1
|
Ma M, Liu Y, Zhang S, Yuan Y. Edible Coating for Fresh-Cut Fruit and Vegetable Preservation: Biomaterials, Functional Ingredients, and Joint Non-Thermal Technology. Foods 2024; 13:3937. [PMID: 39683008 DOI: 10.3390/foods13233937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
This paper reviews recent advances in fresh-cut fruit and vegetable preservation from the perspective of biomacromolecule-based edible coating. Biomaterials include proteins, polysaccharides, and their complexes. Compared to a single material, the better preservation effect was presented by complexes. The functional ingredients applied in the edible coating are essential oils/other plant extracts, metals/metal oxides, and organic acids, the purposes of the addition of which are the improvement of antioxidant and antimicrobial activities and/or the mechanical properties of the coating. The application of edible coating with other preservation technologies is an emerging method, mainly including pulsed light, short-wave ultraviolet, modified atmosphere packaging, ozonation, and γ-irradiation. In the future, it is crucial to design coating formulations based on preservation goals and sensory characteristics. The combination of non-thermal preservation technology and edible coating needs to be strengthened in research on food preservation. The application of AI tools for edible coating-based preservation should also be focused on. In conclusion, edible coating-based preservation is promising for the development of fresh-cut fruits and vegetables.
Collapse
Affiliation(s)
- Mengjie Ma
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yueyue Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Shuaizhong Zhang
- Marine Science Research Institute of Shandong Province, Qingdao 266104, China
| | - Yongkai Yuan
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
- Qingdao Special Food Research Institute, Qingdao 266109, China
| |
Collapse
|
2
|
Pierozan MB, Oliveira Filho JGD, Cappato LP, Costa AC, Egea MB. Essential Oils Against Spoilage in Fish and Seafood: Impact on Product Quality and Future Challenges. Foods 2024; 13:3903. [PMID: 39682976 DOI: 10.3390/foods13233903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/29/2024] [Accepted: 11/30/2024] [Indexed: 12/18/2024] Open
Abstract
The preservation of fish and seafood represents a significant challenge for the food industry due to these products' high susceptibility to microbial spoilage. Essential oils (EOs), classified as Generally Recognized as Safe (GRAS), have become a natural alternative to synthetic preservatives due to their antimicrobial and antioxidant properties. This review aims to analyze the specific potential of EOs in extending the shelf life of fish and seafood products, offering a natural and effective preservation solution. It provides a detailed overview of EOs applications and mechanisms, highlighting their role in controlling spoilage microorganisms while maintaining product quality. The main methods of EOs application include immersion, spraying, and pipetting, with antimicrobial effectiveness influenced by factors such as concentration, exposure time, and food characteristics like chemical composition and biofilms. Direct EOs application shows challenges that can be countered by exploring nanoemulsion technology as an effective strategy to enhance EOs stability and controlled release, maximizing their preservation impact. Additionally, coatings made from chitosan, gelatin, Farsi gum, and carrageenan, combined with EOs such as oregano, clove, and thyme have shown efficacy in preserving species like rainbow trout, mackerel, and shrimp. However, the commercial feasibility of using EOs in fish preservation depends on consumer acceptance and regulatory compliance. This review offers valuable insights for the industry and researchers by highlighting the practical applications and commercial challenges of EOs in seafood products, underscoring the importance of consumer acceptance and regulatory adherence for market viability.
