1
|
Molina D, Marinas IC, Angamarca E, Hanganu A, Stan M, Chifiriuc MC, Tenea GN. Postbiotic-Based Extracts from Native Probiotic Strains: A Promising Strategy for Food Preservation and Antimicrobial Defense. Antibiotics (Basel) 2025; 14:318. [PMID: 40149128 PMCID: PMC11939163 DOI: 10.3390/antibiotics14030318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/12/2025] [Accepted: 03/17/2025] [Indexed: 03/29/2025] Open
Abstract
Background/Objectives: The deterioration of food quality and safety is often linked to the presence of pathogenic and spoilage microorganisms. Postbiotics, including organic acids, enzymes, and bacteriocins produced by lactic acid bacteria (LAB), have emerged as promising next-generation food preservatives. This study investigates the biological and physicochemical properties of several postbiotic-based extracts (PBEs) comprising cell-free supernatant (CFS) and exopolysaccharide (EPS) fractions derived from three native probiotic strains: Lactiplantibacillus plantarum UTNGt2, Lactococcus lactis UTNGt28, and Weissella cibaria UTNGt21O. Methods: The antibacterial activity of these PBEs was assessed against multidrug-resistant Escherichia coli L1PEag1. Moreover, the antioxidant capacity and cytotoxicity along with the characterization of these formulations was assessed. Results: FU6 (CFS UTNGt28: EPS UTNGt2) and FU13 (CFS UTNGt21O) were found as the most potent formulations. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) confirmed dose- and time-dependent damage to the bacterial membrane and cell wall. FU6 exhibited superior antioxidant activity and lacked hemolytic effects, whereas both FU6 and FU13 induced cell-specific responses in HEK293 (human kidney) and HT-29 (intestinal mucus-producing) cell lines. Furthermore, attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy identified characteristic absorption bands corresponding to proteins, lipids, carbohydrates, and nucleic acids, while proton nuclear magnetic resonance (1H-NMR) spectroscopy revealed key monosaccharides, amino acids, and metabolites such as lactate and acetate within the extracts. Conclusions: FU6 and FU13 demonstrate potential as safe and effective postbiotic formulations at non-concentrated doses. However, further research is required to elucidate their molecular composition comprehensively and evaluate their applicability for broader and long-term use in food preservation and pharmaceutical development.
Collapse
Affiliation(s)
- Diana Molina
- Biofood and Nutraceutics Research and Development Group, Faculty of Engineering in Agricultural and Environmental Sciences, Universidad Técnica del Norte, Av. 17 de Julio s-21 y José María Córdova, Ibarra 100150, Ecuador
| | - Ioana C. Marinas
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050095 Bucharest, Romania; (I.C.M.); (M.S.); (M.C.C.)
| | - Evelyn Angamarca
- Biofood and Nutraceutics Research and Development Group, Faculty of Engineering in Agricultural and Environmental Sciences, Universidad Técnica del Norte, Av. 17 de Julio s-21 y José María Córdova, Ibarra 100150, Ecuador
| | - Anamaria Hanganu
- Department of Inorganic and Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, 050663 Bucharest, Romania
- “C. D. Nenitzescu” Institute of Organic, Supramolecular Chemistry of the Romanian Academy, 060023 Bucharest, Romania
| | - Miruna Stan
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050095 Bucharest, Romania; (I.C.M.); (M.S.); (M.C.C.)
| | - Mariana C. Chifiriuc
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050095 Bucharest, Romania; (I.C.M.); (M.S.); (M.C.C.)
