1
|
Zia H, Murray H, Hofsommer M, Barreto AM, Pavon-Vargas D, Puzovic A, Gędas A, Rincon S, Gössinger M, Slatnar A. Comparing the impact of conventional and non-conventional processing technologies on water-soluble vitamins and color in strawberry nectar - a pilot scale study. Food Chem 2025; 463:141078. [PMID: 39243612 DOI: 10.1016/j.foodchem.2024.141078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/09/2024] [Accepted: 08/29/2024] [Indexed: 09/09/2024]
Abstract
A comprehensive comparison was conducted on the effect of conventional thermal processing (TT), high-pressure processing (HP), pulse electric field (PF), and ohmic heating (OH) on water-soluble vitamins and color retention in strawberry nectar. The ascorbic acid (AA) content increased by 15- and 9-fold after TT and OH treatment, respectively, due to rupturing of cells under heat stress and release of intracellular AA. Dehydroascorbic acid (DHA) content did not change considerably after TT and PF treatment but significantly decreased after HP and OH treatment. TT treatment offered the highest total vitamin C retention. The B vitamins remained largely unchanged after processing, with the highest loss of 34 % for riboflavin in OH-treated samples. All the technologies resulted in similar color retention after processing. The study concludes with a standardized comparison of mainstream preservation technologies using pilot-scale equipment. Such an approach significantly increases the applicability of the results presented in the study.
Collapse
Affiliation(s)
- Hassan Zia
- GfL Gesellschaft für Lebensmittel-Forschung mbH, Landgrafenstrasse 16, 10787 Berlin, Germany; University of Ljubljana, Kongresni trg 12, 1000, Ljubljana, Slovenia.
| | - Helen Murray
- Federal College and Institute for Viticulture and Pomology, A-3400, Klosterneuburg, Austria
| | - Mikko Hofsommer
- GfL Gesellschaft für Lebensmittel-Forschung mbH, Landgrafenstrasse 16, 10787 Berlin, Germany
| | | | - Darío Pavon-Vargas
- University of Parma, Viale delle Scienze 181/A, 43124 Parma, Italy.; CFT S.P.A, Via Paradigna, 94/a, 43122 Parma, Italy
| | - Alema Puzovic
- University of Ljubljana, Kongresni trg 12, 1000, Ljubljana, Slovenia
| | - Astrid Gędas
- University of Hamburg, Ohnhorststrasse 18, 22609 Hamburg, Germany
| | - Sebastian Rincon
- INRAE, Avignon University, UMR408 SQPOV, F-84000, Avignon, France
| | - Manfred Gössinger
- Federal College and Institute for Viticulture and Pomology, A-3400, Klosterneuburg, Austria
| | - Ana Slatnar
- University of Ljubljana, Kongresni trg 12, 1000, Ljubljana, Slovenia
| |
Collapse
|
2
|
Marangoni Júnior L, Rodrigues RM, Pereira RN, Augusto PED, Ito D, Teixeira FG, Padula M, Vicente AA. Effect of ohmic heating on the structure and properties of flexible multilayer packaging. Food Chem 2024; 456:140038. [PMID: 38876069 DOI: 10.1016/j.foodchem.2024.140038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/23/2024] [Accepted: 06/07/2024] [Indexed: 06/16/2024]
Abstract
Food-packaging-processing interactions define packaging materials' performance properties and product quality. This study evaluated the effect of ohmic heating (OH) processing and different food simulants on the properties of four multilayer flexible packaging materials (PETmet/PE, PETmet/PP, PET/Al/PE, and PET/Al/PA/PP). OH treatment was applied to the sealed packages containing the food simulants using a voltage gradient of 3.7 V/cm at a frequency of 20 kHz, resulting in a thermal process of at 80 °C for 1 min. The structure and performance of the different packages were then evaluated. The materials did not show changes in chemical groups nor thermal properties. However, the simulant-packaging-processing interaction resulted in changes in crystallinity, morphology, mechanical and barrier properties (water and oxygen), especially for metallized films in contact with acidic food simulants. The results indicate that although OH resulted in changes in packaging materials, these materials can be used under the conditions applied in this study.