Collapse
Affiliation(s)
- Matheus Barp Pierozan
- Instituto Federal de Educação, Ciência e Tecnologia Goiano, Campus Rio Verde, Rio Verde 75901-970, GO, Brazil
| | | | - Leandro Pereira Cappato
- Instituto Federal de Educação, Ciência e Tecnologia Goiano, Campus Rio Verde, Rio Verde 75901-970, GO, Brazil
| | - Adriano Carvalho Costa
- Instituto Federal de Educação, Ciência e Tecnologia Goiano, Campus Rio Verde, Rio Verde 75901-970, GO, Brazil
| | - Mariana Buranelo Egea
- Instituto Federal de Educação, Ciência e Tecnologia Goiano, Campus Rio Verde, Rio Verde 75901-970, GO, Brazil
| |
Collapse
|
3
|
Palamae S, Temdee W, Saetang J, Patil U, Suyapoh W, Yingkajorn M, Fan X, Zhang B, Benjakul S. Impact of high-pressure processing on hemolymph, color, lipid globular structure and oxidation of the edible portion of blood clams. Food Chem 2024; 447:138948. [PMID: 38513490 DOI: 10.1016/j.foodchem.2024.138948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/21/2024] [Accepted: 03/03/2024] [Indexed: 03/23/2024]
Abstract
Impact of high-pressure processing (HP-P) on hemolymph and lipid globular structures of the edible portion (EP) of blood clams (BC) was investigated. HP-P above 400 MPa decreased heme iron content, while upsurged non-heme iron content. Increasing pressure induced gaps and abnormal hemocyte cell arrangements. However, HP-P at 300 MPa improved and maintained total hemocyte counts, the heme iron content, and a*-value in BC-EP. For lipid globular structures, the mean diameter drastically decreased when an HP-P pressure of 600 MPa was employed. HP-P at higher pressure induced lipid oxidation, along with decreases in monounsaturated and polyunsaturated fatty acids as well as increases in thiobarbituric acid reactive substances and peroxide value. FTIR spectra displayed a reduction in phosphate groups and cis double bonds in lipids from HP-P treated BC, compared to controls. Therefore, HP-P at 300 MPa is recommended for preparing ready-to-cook BC with less tissue damage and lipid oxidation.
Collapse
Affiliation(s)
- Suriya Palamae
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Wattana Temdee
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Jirakrit Saetang
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Umesh Patil
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Watcharapol Suyapoh
- Veterinary Pathology Unit, Department of Veterinary Science, Faculty of Veterinary Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Mingkwan Yingkajorn
- Department of Pathology, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Xinru Fan
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China
| | - Bin Zhang
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|
4
|
Caratenuto A, Leach K, Liu Y, Zheng Y. Nanofibrous Biomaterial-Based Passive Cooling Paint Structurally Linked by Alkane-Oleate Interactions. ACS APPLIED MATERIALS & INTERFACES 2024; 16:12717-12730. [PMID: 38427802 PMCID: PMC10941070 DOI: 10.1021/acsami.4c01383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/16/2024] [Accepted: 02/24/2024] [Indexed: 03/03/2024]
Abstract
Passive radiative cooling materials, which provide cooling without consuming electricity, are widely recognized as an important technology for reducing greenhouse gas emissions and delivering thermal comfort to less industrialized communities. Optimizing thermal and optical properties is of primary importance for these materials, but for real-world utilization, ease of application and scalability also require significant emphasis. In this work, we embed the biomaterial hydroxyapatite, in the form of nanoscale fibers, within an oil-based medium to achieve passive cooling from an easy-to-apply paint-like solution. The chemical structure and bonding behaviors of this mixture are studied in detail using FTIR, providing transferable conclusions for pigment-like passive cooling solutions. By reflecting 95% of solar energy and emitting 92% of its radiative output through the atmospheric transparency window, this composite material realizes an average subambient cooling performance of 3.7 °C in outdoor conditions under a mean solar irradiance of 800 W m-2. The inflammability of the material provides enhanced durability as well as unique opportunities for recycling which promote circular economic practices. Finally, the surface structure can be easily altered to tune bonding behaviors and hydrophobicity, making it an ideal passive cooling coating candidate for outdoor applications.
Collapse
Affiliation(s)
- Andrew Caratenuto
- Department
of Mechanical and Industrial Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Kyle Leach
- Department
of Mechanical and Industrial Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Yang Liu
- Department
of Mechanical and Industrial Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Yi Zheng
- Department
of Mechanical and Industrial Engineering, Northeastern University, Boston, Massachusetts 02115, United States
- Department
of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
5
|
Udo T, Mummaleti G, Mohan A, Singh RK, Kong F. Current and emerging applications of carrageenan in the food industry. Food Res Int 2023; 173:113369. [PMID: 37803710 DOI: 10.1016/j.foodres.2023.113369] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 10/08/2023]
Abstract
Carrageenan, a polysaccharide derived from red algae, has a long history of use as a food additive in food. Carrageenan comes in three classes, κ-, ι-, and λ-carrageenan, with different properties attributed to their organosulfate substitution levels, and their interactions with other food components give rise to properties such as water holding, thickening, gelling, and stabilizing. Over the years, carrageenan has been used in wide variety of food products such as meat, dairy, and flour-based products, and their mechanisms and functions in these matrices have also been studied. With the emergence of novel food technologies, carrageenan's potential applications have been extensively explored alongside, including encapsulation, edible films/coatings, plant-based analogs, and 3D/4D printing. As the food technology evolves, the required functions of food ingredients have changed, and carrageenan is being investigated for its role in these new areas. However, there are many similarities in the use of carrageenan in both classic and emerging applications, and understanding the underlying principles of carrageenan will lead to a proper use of carrageenan in emerging food products. This review focuses on the potential of carrageenan as a food ingredient in these emerging technologies mainly based on papers published within the past five years, highlighting its functions and applications to better understand its role in food products.