| | - Gabriela N. Tenea
- Biofood and Nutraceutics Research and Development Group, Faculty of Engineering in Agricultural and Environmental Sciences, Universidad Técnica del Norte, Av. 17 de Julio s-21 y José María Córdova, Ibarra 100150, Ecuador
| |
Collapse
|
2
|
Gurtler JB, Garner CM. A Review of Essential Oils as Antimicrobials in Foods with Special Emphasis on Fresh Produce. J Food Prot 2022; 85:1300-1319. [PMID: 35588157 DOI: 10.4315/jfp-22-017] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/27/2022] [Indexed: 11/11/2022]
Abstract
ABSTRACT Consumer safety concerns over established fresh produce washing methods and the demand for organic and clean-label food has led to the exploration of novel methods of produce sanitization. Essential oils (EOs), which are extracted from plants, have potential as clean-label sanitizers because they are naturally derived and act as antimicrobials and antioxidants. In this review, the antimicrobial effects of EOs are explored individually and in combination, as emulsions, combined with existing chemical and physical preservation methods, incorporated into films and coatings, and in vapor phase. We examined combinations of EOs with one another, with EO components, with surfactants, and with other preservatives or preservation methods to increase sanitizing efficacy. Components of major EOs were identified, and the chemical mechanisms, potential for antibacterial resistance, and effects on organoleptic properties were examined. Studies have revealed that EOs can be equivalent or better sanitizing agents than chlorine; nevertheless, concentrations must be kept low to avoid adverse sensory effects. For this reason, future studies should address the maximum permissible EO concentrations that do not negatively affect organoleptic properties. This review should be beneficial to food scientists or industry personnel interested in the use of EOs for sanitization and preservation of foods, including fresh produce. HIGHLIGHTS
Collapse
Affiliation(s)
- Joshua B Gurtler
- U.S. Department of Agriculture, Agricultural Research Service, Residue Chemistry and Predictive Microbiology Research Unit, Eastern Regional Research Center, 600 East Mermaid Lane, Wyndmoor, Pennsylvania 19038-8551, USA
| | - Christina M Garner
- U.S. Department of Agriculture, Agricultural Research Service, Residue Chemistry and Predictive Microbiology Research Unit, Eastern Regional Research Center, 600 East Mermaid Lane, Wyndmoor, Pennsylvania 19038-8551, USA
| |
Collapse
|
3
|
Applications of Essential Oils as Antibacterial Agents in Minimally Processed Fruits and Vegetables—A Review. Microorganisms 2022; 10:microorganisms10040760. [PMID: 35456810 PMCID: PMC9032070 DOI: 10.3390/microorganisms10040760] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 02/04/2023] Open
Abstract
Microbial foodborne diseases are a major health concern. In this regard, one of the major risk factors is related to consumer preferences for “ready-to-eat” or minimally processed (MP) fruits and vegetables. Essential oil (EO) is a viable alternative used to reduce pathogenic bacteria and increase the shelf-life of MP foods, due to the health risks associated with food chlorine. Indeed, there has been increased interest in using EO in fresh produce. However, more information about EO applications in MP foods is necessary. For instance, although in vitro tests have defined EO as a valuable antimicrobial agent, its practical use in MP foods can be hampered by unrealistic concentrations, as most studies focus on growth reductions instead of bactericidal activity, which, in the case of MP foods, is of utmost importance. The present review focuses on the effects of EO in MP food pathogens, including the more realistic applications. Overall, due to this type of information, EO could be better regarded as an “added value” to the food industry.
Collapse
|
4
|
Essential oils as natural antimicrobials for application in edible coatings for minimally processed apple and melon: A review on antimicrobial activity and characteristics of food models. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2021.100781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
5
|
Corrêa JAF, Santos JVGD, Evangelista AG, Pinto ACSM, Macedo REFD, Luciano FB. Combined application of phenolic acids and essential oil components against Salmonella Enteritidis and Listeria monocytogenes in vitro and in ready-to-eat cooked ham. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111881] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
6
|
Horváth G, Horváth A, Reichert G, Böszörményi A, Sipos K, Pandur E. Three chemotypes of thyme (Thymus vulgaris L.) essential oil and their main compounds affect differently the IL-6 and TNFα cytokine secretions of BV-2 microglia by modulating the NF-κB and C/EBPβ signalling pathways. BMC Complement Med Ther 2021; 21:148. [PMID: 34022882 PMCID: PMC8140451 DOI: 10.1186/s12906-021-03319-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/10/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The essential oils possess both antimicrobial and anti-inflammatory effects, therefore they can provide an effective treatment against infections. Essential oils are widely used as supportive ingredients in many diseases, especially in the acute and chronic diseases of the respiratory tract. Neuroinflammation is responsible for several diseases of the central nervous system. Some plant-derived bioactive molecules have been shown to have role in attenuating neuroinflammation by regulating microglia, the immune cells of the CNS. METHODS In this study, the anti-inflammatory effect of three chemotypes of thyme essential oil and their main compounds (geraniol, thujanol and linalool) were examined on lipopolysaccharide-induced BV-2 microglia. Three different experimental setups were used, LPS pretreatment, essential oil pretreatment and co-treatments of LPS and essential oils in order to determine whether essential oils are able to prevent inflammation and can decrease it. The concentrations of the secreted tumour necrosis factor α (TNFα) and interleukin-6 (IL-6) proinflammatory cytokines were measured and we analysed by Western blot the activity of the cell signalling pathways, NF-κB and CCAAT-enhancer binding protein β (C/EBPβ) regulating TNFα and IL-6 proinflammatory cytokine expressions in BV-2 cells. RESULTS Our results showed definite alterations in the effects of essential oil chemotypes and their main compounds at the different experimental setups. Considering the changes of IL-6 and TNFα secretions the best reduction of inflammatory cytokines could be reached by the pretreatment with the essential oils. In addition, the main compounds exerted better effects than essential oil chemotypes in case of LPS pretreatment. At the essential oil pretreatment experiment, the effect of linalool and geraniol was outstanding but there was no major difference between the actions of chemotypes and standards. Main compounds could be seen to have large inhibitory effects on certain cell signalling components related to the activation of the expression of proinflammatory cytokines. CONCLUSION Thyme essential oils are good candidates to use in prevention of neuroinflammation and related neurodegeneration, but the exact ratio of the components has to be selected carefully.
