1
|
Keser G, Ozcan T. Cross-over fermentation dynamics and proteomic properties of acid gels with indigenous Lactobacillus spp. isolated from cheeses. Food Microbiol 2025; 128:104700. [PMID: 39952741 DOI: 10.1016/j.fm.2024.104700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 02/17/2025]
Abstract
The present study examined the proteomic characteristics and fermentation dynamics of indigenous bacteria isolated from traditional Mihalic cheese in an acid gel matrix. Accordingly, autochthonous strains of Levilactobacillus brevis, Lacticaseibacillus paracasei, and Lacticaseibacillus rhamnosus were adapted to the gel matrix alongside commercial yogurt culture (Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus). The study evaluated bacterial activity, proteolytic behavior, physicochemical characteristics, and textural and sensory properties in acid gel samples. The microorganisms demonstrated high survival rates (>7.35 log₁₀ cfu/g) in the fermented gel system and induced limited acidification throughout the product's shelf life. Regarding proteomic properties, the highest amino acid variation during the shelf life was observed in the FMB sample (28.20%). Furthermore, arginine, leucine, phenylalanine, aspartic acid, lysine, and cysteine reductions were noted in samples containing the isolated microorganisms. Including indigenous microorganisms in the fermented milk increased the levels of essential amino acids. Principal Component Analysis of sensory properties revealed that samples containing indigenous microorganisms differed significantly from the control sample (C), which contained only commercial yogurt culture. The results revealed the proteolytic changes associated with fermentation, including producing free amino acids as nutritional components, forming specific aroma compounds, and modifying textural and sensory properties. These results demonstrate the potential of utilizing local cultures to develop products enriched with novel bioactive components, offering consumers enhanced nutritional and sensory benefits.
Collapse
Affiliation(s)
- Gokce Keser
- Bursa Uludag University, Department of Food Engineering, Bursa, Turkiye
| | - Tulay Ozcan
- Bursa Uludag University, Department of Food Engineering, Bursa, Turkiye.
| |
Collapse
|
2
|
Graça JS, Silva JGS, Dias LG, Odorissi Xavier AA, Alves-Filho EG, Pimentel TC, Brito ES, Rodrigues S, Pallone JAL, Mariutti LRB, Mercadante AZ, Bragagnolo N, Sant'Ana AS. Pre-exposure of Lactobacillus acidophilus to stress conditions impacts the metabolites and bioaccessibility of calcium and carotenoids in fermented dairy products. Food Res Int 2025; 200:115526. [PMID: 39779154 DOI: 10.1016/j.foodres.2024.115526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025]
Abstract
This study evaluated the impact of fermentation with Lactobacillus acidophilus pre-subjected to acid, osmotic, and oxidative stress conditions on the production of metabolites and the bioaccessibility of nutrients and bioactive compounds in fermented milks and yogurts. The products were added with orange bagasse (additional calcium - Ca source) and buriti pulp (carotenoids source). Gas chromatography coupled with mass spectrometry (GC-MS) and nuclear magnetic resonance (NMR) were used to analyze the volatile and non-volatile compounds metabolites from fermentation, respectively. In vitro digestion assays (dialysis and micellization) evaluated the bioaccessibility of Ca and carotenoids. Results showed that fermentation with L. acidophilus, previously exposed to acid, osmotic, and oxidative stress conditions, increased the production of volatiles such as higher alcohols and compounds derived from amino acid catabolism (1-butanol, 1-decanol, 1-nonanol, nonanoic acid, 2-ethyl 1-hexanol, 1-methoxy-2-propanol). Also, when this microorganism was subjected to osmotic and oxidative stress, an increase in the bioaccessibility of Ca in natural fermented milks from 4.1 % to 13.3-15.5 % and in the same products fortified with orange bagasse from 5.3 % to 9.3-10.8 % (when compared to the non-stressed condition) were observed. Conversely, the use of L. acidophilus - non-stressed or subjected to oxidative stress - reduced the bioaccessibility of carotenoids in products containing buriti pulp from 9.6 % to 7.8 % and 4.1 % (in yogurts); and, from 4.1 % to 2.0 % (in fermented milks), when compared to control. Thus, the pre-exposure of probiotics to stress conditions may impact not only the sensory and biochemical characteristics of fermented products, but also the bioaccessibility of nutrients and bioactive compounds.