Collapse
Affiliation(s)
- Toshifumi Udo
- Department of Food Science and Technology, The University of Georgia, Athens, GA 30602, USA
| | - Gopinath Mummaleti
- Department of Food Science and Technology, The University of Georgia, Athens, GA 30602, USA
| | - Anand Mohan
- Department of Food Science and Technology, The University of Georgia, Athens, GA 30602, USA
| | - Rakesh K Singh
- Department of Food Science and Technology, The University of Georgia, Athens, GA 30602, USA
| | - Fanbin Kong
- Department of Food Science and Technology, The University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
6
|
Hematian F, Baghaei H, Mohammadi Nafchi A, Bolandi M. Preparation and characterization of an intelligent film based on fish gelatin and Coleus scutellarioides anthocyanin to monitor the freshness of rainbow trout fish fillet. Food Sci Nutr 2023; 11:379-389. [PMID: 36655065 PMCID: PMC9834858 DOI: 10.1002/fsn3.3068] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/31/2022] [Accepted: 09/04/2022] [Indexed: 01/21/2023] Open
Abstract
In this study, a pH-sensitive indicator based on fish gelatin and Coleus scutellarioides anthocyanin extract (CSAE) was prepared and characterized. Films were prepared using the solvent casting method and different levels of CSAE, including 10 ml (CSG1), 20 ml (CSG2), and 30 ml (CSG3), and 0 ml (CSG0) as a control sample. The mechanical, optical, and pH sensing of active films and the release of anthocyanins from the films were investigated. The relationship between the total volatile basic nitrogen (TVB-N) of fish fillets and a* color index of films was studied. By incorporation of CSAE, the flexibility of films increased, while the tensile strength and UV-Vis light transmittance through the films decreased (p < .05). The films containing the CSAE had a darker, yellowish, and reddish color than the control film. There was a significant relationship between the pH variation and the film color. The films had a purple color at acidic pH, and their color changed to green at an alkaline pH, indicating the sensitivity of the produced films to pH changes. There was a significant relationship between the TVB-N value of fish fillets and the a* index of the film during the 16 h storage time. The results showed that by increasing TVB-N values of the fillets, the a* color index decreased, and the films' color changed from purple to colorless. In summary, the active films prepared with fish gelatin and CSAE could be used as pH-sensitive intelligent packaging to display the freshness of fishery products.
Collapse
Affiliation(s)
- Fahimeh Hematian
- Department of Food Science and Technology, Damghan BranchIslamic Azad UniversityDamghanIran
| | - Homa Baghaei
- Department of Food Science and Technology, Damghan BranchIslamic Azad UniversityDamghanIran
| | - Abdorreza Mohammadi Nafchi
- Department of Food Science and Technology, Damghan BranchIslamic Azad UniversityDamghanIran
- Food Technology Division, School of Industrial TechnologyUniversiti Sains MalaysiaPenangMalaysia
- Green Biopolymer, Coatings & Packaging Cluster, School of Industrial TechnologyUniversiti Sains MalaysiaPenangMalaysia
| | - Marzieh Bolandi
- Department of Food Science and Technology, Damghan BranchIslamic Azad UniversityDamghanIran
| |
Collapse
|
7
|
Huang L, Shi L, Ren Z, Hao G, Weng W. Effect of transglutaminase concentration in curing solution on the physicochemical properties of salted large yellow croaker ( Pseudosciaena crocea). Food Chem X 2022; 14:100277. [PMID: 35284816 PMCID: PMC8914547 DOI: 10.1016/j.fochx.2022.100277] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 11/23/2022] Open
Abstract
Quality of fish meat was improved by adding TGase in curing solution. Meat hardness of large yellow croaker salted with 1.0% TGase was the highest. Cross-linking of fish meat protein was promoted by TGase in curing solution. Concentration of TGase in curing solution affects its penetration during salting. Meat hardness of roasted fish was improved by pre-salting with TGase.
