Engineering, Macdonald Campus, McGill University, Ste. Anne de Bellevue, Quebec H9×3V9, Canada
| |
Collapse
|
8
|
Navarro-Segura L, Ros-Chumillas M, Martínez-Hernández GB, López-Gómez A. A new advanced packaging system for extending the shelf life of refrigerated farmed fish fillets. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:4601-4611. [PMID: 32419139 DOI: 10.1002/jsfa.10520] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/05/2020] [Accepted: 05/18/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND An innovative pilot-plant packaging was developed and evaluated for applying oregano essential oil (OEO) vapours in conditions of high vacuum for exploring the antimicrobial effect of essential oil vapours applied immediately before packaging of fish fillets. Farmed sea bream (Sparus aurata) fresh fillets have been used as a model for validating this new technology. These fillets, as a refrigerated product under modified atmosphere packaging (MAP), have a relatively short shelf life (12-14 days) mainly due to the fast microbial growth. The effects of conventional OEO dippings [pretreatment dipping (0.1% of OEO) of whole fish (T1) and filleted sea bream (T2)] were compared with the OEO application in vapour phase (67 μL L-1 ) under vacuum (5-10 hPa) immediately before MAP fillet packaging (T3). RESULTS T3/T2 samples showed the lowest microbial growth after 28 days at 4 °C, with loads up to 1/2.6 log units for Enterobacteria/lactic acid bacteria compared to untreated samples. The initial trimethylamine nitrogen (TMA-N) content (2.6 mg kg-1 ) increased in T1 and T2/T3 samples by 9.6 and 6/7 units, respectively, after 28 days. Quality Index Method (QIM) better reflected the fish fillets shelf life than texture and colour measurements. The shelf life of T3/T2 samples was established in at least 28 days (4 °C), while the QIM threshold (6) was exceeded after 7/21 days in untreated/T1 fillets. CONCLUSION The fish shelf life was extended with vapour OEO treatment using this new technology, similarly to OEO dipping treatment, according to QIM, corroborated by the microbial quality and TMA-N contents. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Laura Navarro-Segura
- Food Safety and Refrigeration Engineering Group, Department of Agricultural Engineering, Universidad Politécnica de Cartagena, Cartagena, Spain
| | - María Ros-Chumillas
- Food Safety and Refrigeration Engineering Group, Department of Agricultural Engineering, Universidad Politécnica de Cartagena, Cartagena, Spain
| | - Ginés Benito Martínez-Hernández
- Food Safety and Refrigeration Engineering Group, Department of Agricultural Engineering, Universidad Politécnica de Cartagena, Cartagena, Spain
| | - Antonio López-Gómez
- Food Safety and Refrigeration Engineering Group, Department of Agricultural Engineering, Universidad Politécnica de Cartagena, Cartagena, Spain
| |
Collapse
|
9
|
Stefanello C, Rosa DP, Dalmoro YK, Segatto AL, Vieira MS, Moraes ML, Santin E. Protected Blend of Organic Acids and Essential Oils Improves Growth Performance, Nutrient Digestibility, and Intestinal Health of Broiler Chickens Undergoing an Intestinal Challenge. Front Vet Sci 2020; 6:491. [PMID: 31998767 PMCID: PMC6967596 DOI: 10.3389/fvets.2019.00491] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 12/10/2019] [Indexed: 01/08/2023] Open
Abstract
The growing restriction of antibiotic growth promoters (AGP) use in farming animals has raised a concern regarding the viability of the animal production system. In this new context, feed additives with proven positive impact on intestinal health may be used as strategy to avoid losses on performance. The aim of this study was to evaluate the effects of a protected blend of organic acids and essential oils [P(OA+EO)] on growth performance, nutrient digestibility, and intestinal health of broiler chickens. A total of 1,080 Cobb × Cobb 500 male broilers were randomly distributed in four treatments with 10 replicates (27 birds/each). Treatments were as follow: non-challenged control; challenged control; AGP (enramycin at 10 g/t); and P(OA+EO) at 300 g/t. All birds on challenged groups were challenged with Eimeria spp. at 1 day and with Clostridium perfringens at 11, 12, and 13 days. Body weight gain (BWG), feed intake and feed conversion ratio (FCR) were evaluated until 42 days. At 17 days, one bird per pen was orally gavaged with fluorescein isothiocyanate-dextran (FITC-d) and blood samples were collected for FITC-d detection to assess intestinal permeability. At 21 days, apparent ileal nutrient and energy (IDE) digestibility, intestinal macroscopic and histologic alterations (ISI) and, expression of mucin2 (MUC2), claudin1 (CLDN1), and occludin (OCLN) genes in the jejunum were evaluated. From 1 to 42 days, birds from the non-challenged and P(OA+EO) groups had greater (P < 0.001) BWG compared to challenged control and AGP groups. The challenged control group presented the worst FCR (P < 0.001). IDE was 106 kcal/kg greater when broilers were fed P(OA+EO) compared to the challenged control group. Broilers supplemented with P(OA+EO) had improved intestinal integrity with lower blood FITC-d concentration and ISI scores, and greater expression of MUC2, CLDN1, and OCLN genes compared to the challenged control group (P < 0.05). In conclusion, the P(OA+EO) and the AGP led to increased growth performance, nutrient digestibility and intestinal health of challenged broilers. A marked difference occurred in favor of the P(OA+EO), suggesting that this blend may be used to improve intestinal health and broiler growth performance in AGP free programs.