Collapse
Affiliation(s)
- Juliana S Graça
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Joyce G S Silva
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Laísa G Dias
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Ana Augusta Odorissi Xavier
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Elenilson G Alves-Filho
- Departamento de Engenharia de Alimentos, Universidade Federal do Ceará, Campus do Pici, Bloco 858, 60440-900 Fortaleza, CE, Brazil
| | | | - Edy S Brito
- Embrapa Agroindústria Tropical, Rua Dra Sara Mesquita, 2270, Pici, 60511-110 Fortaleza, CE, Brazil
| | - Sueli Rodrigues
- Departamento de Engenharia de Alimentos, Universidade Federal do Ceará, Campus do Pici, Bloco 858, 60440-900 Fortaleza, CE, Brazil
| | - Juliana A L Pallone
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Lilian R B Mariutti
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Adriana Z Mercadante
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Neura Bragagnolo
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Anderson S Sant'Ana
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil.
| |
Collapse
|
3
|
Zahir A, Naseri E, Hussain M. Development of yogurt fortified with four varieties of common bean ( Phaseolus vulgaris) whey by using response surface methodology: a preliminary study. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:753-769. [PMID: 39119564 PMCID: PMC11303373 DOI: 10.1007/s13197-023-05876-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 10/05/2023] [Accepted: 10/14/2023] [Indexed: 08/10/2024]
Abstract
In recent years, there has been a growing interest in developing novel foods with improved health and nutritional characteristics, particularly through the supplementation and development of dairy products with plant-based ingredients. In this study, the response surface methodology (RSM) was employed to optimize the ingredient formulation and processing parameters of common bean whey-fortified yogurt (CBWFY) production containing Lactobacillus bulgaricus, and common bean whey (CBW) with a high probiotic count, superior physicochemical and textural properties, and desirable sensory attributes. The experiments were planned using the "box-Behnken design" (BBD) with three independent variables: fermentation time (0-10 h), common bean ratio (25-100%), and the amount of starter culture (1-5%). To assess the physicochemical properties of the yogurt, such as pH, titratable acidity, viable cell count, and syneresis of the CBWFY, they were determined and optimized. In all the common bean whey samples, the optimum conditions were obtained by supplementing cow milk with 25% common bean whey (CBW), an inoculation ratio of 1-4%, and fermentation for 5.54 h. Fermentation time and CBW concentration significantly affected the viability of L. bulgaricus and the physicochemical attributes of yogurt. This study demonstrated that the addition of cow milk with 25% CBW from the white bean variety produced probiotic yogurt with the highest L. bulgaricus population (up to 8.55 log CFU/mL) compared to the other varieties and an enhancement in the yogurt's pH and acidity, while a decrease in yogurt syneresis occurred. In general, the results of the current study showed that adding up to 25% white common bean whey to probiotic yogurt can be an option for producing yogurt with potential functional and sensory quality. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s13197-023-05876-z.