This study investigated the effect of transglutaminase (TGase) added to curing solution on the physicochemical properties of salted fish. Large yellow croaker was salted in the curing solution containing 0–2.0% TGase at 10 °C for 48 h. The hardness, moisture content and immobilized water ratio of fish salted with 1.0% TGase were 629.94 g, 59.14%, and 95.34% respectively, which decreased with increasing or decreasing TGase concentration. The scanning electron microscopy image showed that a compact structure on the meat surface of fish salted containing 1.0% TGase. A similar microstructure was found in the internal meat of fish salted with 0.5% TGase. The hardness of fish salted with 0.5% TGase after roasting was 1135.97 g, which was higher than that of fish salted without TGase. In conclusion, high-quality salted large yellow croaker can be obtained by adding TGase in curing solution.
Collapse
Affiliation(s)
- Li Huang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Linfan Shi
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China.,Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Xiamen 361021, China
| | - Zhongyan Ren
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China.,Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Xiamen 361021, China
| | - Gengxin Hao
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China.,Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Xiamen 361021, China
| | - Wuyin Weng
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China.,Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Xiamen 361021, China.,Collaborative Innovation Center of Provincial and Ministerial Co-construction for Marine Food Deep Processing, Xiamen 361021, China
| |
Collapse
|
8
|
Tagrida M, Benjakul S, Zhang B. Use of betel leaf (Piper betle L.) ethanolic extract in combination with modified atmospheric packaging and nonthermal plasma for shelf-life extension of Nile tilapia (Oreochromis niloticus) fillets. J Food Sci 2021; 86:5226-5239. [PMID: 34766340 DOI: 10.1111/1750-3841.15960] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 10/03/2021] [Accepted: 10/12/2021] [Indexed: 12/16/2022]
Abstract
Fish is perishable and has the short shelf-life. To maintain its quality, it is necessary to implement the appropriate technology, particularly nonthermal processing along with safe additive, especially from plant origin under the concept of "hurdle technology". The use of potential vesicle including liposome for loading the plant extract could be a means to enhance the stability and activities of the extract. The current study aimed to evaluate the effect of liposomes loaded with betel leaf ethanolic extract (L/BLEEs) or unencapsulated BLEE (U/BLEE) in conjunction with modified atmospheric packaging (MAP) and nonthermal plasma (NTP) on the quality changes and shelf-life of Nile tilapia fillets (TFs) stored under refrigerated condition (4°C). TFs treated with L/BLEE or U/BLEE at 400 ppm, packed under modified atmosphere (CO2 :Ar:O2 = 60:30:10) and subjected to NTP for 300 s (L/BLEE-400/MAP-NTP and U/BLEE-400/MAP-NTP, respectively) had the lowest microbial and chemical changes during storage, while the control showed the highest changes (p < 0.05). Lipid oxidation was lower in these samples, ascertained by more retained polyunsaturated fatty acids and lower lipid oxidation based on Fourier transform infrared (FT-IR) spectra. Overall likeness scores were similar (p > 0.05) between all the samples at day 0 of storage. Only L/BLEE-400/MAP-NTP and U/BLEE-400/MAP-NTP were still sensorially acceptable after 12 days at 4°C. Therefore, L/BLEE or U/BLEE combined with MAP/NTP treatment could be adopted as a potent hurdle for shelf-life extension of TFs. PRACTICAL APPLICATION: Natural additives and nonthermal processing technologies have gained increasing interest for preservation of fish. Liposomes loaded with betel leaf ethanolic extract (L/BLEE) rich in polyphenolics could be used together with modified atmospheric packaging (MAP) and nonthermal plasma (NTP) to retard bacterial growth and chemical deterioration in Nile tilapia fillets. These hurdles were proven to be able to maintain the qualities of tilapia fillets stored at 4°C up to 12 days, especially when L/BLEE was used at 400 ppm. Therefore, shelf-life extension of Nile tilapia fillets or other fish can be achieved by using the natural additive and nonthermal processing technologies.
