1
|
Gao B, Rao C, Lei X, Li S, Huang X, Liu Y, Ye D. The synergistic enhancement or inhibition of different molecular weight components of mannoproteins after ultrafiltration on the encapsulation. Int J Biol Macromol 2024; 283:137684. [PMID: 39549814 DOI: 10.1016/j.ijbiomac.2024.137684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/10/2024] [Accepted: 11/13/2024] [Indexed: 11/18/2024]
Abstract
This study investigated the effects of molecular weight regulation on mannoproteins (MPs) in encapsulating both monomeric and oligomeric proanthocyanidins (MOPC). To achieve this, two different conformations of MPs were fractionated by ultrafiltration into two main molecular weight components. The results indicated that regulating molecular weight through ultrafiltration altered the conformation of MPs chains, which in turn affected the intermolecular forces with MOPC. Specifically, the interactions among the different molecular weight components of MPs formed a cross-linking network. High molecular weight components provided external support to this network, while low molecular weight components contributed to internal stabilization. The dense, flexible, and irregular coil structure of MPs facilitated the entry of MOPC into the internal spaces of the cross-linking network. Additionally, protein unfolding into a more stable β-sheet structure further stabilized MPs' cross-linking network, enhancing its capacity to encapsulate MOPC. The presence of more hydrophobic regions and positive charges within the proteins increased the number of binding sites for MOPC. This study aimed to identify the primary structural forms of MPs with potent initial bitter inhibition capabilities on MOPC, and a proposed ultrafiltration method was introduced to modify the triple helix structure of polysaccharide, offering a foundational theoretical framework for enhancing the functional attributes of current or prospective MPs. Additionally, the mixed regulation of polysaccharides with varying conformations was also beneficial for guiding the production of high-efficiency polysaccharide products.
Collapse
Affiliation(s)
- Binghong Gao
- College of Enology, Northwest A&F University, Yangling 712100, China
| | - Chuanyan Rao
- Guangxi Key Laboratory of Fruits and Vegetables Storage-processing Technology, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Xingmeng Lei
- College of Enology, Northwest A&F University, Yangling 712100, China
| | - Siqi Li
- College of Enology, Northwest A&F University, Yangling 712100, China
| | - Xiaochuan Huang
- Guangxi Key Laboratory of Fruits and Vegetables Storage-processing Technology, Guangxi Academy of Agricultural Sciences, Nanning 530007, China.
| | - Yanlin Liu
- College of Enology, Northwest A&F University, Yangling 712100, China.
| | - Dongqing Ye
- Guangxi Key Laboratory of Fruits and Vegetables Storage-processing Technology, Guangxi Academy of Agricultural Sciences, Nanning 530007, China.
| |
Collapse
|
2
|
Agorastos G, van Uitert E, van Halsema E, Scholten E, Bast A, Klosse P. The effect of cations and epigallocatechin gallate on in vitro salivary lubrication. Food Chem 2024; 430:136968. [PMID: 37527573 DOI: 10.1016/j.foodchem.2023.136968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 06/28/2023] [Accepted: 07/20/2023] [Indexed: 08/03/2023]
Abstract
Ionic valency influences oral processing by changing salivary behavior and merits more attention since little is known. In this study, the influence of three ionic valences (monovalent, divalent and trivalent), ionic strength and epigallocatechin gallate (EGCG) on lubricating properties of saliva were investigated. Tribological measurements were used to characterize the lubrication response of KCl, MgCl2, FeCl3, and AlCl3 in combination with EGCG to the ex vivo salivary pellicle. KCl at 150 mM ionic strength provided extra lubrication via hydration lubrication. Contrarily, trivalent salts aggregated together with the salivary mucins via ionic cross-link interactions, which led to a decrease in salivary lubrication. FeCl3 and AlCl3 affected the salivary lubrication differently, which was attributed to changes in the pH. Finally, in presence of EGCG, FeCl3 interacted with EGCG via chelating interactions, preventing salivary protein aggregation. This resulted in less desorption of the salivary film, retaining the lubrication ability of salivary proteins.