Collapse
Affiliation(s)
- Luís Marangoni Júnior
- Department of Food Engineering and Technology, Faculty of Food Engineering, University of Campinas (Unicamp), 13083-862, Campinas, SP, Brazil; Packaging Technology Center, Institute of Food Technology, 13073-148, Campinas, São Paulo, Brazil.; CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
| | - Rui M Rodrigues
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal; LABBELS - Associate Laboratory, 4710-057, Braga, Guimarães, Portugal
| | - Ricardo N Pereira
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal; LABBELS - Associate Laboratory, 4710-057, Braga, Guimarães, Portugal
| | - Pedro Esteves Duarte Augusto
- Université Paris-Saclay, CentraleSupélec, Laboratoire de Génie des Procédés et Matériaux, Centre Européen de Biotechnologie et de Bioéconomie (CEBB), 3 rue des Rouges Terres 51110 Pomacle, France
| | - Danielle Ito
- Packaging Technology Center, Institute of Food Technology, 13073-148, Campinas, São Paulo, Brazil
| | - Fábio Gomes Teixeira
- Packaging Technology Center, Institute of Food Technology, 13073-148, Campinas, São Paulo, Brazil
| | - Marisa Padula
- Packaging Technology Center, Institute of Food Technology, 13073-148, Campinas, São Paulo, Brazil
| | - António A Vicente
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal; LABBELS - Associate Laboratory, 4710-057, Braga, Guimarães, Portugal
| |
Collapse
|
3
|
Marín-Sánchez J, Berzosa A, Álvarez I, Sánchez-Gimeno C, Raso J. Pulsed Electric Fields Effects on Proteins: Extraction, Structural Modification, and Enhancing Enzymatic Activity. Bioelectricity 2024; 6:154-166. [PMID: 39372091 PMCID: PMC11447477 DOI: 10.1089/bioe.2024.0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024] Open
Abstract
Pulsed electric field (PEF) is an innovative physical method for food processing characterized by low energy consumption and short processing time. This technology represents a sustainable procedure to extend food shelf-life, enhance mass transfer, or modify food structure. The main mechanism of action of PEF for food processing is the increment of the permeability of the cell membranes by electroporation. However, it has also been shown that PEF may modify the technological and functional properties of proteins. Generating a high-intensity electric field necessitates the flow of an electric current that may have side effects such as electrochemical reactions and temperature increments due to the Joule effect that may affect food components such as proteins. This article presents a critical review of the knowledge on the extraction of proteins assisted by PEF and the impact of these treatments on protein composition, structure, and functionality. The required research for understanding what happens to a protein when it is under the action of a high-intensity electric field and to know if the mechanism of action of PEF on proteins is different from thermal or electrochemical effects is underlying.
Collapse
Affiliation(s)
- J. Marín-Sánchez
- Food Technology, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2, (Universidad de Zaragoza-CITA), Zaragoza, Spain
| | - A. Berzosa
- Food Technology, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2, (Universidad de Zaragoza-CITA), Zaragoza, Spain
| | - I. Álvarez
- Food Technology, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2, (Universidad de Zaragoza-CITA), Zaragoza, Spain
| | - C. Sánchez-Gimeno
- Food Technology, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2, (Universidad de Zaragoza-CITA), Zaragoza, Spain
| | - J. Raso
- Food Technology, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2, (Universidad de Zaragoza-CITA), Zaragoza, Spain
| |
Collapse
|
4
|
Wen Y, Sun J, Jia H, Qi X, Mao X. Inactivation of polyphenol oxidase by low intensity DC field: Experiment and mechanism analysis via molecular dynamics simulation and molecular docking. Food Res Int 2024; 188:114325. [PMID: 38823824 DOI: 10.1016/j.foodres.2024.114325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/01/2024] [Accepted: 04/16/2024] [Indexed: 06/03/2024]
Abstract
In this study, inactivation of mushroom polyphenol oxidase (PPO) by low intensity direct current (DC) electric field and its molecular mechanism were investigated. In the experiments under 3 V/cm, 5 V/cm, 7 V/cm and 9 V/cm electric fields, PPOs were all completely inactivated after different exposure times. Under 1 V/cm, a residual activity of 11.88 % remained. The inactivation kinetics confirms to Weibull model. Under 1-7 V/cm, n value closes to a constant about 1.3. The structural analysis of PPO under 3 V/cm and 5 V/cm by fluorescence emission spectroscopy and molecular dynamics (MD) simulation showed that the tertiary structure was slightly changed with increased radius of gyration, higher potential energy and rate of C-alpha fluctuation. After exposure to the electric field, most of the hydrophobic tryptophan (TRP) residues turned to the hydrophilic surface, resulting the fluorescence red-shifted and quenched. Molecular docking indicated that the receptor binding domain of catechol in PPO was changed. PPO under electric field was MD simulated the first time, revealing the changing mechanism of the electric field itself on PPO, a binuclear copper enzyme, which has a metallic center. All these suggest that the low intensity DC electric field would be a promising option for enzymatic browning inhibition or even enzyme activity inactivation.
Collapse
Affiliation(s)
- Yanbing Wen
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| | - Jing Sun
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| | - Hongxin Jia
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| | - Xiangming Qi
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China.
| | - Xiangzhao Mao
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| |
Collapse
|
5
|
Pereira RN, Rodrigues R, Avelar Z, Leite AC, Leal R, Pereira RS, Vicente A. Electrical Fields in the Processing of Protein-Based Foods. Foods 2024; 13:577. [PMID: 38397554 PMCID: PMC10887823 DOI: 10.3390/foods13040577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Electric field-based technologies offer interesting perspectives which include controlled heat dissipation (via the ohmic heating effect) and the influence of electrical variables (e.g., electroporation). These factors collectively provide an opportunity to modify the functional and technological properties of numerous food proteins, including ones from emergent plant- and microbial-based sources. Currently, numerous scientific studies are underway, contributing to the emerging body of knowledge about the effects on protein properties. In this review, "Electric Field Processing" acknowledges the broader range of technologies that fall under the umbrella of using the direct passage of electrical current in food material, giving particular focus to the ones that are industrially implemented. The structural and biological effects of electric field processing (thermal and non-thermal) on protein fractions from various sources will be addressed. For a more comprehensive contextualization of the significance of these effects, both conventional and alternative protein sources, along with their respective ingredients, will be introduced initially.