Collapse
Affiliation(s)
- Mohamed Tagrida
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Bin Zhang
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| |
Collapse
|
9
|
Kunyaboon S, Thumanu K, Park JW, Khongla C, Yongsawatdigul J. Evaluation of Lipid Oxidation, Volatile Compounds and Vibrational Spectroscopy of Silver Carp ( Hypophthalmichthys molitrix) During Ice Storage as Related to the Quality of Its Washed Mince. Foods 2021; 10:foods10030495. [PMID: 33669027 PMCID: PMC7996564 DOI: 10.3390/foods10030495] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/12/2021] [Accepted: 02/20/2021] [Indexed: 01/05/2023] Open
Abstract
Changes in the lipid oxidation of silver carp (Hypophthalmichthys molitrix) stored in ice for 14 days and that of its respective washed mince were evaluated. Total lipid, phospholipid, polyunsaturated fatty acid (PUFA) and monounsaturated fatty acid (MUFA) contents of the skin, belly flap and mince decreased as the storage time in ice increased. The washing process decreased the lipid contents but concentrated their phospholipid counterparts. The fish belly flap exhibited the highest thio-barbituric acid reactive substances (TBARS) value, while the mince had the lowest. 1-Hexanol, 1-octen-3-ol, and 1-hexanal were key volatile compounds detected in the belly flaps of fish stored for 7–14 days. Hexanal was the only major volatile compound found in washed mince prepared from fish stored for an extended period in ice, but in a much lower amount compared with that in the belly flap. FTIR (Fourier transform infra-red) spectra revealed a decrease in the number of cis double bonds, methylene groups and phosphate groups in lipids extracted from fish stored in ice for 7–14 days as compared with those extracted from fresh fish. Principle component analysis (PCA) revealed that the FT-Raman band at 1747 cm−1 could be a potential marker for tracking the degree of lipid oxidation in the belly flap of silver carp stored in ice. In addition, IR bands indicating phosphate group (925, 825 cm−1) in oil extracted from washed mince were correlated with the extent of the lipid oxidation of the raw material.
Collapse
Affiliation(s)
- Sasinee Kunyaboon
- School of Food Technology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand;
| | - Kanjana Thumanu
- Synchrotron Light Research Institute (Public Organization), Nakhon Ratchasima 30000, Thailand;
| | - Jae W. Park
- Seafood Lab and Department of Food Science and Technology, Oregon State University, 2001 Marine Drive #253, Astoria, OR 97103, USA;
| | - Chompoonuch Khongla
- Department of Applied Biology, Faculty of Sciences and Liberal Arts, Rajamangala University of Technology Isan, Nakhon Ratchasima 30000, Thailand;
| | - Jirawat Yongsawatdigul
- School of Food Technology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand;
- Correspondence: ; Tel.: +6644-224359; Fax: +6644-224387
| |
Collapse
|
10
|
Shahidi F, Hossain A. Preservation of aquatic food using edible films and coatings containing essential oils: a review. Crit Rev Food Sci Nutr 2020; 62:66-105. [DOI: 10.1080/10408398.2020.1812048] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Fereidoon Shahidi
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Abul Hossain
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, NL, Canada
| |
Collapse
|
11
|
Pirozzi A, Pataro G, Donsì F, Ferrari G. Edible Coating and Pulsed Light to Increase the Shelf Life of Food Products. FOOD ENGINEERING REVIEWS 2020. [DOI: 10.1007/s12393-020-09245-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AbstractThe application of edible coatings (EC) in combination with pulsed light (PL) treatments represents an emerging approach for extending the shelf life of highly perishable but high value-added products, such as fresh-cut fruits and vegetables. The surface of these products would benefit from the protective effects of ECs and the PL decontamination capability. This review describes in detail the fundamentals of both EC and PL, focusing on the food engineering principles in the formulation and application of EC and the delivery of efficient PL treatments and the technological aspects related to the food characterization following these treatments and discussing the implementation of the two technologies, individually or in combination. The advantages of the combination of EC and PL are extensively discussed emphasizing the potential benefits that may be derived from their combination when preserving perishable foods. The downsides of combining EC and PL are also presented, with specific reference to the potential EC degradation when exposed to PL treatments and the screening effect of PL transmittance through the coating layer. Finally, the potential applications of the combined treatments to food products are highlighted, comparatively presenting the treatment conditions and the product shelf-life improvement.