Collapse
Affiliation(s)
- Georgios Agorastos
- Faculty of Science and Engineering, Campus Venlo, Maastricht University, Nassaustraat 36, 5911 BV Venlo, the Netherlands; T.A.S.T.E. Foundation, 6611 KS, Garstkampsestraat 11, Overasselt, the Netherlands; Physics and Physical Chemistry of Food, Wageningen University, Bornse Weilanden 9, 6708 PG Wageningen, the Netherlands.
| | - Eva van Uitert
- Physics and Physical Chemistry of Food, Wageningen University, Bornse Weilanden 9, 6708 PG Wageningen, the Netherlands
| | - Emo van Halsema
- T.A.S.T.E. Foundation, 6611 KS, Garstkampsestraat 11, Overasselt, the Netherlands
| | - Elke Scholten
- Physics and Physical Chemistry of Food, Wageningen University, Bornse Weilanden 9, 6708 PG Wageningen, the Netherlands
| | - Aalt Bast
- Faculty of Science and Engineering, Campus Venlo, Maastricht University, Nassaustraat 36, 5911 BV Venlo, the Netherlands
| | - Peter Klosse
- T.A.S.T.E. Foundation, 6611 KS, Garstkampsestraat 11, Overasselt, the Netherlands
| |
Collapse
|
3
|
Wang S, Smyth HE, Olarte Mantilla SM, Stokes JR, Smith PA. Astringency and its sub-qualities: a review of astringency mechanisms and methods for measuring saliva lubrication. Chem Senses 2024; 49:bjae016. [PMID: 38591722 DOI: 10.1093/chemse/bjae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Indexed: 04/10/2024] Open
Abstract
Astringency is an important mouthfeel attribute that influences the sensory experiences of many food and beverage products. While salivary lubricity loss and increased oral friction were previously believed to be the only astringency mechanisms, recent research has demonstrated that nontactile oral receptors can trigger astringency by responding to astringents without mechanical stimulation. Various human factors have also been identified that affect individual responses to astringents. This article presents a critical review of the key research milestones contributing to the current understanding of astringency mechanisms and the instrumental approaches used to quantify perceived astringency intensity. Although various chemical assays or physical measures mimic in-mouth processes involved in astringent mouthfeel, this review highlights how one chemical or physical approach can only provide a single measure of astringency determined by a specific mechanism. Subsequently, using a single measurement to predict astringency perception is overly idealistic. Astringency has not been quantified beyond the loss of saliva lubrication; therefore, nontactile receptor-based responses must also be explored. An important question remains about whether astringency is a single perception or involves distinct sub-qualities such as pucker, drying, and roughness. Although these sub-quality lexicons have been frequently cited, most studies currently view astringency as a single perception rather than dividing it into sub-qualities and investigating the potentially independent mechanisms of each. Addressing these knowledge gaps should be an important priority for future research.
Collapse
Affiliation(s)
- Shaoyang Wang
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Indooroopilly, QLD 4068, Australia
| | - Heather E Smyth
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Indooroopilly, QLD 4068, Australia
| | - Sandra M Olarte Mantilla
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Indooroopilly, QLD 4068, Australia
| | - Jason R Stokes
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Paul A Smith
- Wine Australia, P.O. Box 2733, Kent Town, SA 5071, Australia
| |
Collapse
|
4
|
Paissoni MA, Motta G, Giacosa S, Rolle L, Gerbi V, Río Segade S. Mouthfeel subqualities in wines: A current insight on sensory descriptors and physical-chemical markers. Compr Rev Food Sci Food Saf 2023; 22:3328-3365. [PMID: 37282812 DOI: 10.1111/1541-4337.13184] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 05/06/2023] [Accepted: 05/15/2023] [Indexed: 06/08/2023]
Abstract
Astringency and more generally mouthfeel perception are relevant to the overall quality of the wine. However, their origin and description are still uncertain and are constantly updating. Additionally, the terminology related to mouthfeel properties is expansive and extremely diversified, characterized by common traditional terms as well as novel recently adopted descriptors. In this context, this review evaluated the mention frequency of astringent subqualities and other mouthfeel attributes in the scientific literature of the last decades (2000-August 17, 2022). One hundred and twenty-five scientific publications have been selected and classified based on wine typology, aim, and instrumental-sensorial methods adopted. Dry resulted as the most frequent astringent subquality (10% for red wines, 8.6% for white wines), while body-and related terms-is a common mouthfeel sensation for different wine types, although its concept is still vague. Alongside, promising analytical and instrumental techniques investigating and simulating the in-mouth properties are discussed in detail, such as rheology for the viscosity and tribology for the lubrication loss, as well as the different approaches for the quantitative and qualitative evaluation of the interaction between salivary proteins and astringency markers. A focus on the phenolic compounds involved in the tactile perception was conducted, with tannins being the compounds conventionally found responsible for astringency. Nevertheless, other non-tannic polyphenolic classes (i.e., flavonols, phenolic acids, anthocyanins, anthocyanin-derivative pigments) as well as chemical-physical factors and the wine matrix (i.e., polysaccharides, mannoproteins, ethanol, glycerol, and pH) can also contribute to the wine in-mouth sensory profile. An overview of mouthfeel perception, factors involved, and its vocabulary is useful for enologists and consumers.