Collapse
Affiliation(s)
- Ricardo N. Pereira
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (R.N.P.); (R.R.); (Z.A.); (A.C.L.); (R.L.); (R.S.P.)
- LABBELS—Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Rui Rodrigues
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (R.N.P.); (R.R.); (Z.A.); (A.C.L.); (R.L.); (R.S.P.)
- LABBELS—Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Zita Avelar
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (R.N.P.); (R.R.); (Z.A.); (A.C.L.); (R.L.); (R.S.P.)
| | - Ana Catarina Leite
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (R.N.P.); (R.R.); (Z.A.); (A.C.L.); (R.L.); (R.S.P.)
| | - Rita Leal
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (R.N.P.); (R.R.); (Z.A.); (A.C.L.); (R.L.); (R.S.P.)
| | - Ricardo S. Pereira
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (R.N.P.); (R.R.); (Z.A.); (A.C.L.); (R.L.); (R.S.P.)
| | - António Vicente
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (R.N.P.); (R.R.); (Z.A.); (A.C.L.); (R.L.); (R.S.P.)
- LABBELS—Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| |
Collapse
|
6
|
Öztürk Hİ, Buzrul S, Bilge G, Yurdakul M. Pulsed electric field for shalgam juice: effects on fermentation, shelf-life, and sensory quality. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:1784-1792. [PMID: 37862233 DOI: 10.1002/jsfa.13066] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 09/30/2023] [Accepted: 10/20/2023] [Indexed: 10/22/2023]
Abstract
BACKGROUND Pulsed electric field (PEF) has become a reality in the food industry as a non-thermal application. PEF is used due to its benefits such as increasing the extraction of anthocyanin or other bioactive substances, shortening the fermentation time, and reducing the microbiological load by electroporation. This study aimed to determine the effect of PEF pretreatment on the fermentation, chemical, microbiological, and sensory properties of shalgam juice. For this purpose, PEF with 1 kV cm-1 of field strength was used as a pretreatment for shalgam juice and changes in control and PEF-treated samples were monitored during fermentation and 70 days of cold storage (4 °C). RESULTS The pH and lactic acid content during fermentation were similar for both samples. The effect of PEF on pH (3.15-3.39), titratable acidity (4.35-5.49 g L-1 ), total phenolic content (279-766 mg mL-1 GAE) and antioxidant activity (694-2091 μmol Trolox mL-1 ) during storage was insignificant. PEF-treated samples had lower total aerobic mesophilic bacteria (~9%) and lactic acid bacteria (~3%) counts than the control samples at the end of 70 days. Sensory analyses performed at 30th and 60th days of storage with 74 panelists revealed that the color, taste, sourness, saltiness, bitterness, and general acceptability were not inversely affected by PEF. CONCLUSION Our results could be a basis to produce shalgam juice commercially by PEF treatment. Although more studies with new experimental designs should be carried out, preliminary results indicated that the use of PEF might have a potential for fermented products such as shalgam juices. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hale İnci Öztürk
- Department of Food Engineering, Konya Food and Agriculture University, Konya, Turkey
| | - Sencer Buzrul
- Department of Food Engineering, Necmettin Erbakan University, Konya, Turkey
| | - Gonca Bilge
- Department of Food Engineering, Yeditepe University, İstanbul, Turkey
| | - Merve Yurdakul
- Department of Bioengineering, Konya Food and Agriculture University, Konya, Turkey
| |
Collapse
|
7
|
Kravets M, Abea A, Guàrdia MD, Muñoz I, Bañón S. Factors Limiting Shelf Life of a Tomato-Oil Homogenate (Salmorejo) Pasteurised via Conventional and Radiofrequency Continuous Heating and Packed in Polyethylene Bottles. Foods 2023; 12:3882. [PMID: 37893775 PMCID: PMC10606443 DOI: 10.3390/foods12203882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/11/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Salmorejo is a tomato-oil cold puree commercialized as a "fresh-like" product requiring mild pasteurisation and chill storage to reach a suitable shelf lifetime. The objective of this study was to study the factors which limit the shelf life of salmorejo pasteurised via conventional or radiofrequency continuous heating, packed in high-density polyethylene bottles, and kept at refrigeration. The pasteurised-chilled salmorejo reached a long shelf life (4 months) compared to that of pasteurised tomato juices or purees. Mesophilic and pathogenic bacteria were easily inhibited in this acidic product. Salmorejo mainly showed oxidative and subsequent sensory changes. Initial enzyme oxidation was associated with some adverse effects (loss of vitamin C and lipid oxidation) at the first month, although there were no sensory implications. Salmorejo remained stable at the physicochemical and sensory levels for the following 3 months, though colour and viscosity changes could be measured with instruments. Between the fourth and fifth month, salmorejo showed clear signs of deterioration, including changes in appearance (slight browning and loss of smooth surface), odour/flavour (loss of freshness and homogenisation), and consistency (thinning trend). The shelf life of salmorejo is limited by long-term oxidative deterioration and their sensory implications.