Collapse
Affiliation(s)
- Ahmadullah Zahir
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang Road, Nanjing, Jiangsu People’s Republic of China
- Department of Food Science and Technology, Faculty of Veterinary Medicine, Afghanistan National Agricultural Sciences and Technology University, Kandahar, 3801 Afghanistan
| | | | - Muzahir Hussain
- MoBioFood Research Group Biochemistry and Biotechnology Department, Universitat Rovira i Virgili, Sescelades, 43007 Tarragona, Spain
| |
Collapse
|
4
|
Dysin AP, Egorov AR, Godzishevskaya AA, Kirichuk AA, Tskhovrebov AG, Kritchenkov AS. Biologically Active Supplements Affecting Producer Microorganisms in Food Biotechnology: A Review. Molecules 2023; 28:molecules28031413. [PMID: 36771079 PMCID: PMC9921933 DOI: 10.3390/molecules28031413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/18/2023] [Accepted: 01/27/2023] [Indexed: 02/05/2023] Open
Abstract
Microorganisms, fermentation processes, and the resultant metabolic products are a key driving force in biotechnology and, in particular, in food biotechnology. The quantity and/or quality of final manufactured food products are directly related to the efficiency of the metabolic processes of producer microorganisms. Food BioTech companies are naturally interested in increasing the productivity of their biotechnological production lines. This could be achieved via either indirect or direct influence on the fundamental mechanisms governing biological processes occurring in microbial cells. This review considers an approach to improve the efficiency of producer microorganisms through the use of several types of substances or complexes affecting the metabolic processes of microbial producers that are of interest for food biotechnology, particularly fermented milk products. A classification of these supplements will be given, depending on their chemical nature (poly- and oligosaccharides; poly- and oligopeptides, individual amino acids; miscellaneous substances, including vitamins and other organic compounds, minerals, and multicomponent supplements), and the approved results of their application will be comprehensively surveyed.
Collapse
Affiliation(s)
- Artem P. Dysin
- Faculty of Science, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, 117198 Moscow, Russia
| | - Anton R. Egorov
- Faculty of Science, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, 117198 Moscow, Russia
| | - Anastasia A. Godzishevskaya
- Faculty of Science, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, 117198 Moscow, Russia
| | - Anatoly A. Kirichuk
- Faculty of Science, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, 117198 Moscow, Russia
| | - Alexander G. Tskhovrebov
- Faculty of Science, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, 117198 Moscow, Russia
- Correspondence: (A.G.T.); (A.S.K.)
| | - Andreii S. Kritchenkov
- Faculty of Science, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, 117198 Moscow, Russia
- Metal Physics Laboratory, Institute of Technical Acoustics NAS of Belarus, Ludnikova Prosp. 13, 210009 Vitebsk, Belarus
- Correspondence: (A.G.T.); (A.S.K.)
| |
Collapse
|
5
|
Mudannayake DC, Jayasena DD, Wimalasiri KM, Ranadheera CS, Ajlouni S. Inulin fructans as functional food ingredients‐ food applications and alternative plant sources: a review. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Deshani C. Mudannayake
- Department of Animal Science, Faculty of Animal Science and Export Agriculture Uva Wellassa University Badulla Sri Lanka
| | - Dinesh D. Jayasena
- Department of Animal Science, Faculty of Animal Science and Export Agriculture Uva Wellassa University Badulla Sri Lanka
| | - Kuruppu M.S. Wimalasiri
- Department of Food Science and Technology, Faculty of Agriculture University of Peradeniya Peradeniya Sri Lanka
| | - C. S. Ranadheera
- School of Agriculture & Food, Faculty of Veterinary and Agricultural Sciences The University of Melbourne VIC 3010 Australia
| | - Said Ajlouni
- School of Agriculture & Food, Faculty of Veterinary and Agricultural Sciences The University of Melbourne VIC 3010 Australia
| |
Collapse
|
6
|
Wang NN, Li YX, Miao M, Zhu CH, Yan QJ, Jiang ZQ. High level expression of a xyloglucanase from Rhizomucor miehei in Pichia pastoris for production of xyloglucan oligosaccharides and its application in yoghurt. Int J Biol Macromol 2021; 190:845-852. [PMID: 34520781 DOI: 10.1016/j.ijbiomac.2021.09.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/28/2021] [Accepted: 09/07/2021] [Indexed: 11/15/2022]
Abstract
The xyloglucanase gene (RmXEG12A) from Rhizomucor miehei CAU432 was successfully expressed in Pichia pastoris. The highest xyloglucanase activity of 25,700 U mL-1 was secreted using high cell density fermentation. RmXEG12A was optimally active at pH 7.0 and 65 °C, respectively. The xyloglucanase exhibited the highest specific activity towards xyloglucan (7915.5 U mg-1). RmXEG12A was subjected to hydrolyze tamarind powder to produce xyloglucan oligosaccharides with the degree of polymerization (DP) 7-9. The hydrolysis ratio of xyloglucan in tamarind powder was 89.8%. Moreover, xyloglucan oligosaccharides (2.0%, w/w) improved the water holding capacity (WHC) of yoghurt by 1.1-fold and promoted the growth of Lactobacillus bulgaricus and Streptococcus thermophiles by 2.3 and 1.6-fold, respectively. Therefore, a suitable xyloglucanase for tamarind powder hydrolysis was expressed in P. pastoris at high level and xyloglucan oligosaccharides improved the quality of yoghurt.