Collapse
Affiliation(s)
- Maria Alessandra Paissoni
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università degli Studi di Torino, Alba, Italy
| | - Giulia Motta
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università degli Studi di Torino, Alba, Italy
| | - Simone Giacosa
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università degli Studi di Torino, Alba, Italy
| | - Luca Rolle
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università degli Studi di Torino, Alba, Italy
| | - Vincenzo Gerbi
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università degli Studi di Torino, Alba, Italy
| | - Susana Río Segade
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università degli Studi di Torino, Alba, Italy
| |
Collapse
|
5
|
Ivanova N, Yang Q, Bastian SE, Wilkinson KL, Ford R. Consumer understanding of beer and wine body: An exploratory study of an ill-defined concept. Food Qual Prefer 2022. [DOI: 10.1016/j.foodqual.2021.104383] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
6
|
Sharma M, Pondicherry KS, Duizer L. Understanding relations between rheology, tribology, and sensory perception of modified texture foods. J Texture Stud 2021; 53:327-344. [PMID: 34921392 DOI: 10.1111/jtxs.12656] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/27/2021] [Accepted: 12/08/2021] [Indexed: 11/30/2022]
Abstract
The aim of this work was to examine relations between instrumental and sensory parameters in a texture modified food matrix, with and without saliva. Nine pureed carrot samples (eight thickened and a control) were developed with starch (0.4 and 0.8% wt/wt), xanthan (0.2 and 0.4% wt/wt) or starch-xanthan blends that met International Dysphagia Diet Standardisation Initiative (IDDSI) Level 4 guidelines using fork and spoon tests. Rheological and tribological tests were conducted on the food and simulated bolus prepared by adding fresh stimulated saliva to the food (1:5, saliva:food) to mimic oral processing. Perceived sensory properties were identified using a temporal dominance of sensations (TDS) test (n = 16) where panelists were given a list of nine attributes. The area under the curve was extracted from TDS curves for each attribute/sample and this was correlated with rheological (viscosity at 10 s-1 , G', G″, and tan δ at 1 Hz) and tribological (friction coefficient in three regimes) data. The viscosity of the control sample decreased after adding hydrocolloids (except Starch_0.8%) and with saliva incorporation. G' and G″ either increased or were similar for xanthan and blends and decreased for starch-thickened samples. Hydrocolloid addition increased friction for all samples and was higher with saliva addition. Sensory results showed that samples with starch were perceived as thick and grainy while xanthan was perceived as smooth and slippery. A greater number of sensory attributes correlated with viscoelastic parameters compared to friction coefficients. Correlations were highest with the saliva added samples, further highlighting the importance of including saliva during instrumental testing.
Collapse
Affiliation(s)
- Madhu Sharma
- Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| | | | - Lisa Duizer
- Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
7
|
Laguna L, Fiszman S, Tarrega A. Saliva matters: Reviewing the role of saliva in the rheology and tribology of liquid and semisolid foods. Relation to in-mouth perception. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106660] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
8
|
Abstract
Modern industrial winemaking is based on the use of specific starters of wine strains. Commercial wine strains present several advantages over natural isolates, and it is their use that guarantees the stability and reproducibility of industrial winemaking technologies. For the highly competitive wine market with new demands for improved wine quality and wine safety, it has become increasingly critical to develop new yeast strains. In the last decades, new possibilities arose for creating upgraded wine yeasts in the laboratory, resulting in the development of strains with better fermentation abilities, able to improve the sensory quality of wines and produce wines targeted to specific consumers, considering their health and nutrition requirements. However, only two genetically modified (GM) wine yeast strains are officially registered and approved for commercial use. Compared with traditional genetic engineering methods, CRISPR/Cas9 is described as efficient, versatile, cheap, easy-to-use, and able to target multiple sites. This genetic engineering technique has been applied to Saccharomyces cerevisiae since 2013. In this review, we aimed to overview the use of CRISPR/Cas9 editing technique in wine yeasts to combine develop phenotypes able to increase flavor compounds in wine without the development of off-flavors and aiding in the creation of “safer wines.”