Collapse
Affiliation(s)
- Marina Kravets
- Department of Food Technology and Science and Nutrition, Veterinary Faculty, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain;
| | - Andrés Abea
- Food Technology Program, Institut de Recerca i Tecnologia Agroalimentàries IRTA, Finca Camps i Armet, Monells, 17121 Girona, Spain; (A.A.); (M.D.G.); (I.M.)
| | - Maria Dolors Guàrdia
- Food Technology Program, Institut de Recerca i Tecnologia Agroalimentàries IRTA, Finca Camps i Armet, Monells, 17121 Girona, Spain; (A.A.); (M.D.G.); (I.M.)
| | - Israel Muñoz
- Food Technology Program, Institut de Recerca i Tecnologia Agroalimentàries IRTA, Finca Camps i Armet, Monells, 17121 Girona, Spain; (A.A.); (M.D.G.); (I.M.)
| | - Sancho Bañón
- Department of Food Technology and Science and Nutrition, Veterinary Faculty, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain;
| |
Collapse
|
8
|
Kravets M, Cedeño-Pinos C, Abea A, Guàrdia MD, Muñoz I, Bañón S. Validation of Pasteurisation Temperatures for a Tomato-Oil Homogenate ( salmorejo) Processed by Radiofrequency or Conventional Continuous Heating. Foods 2023; 12:2837. [PMID: 37569107 PMCID: PMC10417326 DOI: 10.3390/foods12152837] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/12/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Salmorejo is a viscous homogenate based on tomato, olive oil and breadcrumbs commercialised as a "fresh-like" pasteurised-chilled purée. Due to its penetration, dielectric heating by radiofrequency (RF) might improve pasteurisation results of conventional heating (CH). The objective was to validate the pasteurisation temperature (70-100 °C, at 5 °C intervals) for salmorejo processed by RF (operating at 27.12 MHz for 9.08 s) or conventional (for 10.9 s) continuous heating. The main heat-induced changes include: orangeness, flavour homogenisation, loss of freshness, thickening, loss of vitamin C and lipid oxidation. Both CH and RF equivalent treatments allowed a strong reduction of total and sporulated mesophilic microorganisms and an adequate inhibition of the pectin methylesterase, peroxidase and, to a lesser extent, polyphenol oxidase but did not inhibit the polygalacturonase enzyme. Pasteurisation at 80 °C provided a good equilibrium in levels of microbiological and enzymatic inhibition and thermal damage to the product. Increasing this temperature does not improve enzyme inactivation levels and salmorejo may become overheated. A "fresh-like" good-quality salmorejo can be obtained using either conventional or radiofrequency pasteurisers.
Collapse
Affiliation(s)
- Marina Kravets
- Department of Food Technology and Science and Nutrition, Veterinary Faculty, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain; (M.K.); (C.C.-P.)
| | - Cristina Cedeño-Pinos
- Department of Food Technology and Science and Nutrition, Veterinary Faculty, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain; (M.K.); (C.C.-P.)
| | - Andrés Abea
- Institut de Recerca i Tecnologia Agroalimentàries IRTA-Food Technology Program, Finca Camps i Armet, Monells, 17121 Girona, Spain; (A.A.); (M.D.G.); (I.M.)
| | - Maria Dolors Guàrdia
- Institut de Recerca i Tecnologia Agroalimentàries IRTA-Food Technology Program, Finca Camps i Armet, Monells, 17121 Girona, Spain; (A.A.); (M.D.G.); (I.M.)
| | - Israel Muñoz
- Institut de Recerca i Tecnologia Agroalimentàries IRTA-Food Technology Program, Finca Camps i Armet, Monells, 17121 Girona, Spain; (A.A.); (M.D.G.); (I.M.)
| | - Sancho Bañón
- Department of Food Technology and Science and Nutrition, Veterinary Faculty, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain; (M.K.); (C.C.-P.)