Collapse
Affiliation(s)
- Catarina Stefanello
- Department of Animal Science, Federal University of Santa Maria, Santa Maria, Brazil
| | - Daniele P. Rosa
- Department of Animal Science, Federal University of Santa Maria, Santa Maria, Brazil
| | - Yuri K. Dalmoro
- Department of Animal Science, Federal University of Santa Maria, Santa Maria, Brazil
| | - Ana L. Segatto
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, Brazil
| | | | | | | |
Collapse
|
10
|
Leja K, Szudera-Kończal K, Świtała E, Juzwa W, Kowalczewski PŁ, Czaczyk K. The Influence of Selected Plant Essential Oils on Morphological and Physiological Characteristics in Pseudomonas Orientalis. Foods 2019; 8:E277. [PMID: 31340497 PMCID: PMC6678472 DOI: 10.3390/foods8070277] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/18/2019] [Accepted: 07/20/2019] [Indexed: 01/11/2023] Open
Abstract
The aim of this work was to estimate the antibacterial activity of selected essential oils on Pseudomonas orientalis strains isolated from foods. An attempt was also made to identify the mechanisms of the action of the plant oils. Classical methods of assessment of the effectiveness of antimicrobial activity of oils were linked with flow cytometry. It was observed that bergamot, lemongrass, bitter orange, juniper, and black pepper oils have bacteriostatic effect against P. orientalis P49. P. orientalis P110 is sensitive to lime, lemongrass, juniper, rosemary, and black pepper oils. Additionally, plant oils with biostatic effect on P. orientalis limited the intracellular metabolic activity of cells; this was closely linked with the ability of plant oils' bioactive components to interact with bacteria cell membrane, causing the release of membrane proteins. As a result, the selective permeability of the cell membranes were damaged and the bacterial shape was transformed to coccoid in form.
Collapse
Affiliation(s)
- Katarzyna Leja
- Department of Biotechnology and Food Microbiology, Poznań University of Life Sciences, 48 Wojska Polskiego St, 60-627 Poznań, Poland.
| | - Kamila Szudera-Kończal
- Institute of Food Technology of Plant Origin, Poznań University of Life Sciences, 31 Wojska Polskiego St, 60-624 Poznań, Poland
| | - Ewa Świtała
- Department of Biotechnology and Food Microbiology, Poznań University of Life Sciences, 48 Wojska Polskiego St, 60-627 Poznań, Poland
| | - Wojciech Juzwa
- Department of Biotechnology and Food Microbiology, Poznań University of Life Sciences, 48 Wojska Polskiego St, 60-627 Poznań, Poland
| | - Przemysław Łukasz Kowalczewski
- Institute of Food Technology of Plant Origin, Poznań University of Life Sciences, 31 Wojska Polskiego St, 60-624 Poznań, Poland
| | - Katarzyna Czaczyk
- Department of Biotechnology and Food Microbiology, Poznań University of Life Sciences, 48 Wojska Polskiego St, 60-627 Poznań, Poland
| |
Collapse
|