Collapse
Affiliation(s)
- Györgyi Horváth
- Department of Pharmacognosy, Faculty of Pharmacy, University of Pécs, H-7624, Rókus u. 2., Pécs, Hungary
| | - Adrienn Horváth
- Department of Pharmacognosy, Faculty of Pharmacy, University of Pécs, H-7624, Rókus u. 2., Pécs, Hungary
| | - Gréta Reichert
- Department of Pharmacognosy, Faculty of Pharmacy, University of Pécs, H-7624, Rókus u. 2., Pécs, Hungary
| | - Andrea Böszörményi
- Institute of Pharmacognosy, Faculty of Pharmacy, Semmelweis University, H-1085 Üllői út 26, Budapest, Hungary
| | - Katalin Sipos
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Pécs, H-7624, Rókus u. 2, Pécs, Hungary
| | - Edina Pandur
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Pécs, H-7624, Rókus u. 2, Pécs, Hungary
| |
Collapse
|
7
|
Agriopoulou S, Stamatelopoulou E, Sachadyn-Król M, Varzakas T. Lactic Acid Bacteria as Antibacterial Agents to Extend the Shelf Life of Fresh and Minimally Processed Fruits and Vegetables: Quality and Safety Aspects. Microorganisms 2020; 8:E952. [PMID: 32599824 PMCID: PMC7356186 DOI: 10.3390/microorganisms8060952] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/16/2020] [Accepted: 06/22/2020] [Indexed: 02/07/2023] Open
Abstract
Eating fresh fruits and vegetables is, undoubtedly, a healthy habit that should be adopted by everyone (particularly due to the nutrients and functional properties of fruits and vegetables). However, at the same time, due to their production in the external environment, there is an increased risk of their being infected with various pathogenic microorganisms, some of which cause serious foodborne illnesses. In order to preserve and distribute safe, raw, and minimally processed fruits and vegetables, many strategies have been proposed, including bioprotection. The use of lactic acid bacteria in raw and minimally processed fruits and vegetables helps to better maintain their quality by extending their shelf life, causing a significant reduction and inhibition of the action of important foodborne pathogens. The antibacterial effect of lactic acid bacteria is attributed to its ability to produce antimicrobial compounds, including bacteriocins, with strong competitive action against many microorganisms. The use of bacteriocins, both separately and in combination with edible coatings, is considered a very promising approach for microbiological quality, and safety for postharvest storage of raw and minimally processed fruits and vegetables. Therefore, the purpose of the review is to discuss the biopreservation of fresh fruits and vegetables through the use of lactic acid bacteria as a green and safe technique.
Collapse
Affiliation(s)
- Sofia Agriopoulou
- Department of Food Science and Technology, University of the Peloponnese, Antikalamos, 24100 Kalamata, Greece; (S.A.); (E.S.)
| | - Eygenia Stamatelopoulou
- Department of Food Science and Technology, University of the Peloponnese, Antikalamos, 24100 Kalamata, Greece; (S.A.); (E.S.)
| | - Monika Sachadyn-Król
- Department of Chemistry, Faculty of Food Sciences and Biotechnology, University of Life Sciences in Lublin, 20950 Lublin, Poland;
| | - Theodoros Varzakas
- Department of Food Science and Technology, University of the Peloponnese, Antikalamos, 24100 Kalamata, Greece; (S.A.); (E.S.)
| |
Collapse
|
8
|
Food Preservation: Challenges and Efforts for the Future. Foods 2020; 9:foods9040391. [PMID: 32231027 PMCID: PMC7230679 DOI: 10.3390/foods9040391] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 03/19/2020] [Accepted: 03/19/2020] [Indexed: 01/26/2023] Open
|