| |
Collapse
|
9
|
Pandiselvam R, Mitharwal S, Rani P, Shanker MA, Kumar A, Aslam R, Barut YT, Kothakota A, Rustagi S, Bhati D, Siddiqui SA, Siddiqui MW, Ramniwas S, Aliyeva A, Mousavi Khaneghah A. The influence of non-thermal technologies on color pigments of food materials: An updated review. Curr Res Food Sci 2023; 6:100529. [PMID: 37377494 PMCID: PMC10290997 DOI: 10.1016/j.crfs.2023.100529] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/23/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
The color of any food is influenced by several factors, such as food attributes (presence of pigments, maturity, and variety), processing methods, packaging, and storage conditions. Thus, measuring the color profile of food can be used to control the quality of food and examine the changes in chemical composition. With the advent of non-thermal processing techniques and their growing significance in the industry, there is a demand to understand the effects of these technologies on various quality attributes, including color. This paper reviews the effects of novel, non-thermal processing technologies on the color attributes of processed food and the implications on consumer acceptability. The recent developments in this context and a discussion on color systems and various color measurement techniques are also included. The novel non-thermal techniques, including high-pressure processing, pulsed electric field, ultrasonication, and irradiation which employ low processing temperatures for a short period, have been found effective. Since food products are processed at ambient temperature by subjecting them to non-thermal treatment for a very short time, there is no possibility of damage to heat-sensitive nutrient components in the food, any deterioration in the texture of the food, and any toxic compounds in the food due to heat. These techniques not only yield higher nutritional quality but are also observed to maintain better color attributes. However, suppose foods are exposed to prolonged exposure or processed at a higher intensity. In that case, these non-thermal technologies can cause undesirable changes in food, such as oxidation of lipids and loss of color and flavor. Developing equipment for batch food processing using non-thermal technology, understanding the appropriate mechanisms, developing processing standards using non-thermal processes, and clarifying consumer myths and misconceptions about these technologies will help promote non-thermal technologies in the food industry.
Collapse
Affiliation(s)
- R. Pandiselvam
- Physiology, Biochemistry, and Post-Harvest Technology Division, ICAR-Central Plantation Crops Research Institute, Kasaragod, 671 124, Kerala, India
| | - Swati Mitharwal
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management (NIFTEM), Kundli, India
| | - Poonam Rani
- Food Chemistry & Technology Department, Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - M. Anjaly Shanker
- Department of Agriculture and Environmental Sciences, National Institute of Food Technology Entrepreneurship and Management (NIFTEM), Sonepat, Haryana, India
| | - Amit Kumar
- Food Chemistry & Technology Department, Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - Raouf Aslam
- Department of Processing and Food Engineering, Punjab Agricultural University, Ludhiana, Punjab, 141 004, India
| | - Yeliz Tekgül Barut
- Food Processing Department, Köşk Vocational School, Aydın Adnan Menderes University, Aydın, 09100, Turkey
| | - Anjineyulu Kothakota
- Agro-Processing & Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum, 695 019, Kerala, India
| | - Sarvesh Rustagi
- School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Dolly Bhati
- Department of Food Bioscienes, Teagasc, Agriculture and Food Development Authority, D15 DY05, Dublin, Ireland
| | - Shahida Anusha Siddiqui
- Technical University of Munich Campus Straubing for Biotechnology and Sustainability, Essigberg 3, 94315, Straubing, Germany
- German Institute of Food Technologies (DIL e.V.), Prof.-von-Klitzing Str. 7, 49610 D-Quakenbrück, Germany
| | - Mohammed Wasim Siddiqui
- Department Food Science and Postharvest Technology, Bihar Agricultural University, Sabour, 813210, Bhagalpur, India
| | - Seema Ramniwas
- University Centre for Research and Development, University of Biotechnology, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Aynura Aliyeva
- Department of Technology of Chemistry, Azerbaijan State Oil and Industry University, Baku, Azerbaijan
| | - Amin Mousavi Khaneghah
- Department of Technology of Chemistry, Azerbaijan State Oil and Industry University, Baku, Azerbaijan
- Department of Fruit and Vegetable Product Technology, Prof. WacławDąbrowski Institute of Agricultural and Food Biotechnology – State Research Institute, 36 Rakowiecka St., 02-532, Warsaw, Poland
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100 Thailand
| |
Collapse
|
10
|
Mohamad A, Shah NNAK, Sulaiman A, Mohd Adzahan N, Arshad RN, Aadil RM. The Impact of Pulsed Electric Fields on Milk's Macro- and Micronutrient Profile: A Comprehensive Review. Foods 2023; 12:foods12112114. [PMID: 37297369 DOI: 10.3390/foods12112114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/18/2023] [Accepted: 05/18/2023] [Indexed: 06/12/2023] Open
Abstract
Consumers around the world are attracted to products with beneficial effects on health. The stability, functionality, and integrity of milk constituents are crucial determinants of product quality in the dairy industry. Milk contains macronutrients and micronutrients that aid in a wide range of physiological functions in the human body. Deficiencies of these two types of nutrients can confine growth in children and increase the risk of several diseases in adults. The influence of pulsed electric fields (PEF) on milk has been extensively reviewed, mostly concentrating on the inactivation of microbes and enzymes for preservation purposes. Therefore, the information on the variations of milk macro- and micronutrients treated by PEF has yet to be elucidated and it is imperative as it may affect the functionality, stability, and integrity of the milk and dairy products. In this review, we describe in detail the introduction, types, and components of PEF, the inactivation mechanism of biological cells by PEF, as well as the effects of PEF on macro- and micronutrients in milk. In addition, we also cover the limitations that hinder the commercialization and integration of PEF in the food industry and the future outlook for PEF. The present review consolidates the latest research findings investigating the impact of PEF on the nutritional composition of milk. The assimilation of this valuable information aims to empower both industry professionals and consumers, facilitating a thorough understanding and meticulous assessment of the prospective adoption of PEF as an alternative technique for milk pasteurization.