Collapse
|
9
|
Effect of β-lactoglobulin on perception of astringency in red wine as measured by sequential profiling. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109611] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
10
|
Fiszman S, Tarrega A. Oral Processing Studies: Why Multidisiciplinary? Foods 2020; 9:foods9070875. [PMID: 32635274 PMCID: PMC7404769 DOI: 10.3390/foods9070875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 11/16/2022] Open
Abstract
When food is ingested, it remains in the mouth for a short period of time. Although this period is brief compared to the total food nutrient digestion and absorption time, it is crucially important as it is the first step in digestion. It is also very important that, while the food is in the mouth, it is perceived by the senses and then a decision is made on swallowing. Oral sensory perception is an integrative response, which is generated in very short time (normally a few seconds) from complex information gathered from multiple sources during mastication and swallowing. Consequently, food oral processing studies include many orientations. This Special Issue brings together a small range of studies with a diversity of approaches that provide good examples of the complexity and multidisciplinarity of the subject.
Collapse
|
11
|
Soares S, Brandão E, Guerreiro C, Soares S, Mateus N, de Freitas V. Tannins in Food: Insights into the Molecular Perception of Astringency and Bitter Taste. Molecules 2020; 25:E2590. [PMID: 32498458 PMCID: PMC7321337 DOI: 10.3390/molecules25112590] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/26/2020] [Accepted: 05/29/2020] [Indexed: 02/06/2023] Open
Abstract
Astringency and bitterness are organoleptic properties widely linked to tannin compounds. Due to their significance to food chemistry, the food industry, and to human nutrition and health, these tannins' taste properties have been a line of worldwide research. In recent years, significant advances have been made in understanding the molecular perception of astringency pointing to the contribution of different oral key players. Regarding bitterness, several polyphenols have been identified has new agonists of these receptors. This review summarizes the last data about the knowledge of these taste properties perceived by tannins. Ultimately, tannins' astringency and bitterness are hand-in-hand taste properties, and future studies should be adapted to understand how the proper perception of one taste could affect the perception of the other one.
Collapse
Affiliation(s)
- Susana Soares
- REQUIMTE/LAQV, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 689, 4169-007 Porto, Portugal; (E.B.); (C.G.); (S.S.); (N.M.)
| | | | | | | | | | - Victor de Freitas
- REQUIMTE/LAQV, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 689, 4169-007 Porto, Portugal; (E.B.); (C.G.); (S.S.); (N.M.)
| |
Collapse
|
12
|
Brossard N, Bordeu E, Ibáñez RA, Chen J, Osorio F. Rheological study of tannin and protein interactions based on model systems. J Texture Stud 2020; 51:585-592. [PMID: 32110834 DOI: 10.1111/jtxs.12518] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 02/04/2020] [Accepted: 02/17/2020] [Indexed: 11/28/2022]
Abstract
The interaction between wine tannins and saliva proteins is responsible for wine astringency perception, producing a depletion of salivary proteins and changes on oral friction. In sensorial terms, astringency is described as a dryness and puckering sensation in the mouth, which is related to the "structure" or "body" of red wines. However, these last descriptors, as structure or body, are perceived during wine tasting and commonly related to wine viscosity. To address these differences on sensory response, we hypothesize that tannin-protein interactions could be a key factor involved in the viscosity of red wines/saliva mixtures, just as they are for astringency. We used a rheological method to study the impact of tannin-protein interaction on the viscosity of model wine-saliva systems. Mixtures of model saliva based on mucin and typical astringent compounds, as commercial tannins and gallic acid, were evaluated for their rheological behavior. The viscometric flow of the fluid mixtures was determined, and subsequently, the viscosity was evaluated at a shear rate of 60 s-1 . It was observed that red wines/saliva mixtures exhibit non-Newtonian flow and ascending tannin doses led to an increase in the apparent viscosity. Nephelometric analysis demonstrate that tannin-mucin aggregates were formed, which suggests that these complexes were potentially responsible for the viscosity increases, modifying the rheological behavior of these mixtures. Results from this work propose that tannin-protein interactions are also involved in the underlying mechanism of thickness perception of red wines and rheology could be a complementary instrumental technique for wine mouthfeel characterization.
Collapse
Affiliation(s)
- Natalia Brossard
- Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Edmundo Bordeu
- Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rodrigo A Ibáñez
- Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago, Chile.,Center for Dairy Research, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jianshe Chen
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Fernando Osorio
- Department of Food Science and Technology, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|