Collapse
Affiliation(s)
- Nan-Nan Wang
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua Donglu, Haidian District, Beijing 100083, China
| | - Yan-Xiao Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Engineering, China Agricultural University, No.17 Qinghua Donglu, Haidian District, Beijing 10083, China
| | - Miao Miao
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua Donglu, Haidian District, Beijing 100083, China
| | - Chun-Hua Zhu
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua Donglu, Haidian District, Beijing 100083, China
| | - Qiao-Juan Yan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Engineering, China Agricultural University, No.17 Qinghua Donglu, Haidian District, Beijing 10083, China
| | - Zheng-Qiang Jiang
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua Donglu, Haidian District, Beijing 100083, China.
| |
Collapse
|
7
|
Kamel DG, Hammam AR, Alsaleem KA, Osman DM. Addition of inulin to probiotic yogurt: Viability of probiotic bacteria ( Bifidobacterium bifidum) and sensory characteristics. Food Sci Nutr 2021; 9:1743-1749. [PMID: 33747485 PMCID: PMC7958560 DOI: 10.1002/fsn3.2154] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 12/26/2022] Open
Abstract
The objective of this work was to study the effect of different concentrations of inulin (0.2, 0.4, and 0.6%) on the viability of probiotic bacteria (Bifidobacterium bifidum) and sensory characteristics of probiotic yogurt. The yogurt was manufactured with Lactobacillus delbruckii ssp. bulgaricus (Lb), Streptococcus thermophilus (St), and Bifidobacterium bifidum (Bb). Raw milk was received, heated to 90°C, and divided into 4 aliquots portions. All portions were inoculated with 5.11 log cfu of Lb and St combined and 5 log cfu of Bb per kg of milk. The first portion was utilized as control (T1) while 0.2, 0.4, and 0.6% of inulin were added to the second (T2), third (T3), and fourth (T4) portions, respectively. All treatments were incubated at 40°C until a pH of 4.6 was reached. Subsequently, the yogurt was cooled and stored at 4°C for 16 days. Titratable acidity, total bacterial count (TBC), Bb count, yeast count, mold count, and sensory evaluation were determined during the storage. The results showed that the addition of inulin and the storage period have significant effects (p < .05) on the titratable acidity of the yogurt. The storage of control was ended after 8 days at 4°C due to the growth of molds on the surface of the samples. The TBC decreased (p < .05) over time in control from 8.28 to 7.97 log cfu/g. It was also decreased (p < .05) with increasing the concentration of inulin. However, the addition of inulin increased (p < .05) the viability of Bb during the storage, as well as, acted as an antimicrobial against molds in T2, T3, and T4. Additionally, there were no significant differences (p > .05) in the sensory evaluation of all treatments. We conclude that inulin can be utilized in the manufacturing of probiotic yogurt as a prebiotic, which, inturn, enhances the growth of Bb and increase the shelf-life.