Collapse
Affiliation(s)
- Azizah Mohamad
- Food Biotechnology Research Centre, Agro-Biotechnology Institute (ABI), National Institutes of Biotechnology Malaysia (NIBM), CO MARDI Headquarters, Serdang 43400, Selangor, Malaysia
- Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Nor Nadiah Abdul Karim Shah
- Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Halal Products Research Institute, Universiti Putra Malaysia, Putra Infoport, Serdang 43400, Selangor, Malaysia
| | - Alifdalino Sulaiman
- Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Noranizan Mohd Adzahan
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Rai Naveed Arshad
- Institute of High Voltage & High Current, School of Electrical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| |
Collapse
|
11
|
Zare F, Ghasemi N, Bansal N, Hosano H. Advances in pulsed electric stimuli as a physical method for treating liquid foods. Phys Life Rev 2023; 44:207-266. [PMID: 36791571 DOI: 10.1016/j.plrev.2023.01.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023]
Abstract
There is a need for alternative technologies that can deliver safe and nutritious foods at lower costs as compared to conventional processes. Pulsed electric field (PEF) technology has been utilised for a plethora of different applications in the life and physical sciences, such as gene/drug delivery in medicine and extraction of bioactive compounds in food science and technology. PEF technology for treating liquid foods involves engineering principles to develop the equipment, and quantitative biochemistry and microbiology techniques to validate the process. There are numerous challenges to address for its application in liquid foods such as the 5-log pathogen reduction target in food safety, maintaining the food quality, and scale up of this physical approach for industrial integration. Here, we present the engineering principles associated with pulsed electric fields, related inactivation models of microorganisms, electroporation and electropermeabilization theory, to increase the quality and safety of liquid foods; including water, milk, beer, wine, fruit juices, cider, and liquid eggs. Ultimately, we discuss the outlook of the field and emphasise research gaps.
Collapse
Affiliation(s)
- Farzan Zare
- School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, St Lucia QLD 4072, Australia; School of Agriculture and Food Sciences, The University of Queensland, St Lucia QLD 4072, Australia
| | - Negareh Ghasemi
- School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, St Lucia QLD 4072, Australia
| | - Nidhi Bansal
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia QLD 4072, Australia
| | - Hamid Hosano
- Biomaterials and Bioelectrics Department, Institute of Industrial Nanomaterials, Kumamoto University, Kumamoto 860-8555, Japan.
| |
Collapse
|
12
|
Samaranayake CP, Mok JH, Heskitt BF, Sastry SK. Nonthermal inactivation effects on oxidative enzymes in grape juice influenced by moderate electric fields: Effect of constant exposure electrical treatments combined with temperature. J FOOD ENG 2023. [DOI: 10.1016/j.jfoodeng.2022.111288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
13
|
Wu T, Sakamoto M, Phacharapan S, Inoue N, Kamitani Y. Antioxidant characteristic changes, sensory evaluation, processing and storage of functional water modified juice. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
14
|
Lakshmipathy K, Thirunavookarasu N, Kalathil N, Chidanand DV, Rawson A, Sunil CK. Effect of different thermal and
non‐thermal
pre‐treatments on bioactive compounds of aqueous ginger extract obtained using vacuum‐assisted conductive drying system. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Kavitha Lakshmipathy
- Department of Industry‐Academia Cell National Institute of Food Technology, Entrepreneurship, and Management Thanjavur India
- Centre of Excellence in Non‐Thermal Processing National Institute of Food Technology, Entrepreneurship, and Management Thanjavur India
| | - Nirmal Thirunavookarasu
- Department of Industry‐Academia Cell National Institute of Food Technology, Entrepreneurship, and Management Thanjavur India
- Centre of Excellence in Non‐Thermal Processing National Institute of Food Technology, Entrepreneurship, and Management Thanjavur India
| | - Najma Kalathil
- Department of Industry‐Academia Cell National Institute of Food Technology, Entrepreneurship, and Management Thanjavur India
- Centre of Excellence in Non‐Thermal Processing National Institute of Food Technology, Entrepreneurship, and Management Thanjavur India
| | - Duggonahally Veeresh Chidanand
- Department of Industry‐Academia Cell National Institute of Food Technology, Entrepreneurship, and Management Thanjavur India
- Centre of Excellence in Non‐Thermal Processing National Institute of Food Technology, Entrepreneurship, and Management Thanjavur India
| | - Ashish Rawson
- Centre of Excellence in Non‐Thermal Processing National Institute of Food Technology, Entrepreneurship, and Management Thanjavur India
- Department of Food Safety and Quality Testing National Institute of Food Technology, Entrepreneurship, and Management Thanjavur India
| | | |
Collapse
|
15
|
Design of a batch Ohmic heater and evaluating the influence of different treatment conditions on quality attributes of kinnow (Citrus nobilis × Citrus deliciosa) juice. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
16
|
Arnold M, Gramza-Michałowska A. Enzymatic browning in apple products and its inhibition treatments: A comprehensive review. Compr Rev Food Sci Food Saf 2022; 21:5038-5076. [PMID: 36301625 DOI: 10.1111/1541-4337.13059] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 08/17/2022] [Accepted: 09/18/2022] [Indexed: 01/28/2023]
Abstract
Apple (Malus domestica) is widely consumed by consumers from various regions. It contains a high number of phenolic compounds (majorly hydroxybenzoic acids, hydroxycinnamic acids, flavanols, flavonols, dihydrochalcones, and anthocyanins) and antioxidant activity, which are beneficial for human health. The trends on healthy and fresh food have driven the food industry to produce minimally processed apple, such as fresh-cut, puree, juice, and so on without degrading the quality of products. Enzymatic browning is one of the problems found in minimally processed apple as it causes the undesirable dark color as well as the degradation of phenolics and antioxidant activity, which then reduces the health benefits of apple. Proper inhibition is needed to maintain the quality of minimally processed apple with minimal changes in sensory properties. This review summarizes the inhibition of enzymatic browning of apple products based on recent studies using the conventional and nonconventional processing, as well as using synthetic and natural antibrowning agents. Nonconventional processing and the use of natural antibrowning agents can be used as promising treatments to prevent enzymatic browning in minimally processed apple products. Combination of 2-3 treatments can improve the effective inhibition of enzymatic browning. Further studies, such on as other potential natural antibrowning agents and their mechanisms of action, should be conducted.