Collapse
|
12
|
Volpe MG, Ghia D, Safari O, Paolucci M. Fast non-destructive assessment of heavy metal presence by ATR-FTIR analysis of crayfish exoskeleton. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:21021-21031. [PMID: 32253699 DOI: 10.1007/s11356-020-08405-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 03/12/2020] [Indexed: 06/11/2023]
Abstract
Freshwater crayfish are bioindicators of environmental pollution, often used for the assessment of heavy metal (HM) presence in the tissues, a time-consuming and expensive task. In this study, we propose the use of the vibrational spectroscopy to detect in a fast, non-destructive and sensitive way the presence of HM in the cephalothorax exoskeleton of the freshwater crayfish. Incorporation of HM into the cephalothorax exoskeleton was investigated under controlled laboratory conditions. In particular, the cephalothorax exoskeleton of five crayfish species (Astacus leptodactylus, Procambarus clarkii, Austropotamobius pallipes, Faxonius limosus, and Pacifastacus leniusculus) was analyzed by attenuated total reflection-Fourier transformed infrared (ATR-FTIR) spectroscopy in the presence or absence of cadmium (Cd), chromium (Cr), lead (Pb), nickel (Ni), and zinc (Zn) up to 4 weeks at various concentrations (0.01, 0.1, 1, 10, ppm). The ATR-FTIR profile of the crayfish cephalothorax exoskeleton was compatible with the presence of amorphous calcium carbonate, chitin, and proteins. The incubation with the HM revealed two main modifications: the shift of the peak from 859 to 872 cm-1 and the appearance of a peak at 712 cm-1. Both are ascribable to the HM interaction with calcium carbonate. The absorbance of both peaks increased along with the time of incubation, and the HM concentration. We conclude that ATR-FTIR analysis can be a useful, quick, and cost-sensitive tool to detect HM presence in the crayfish cephalothorax exoskeleton. However, it has to be regarded as a non-specific analytical technique for assessing HM contamination, since it is unable to discriminate between different HM.
Collapse
Affiliation(s)
- Maria Grazia Volpe
- Institute of Food Sciences -National Research Council (ISA-CNR), Via Roma 64, 83100, Avellino, Italy
| | - Daniela Ghia
- Department of Earth and Environmental Sciences, University of Pavia, Via Taramelli 24, 27100, Pavia, Italy
| | - Omid Safari
- Department of Fishery, Faculty of Natural Resources and Environment, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Marina Paolucci
- Institute of Food Sciences -National Research Council (ISA-CNR), Via Roma 64, 83100, Avellino, Italy.
- Department of Science and Technologies, University of Sannio, Via Port'Arsa, 11, 82100, Benevento, Italy.
| |
Collapse
|
13
|
Fang S, Zhou Q, Hu Y, Liu F, Mei J, Xie J. Antimicrobial Carvacrol Incorporated in Flaxseed Gum-Sodium Alginate Active Films to Improve the Quality Attributes of Chinese Sea bass (Lateolabrax maculatus) during Cold Storage. Molecules 2019; 24:molecules24183292. [PMID: 31509981 PMCID: PMC6766946 DOI: 10.3390/molecules24183292] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/05/2019] [Accepted: 09/05/2019] [Indexed: 01/24/2023] Open
Abstract
The objective of this research was to explore the antimicrobial activity and mechanism of carvacrol against Vibrio Parahemolyticus, Shewanella putrefaciens, Staphylococcus aureus and Pseudomonas fluorescens and evaluate the effect of the addition of carvacrol/β-cyclodextrin emulsions to flaxseed gum (FSG)-sodium alginate (SA) edible films on the preservation of Chinese sea bass (Lateolabrax maculatus) fillets during refrigerated storage. The minimum inhibitory concentration (MIC) of carvacrol against V. parahemolyticus, S. putrefaciens, S. aureus and P. fluorescens were 0.5, 0.5, 0.125, and 0.5 mg/mL, respectively. Alkaline phosphatase activity assay, nucleotide and protein leakage, and scanning electron microscope demonstrated that carvacrol damaged the external structure of the tested bacterial cells causing leakage of cytoplasmic components. At the same time, when FSG-SA films containing carvacrol used as coating agents for Chinese sea bass fillets cold storage, FSG-SA films containing 1.0 or 2.0 mg/mL carvacrol could significantly reduce TVB-N content, K-value, the degree of microbial deterioration and maintain quality of sea bass fillets according to organoleptic evaluation results.
Collapse
Affiliation(s)
- Shiyuan Fang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China.
| | - Qianqian Zhou
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China.
| | - Yan Hu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China.
| | - Feng Liu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China.
| | - Jun Mei
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China.
- National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University, Shanghai 201306, China.
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China.
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China.
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China.
- National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University, Shanghai 201306, China.
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China.
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China.
| |
Collapse
|