Collapse
Affiliation(s)
- Dalia G. Kamel
- Dairy Science DepartmentFaculty of AgricultureAssiut UniversityAssiutEgypt
| | - Ahmed R.A. Hammam
- Dairy Science DepartmentFaculty of AgricultureAssiut UniversityAssiutEgypt
- Dairy and Food Science DepartmentSouth Dakota State UniversityBrookingsSDUSA
| | - Khalid A. Alsaleem
- Dairy Science DepartmentFaculty of AgricultureAssiut UniversityAssiutEgypt
- Department of Food Science and Human NutritionCollege of Agriculture and Veterinary MedicineQassim UniversityBuraydahSaudi Arabia
| | - Dina M. Osman
- Dairy Science DepartmentFaculty of AgricultureAssiut UniversityAssiutEgypt
| |
Collapse
|
8
|
Chand P, Kumar MD, Singh AK, Deshwal GK, Rao PS, Tomar SK, Sharma H. Low‐calorie synbiotic yoghurt from indigenous probiotic culture and combination of inulin and oligofructose: Improved sensory, rheological, and textural attributes. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15322] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Prittam Chand
- Food Technology Lab, Dairy Technology Division ICAR‐National Dairy Research Institute Karnal India
| | - M. Dharani Kumar
- Food Technology Lab, Dairy Technology Division ICAR‐National Dairy Research Institute Karnal India
| | - Ashish Kumar Singh
- Food Technology Lab, Dairy Technology Division ICAR‐National Dairy Research Institute Karnal India
| | - Gaurav Kr Deshwal
- Food Technology Lab, Dairy Technology Division ICAR‐National Dairy Research Institute Karnal India
| | - Priyanka Singh Rao
- Dairy Chemistry and Bacteriology Section ICAR‐National Dairy Research InstituteSouthern Regional Station Bengaluru India
| | - Sudhir K. Tomar
- Dairy Microbiology Division ICAR‐National Dairy Research Institute Karnal India
| | - Heena Sharma
- Food Technology Lab, Dairy Technology Division ICAR‐National Dairy Research Institute Karnal India
| |
Collapse
|
9
|
Effects of yam (Dioscorea opposita Thunb.) juice on fermentation and textural attributes of set-style skimmed yoghurt. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-00830-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
10
|
Aljewicz M, Majcher M, Nalepa B. A Comprehensive Study of the Impacts of Oat β-Glucan and Bacterial Curdlan on the Activity of Commercial Starter Culture in Yogurt. Molecules 2020; 25:molecules25225411. [PMID: 33228132 PMCID: PMC7699414 DOI: 10.3390/molecules25225411] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 11/17/2022] Open
Abstract
This study provides important information about the impacts of various levels of oat (OBG) and bacterial (curdlan) β-glucan and fat contents in milk on survivability and metabolism of yogurt starter cultures. The results show that addition of β-glucans in the concentration higher than 0.25% reduced starter bacterial counts during storage and prolonged the milk acidification process. A significant increase in lactose consumption by starter cultures was noted in the yogurt samples with OBG addition up to 0.75%. The highest (by 567% on average) increase in lactic acid content was noted in the control yogurts. Whereas the lowest (by 351%) increase in lactic acid content was noted in yogurts with OBG. After 28-day storage, the acetic aldehyde content was significantly influenced by fat content, type and addition level of polysaccharide. A higher increase in acetoin content was noted in samples with 0.25% than in samples with 1% of polysaccharides. In turn, significantly lower increases in diacetyl and 2,3-pentanedione contents were observed in the yogurt samples with OBG than in these with curdlan, with diacetyl production increase along with the higher concentration of the polysaccharide. The addition of OBG and curdlan to milk contributed to differences in the starter culture metabolism, consequently, in the milk acidification dynamics.
Collapse
Affiliation(s)
- Marek Aljewicz
- Department of Dairy Science and Quality Management, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Oczapowskiego 7, 10-719 Olsztyn, Poland
- Correspondence: ; Tel.: +48-89-523-36-91
| | - Małgorzata Majcher
- Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznań, Poland;
| | - Beata Nalepa
- Department of Industrial and Food Microbiology, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Pl. Cieszyński 1, 10-726 Olsztyn, Poland;
| |
Collapse
|