Collapse
Affiliation(s)
- Marcellus Arnold
- Department of Gastronomy Science and Functional Foods, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Poznań, Poland
| | - Anna Gramza-Michałowska
- Department of Gastronomy Science and Functional Foods, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Poznań, Poland
| |
Collapse
|
17
|
Comparing the effect of several pretreatment steps, selected to steer (bio)chemical reactions, on the volatile profile of leek (Allium ampeloprasum var. porrum). Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Delbaere SM, Bernaerts T, Vangrunderbeek M, Vancoillie F, Hendrickx ME, Grauwet T, Van Loey AM. The Volatile Profile of Brussels Sprouts ( Brassica oleracea Var. gemmifera) as Affected by Pulsed Electric Fields in Comparison to Other Pretreatments, Selected to Steer (Bio)Chemical Reactions. Foods 2022; 11:foods11182892. [PMID: 36141018 PMCID: PMC9498443 DOI: 10.3390/foods11182892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/09/2022] [Accepted: 09/10/2022] [Indexed: 11/16/2022] Open
Abstract
Pulsed electric fields (PEF) at low field strength is considered a non-thermal technique allowing membrane permeabilization in plant-based tissue, hence possibly impacting biochemical conversions and the concomitant volatile profile. Detailed studies on the impact of PEF at low field strength on biochemical conversions in plant-based matrices are scarce but urgently needed to provide the necessary scientific basis allowing to open a potential promising field of applications. As a first objective, the effect of PEF and other treatments that aim to steer biochemical conversions on the volatile profile of Brussels sprouts was compared in this study. As a second objective, the effect of varying PEF conditions on the volatile profile of Brussels sprouts was elucidated. Volatile fingerprinting was used to deduce whether and which (bio)chemical reactions had occurred. Surprisingly, PEF at 1.01 kV/cm and 2.7 kJ/kg prior to heating was assumed not to have caused significant membrane permeabilization since similar volatiles were observed in the case of only heating, as opposed to mixing. A PEF treatment with an electrical field strength of 3.00 kV/cm led to a significantly higher formation of certain enzymatic reaction products, being more pronounced when combined with an energy input of 27.7 kJ/kg, implying that these PEF conditions could induce substantial membrane permeabilization. The results of this study can be utilized to steer enzymatic conversions towards an intended volatile profile of Brussels sprouts by applying PEF.
Collapse
|
19
|
Roobab U, Abida A, Chacha JS, Athar A, Madni GM, Ranjha MMAN, Rusu AV, Zeng XA, Aadil RM, Trif M. Applications of Innovative Non-Thermal Pulsed Electric Field Technology in Developing Safer and Healthier Fruit Juices. Molecules 2022; 27:molecules27134031. [PMID: 35807277 PMCID: PMC9268149 DOI: 10.3390/molecules27134031] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/16/2022] [Accepted: 06/22/2022] [Indexed: 02/04/2023] Open
Abstract
The deactivation of degrading and pectinolytic enzymes is crucial in the fruit juice industry. In commercial fruit juice production, a variety of approaches are applied to inactivate degradative enzymes. One of the most extensively utilized traditional procedures for improving the general acceptability of juice is thermal heat treatment. The utilization of a non-thermal pulsed electric field (PEF) as a promising technology for retaining the fresh-like qualities of juice by efficiently inactivating enzymes and bacteria will be discussed in this review. Induced structural alteration provides for energy savings, reduced raw material waste, and the development of new products. PEF alters the α-helix conformation and changes the active site of enzymes. Furthermore, PEF-treated juices restore enzymatic activity during storage due to either partial enzyme inactivation or the presence of PEF-resistant isozymes. The increase in activity sites caused by structural changes causes the enzymes to be hyperactivated. PEF pretreatments or their combination with other nonthermal techniques improve enzyme activation. For endogenous enzyme inactivation, a clean-label hurdle technology based on PEF and mild temperature could be utilized instead of harsh heat treatments. Furthermore, by substituting or combining conventional pasteurization with PEF technology for improved preservation of both fruit and vegetable juices, PEF technology has enormous economic potential. PEF treatment has advantages not only in terms of product quality but also in terms of manufacturing. Extending the shelf life simplifies production planning and broadens the product range significantly. Supermarkets can be served from the warehouse by increasing storage stability. As storage stability improves, set-up and cleaning durations decrease, and flexibility increases, with only minor product adjustments required throughout the manufacturing process.
Collapse
Affiliation(s)
- Ume Roobab
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; (U.R.); (J.S.C.)
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China
| | - Afeera Abida
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan; (A.A.); (A.A.); (G.M.M.)
| | - James S. Chacha
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; (U.R.); (J.S.C.)
- Department of Food Science and Agroprocessing, School of Engineering and Technology, Sokoine University of Agriculture, Chuo Kikuu, Morogogoro P.O. Box 3006, Tanzania
| | - Aiman Athar
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan; (A.A.); (A.A.); (G.M.M.)
| | - Ghulam Muhammad Madni
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan; (A.A.); (A.A.); (G.M.M.)
| | | | - Alexandru Vasile Rusu
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
- Faculty of Animal Science and Biotechnology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
- Correspondence: (A.V.R.); (X.-A.Z.); (R.M.A.)
| | - Xin-An Zeng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; (U.R.); (J.S.C.)
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China
- Correspondence: (A.V.R.); (X.-A.Z.); (R.M.A.)
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan; (A.A.); (A.A.); (G.M.M.)
- Correspondence: (A.V.R.); (X.-A.Z.); (R.M.A.)
| | - Monica Trif
- Department of Food Research, Centre for Innovative Process Engineering (Centiv) GmbH, 28857 Syke, Germany;
| |
Collapse
|
20
|
He J, Chiu C, Gavahian M, Ho C, Chu Y. Development and Application of Edible Coating on Dried Pineapple Exposed to Ohmic Blanching. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Jia‐Jing He
- Department of Food Science College of Agriculture National Pingtung University of Science and Technology Pingtung Taiwan
| | - Chun‐Hui Chiu
- Graduate Institute of Health Industry and Technology Research Center for Chinese Herbal Medicine Research Center for Food and Cosmetic Safety College of Human Ecology Chang Gung University of Science and Technology Taoyuan Taiwan
- Department of Traditional Chinese Medicine Keelung Chang Gung Memorial Hospital Keelung Taiwan
| | - Mohsen Gavahian
- Department of Food Science College of Agriculture National Pingtung University of Science and Technology Pingtung Taiwan
| | - Chi‐Tang Ho
- Department of Food Science Rutgers University New Brunswick NJ USA
| | - Yung‐Lin Chu
- Department of Food Science College of Agriculture National Pingtung University of Science and Technology Pingtung Taiwan
| |
Collapse
|
21
|
Umair M, Jabeen S, Ke Z, Jabbar S, Javed F, Abid M, Rehman Khan KU, Ji Y, Korma SA, El-Saadony MT, Zhao L, Cacciotti I, Mariana Gonçalves Lima C, Adam Conte-Junior C. Thermal treatment alternatives for enzymes inactivation in fruit juices: Recent breakthroughs and advancements. ULTRASONICS SONOCHEMISTRY 2022; 86:105999. [PMID: 35436672 PMCID: PMC9036140 DOI: 10.1016/j.ultsonch.2022.105999] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 05/17/2023]
Abstract
Fruit juices (FJs) are frequently taken owing to their nutritious benefits, appealing flavour, and vibrant colour. The colours of the FJs are critical indicators of the qualitative features that influence the consumer's attention. Although FJs' intrinsic acidity serves as a barrier to bacterial growth, their enzymatic stability remains an issue for their shelf life. Inactivation of enzymes is critical during FJ processing, and selective inactivation is the primary focus of enzyme inactivation. The merchants, on the other hand, want the FJs to stay stable. The most prevalent technique of processing FJ is by conventional heat treatment, which degrades its nutritive value and appearance. The FJ processing industry has undergone a dramatic transformation from thermal treatments to nonthermal treatments (NTTs) during the past two decades to meet the requirements for microbiological and enzymatic stability. The manufacturers want safe and stable FJs, while buyers want high-quality FJs. According to the past investigation, NTTs have the potential to manufacture microbiologically safe and enzymatically stable FJs with low loss of bioactive components. Furthermore, it has been demonstrated that different NTTs combined with or without other NTTs or mild heating as a hurdle technology increase the synergistic effect for microbiological safety and stability of FJs. Concise information about the variables that affect NTTs' action mode has also been addressed. Primary inactivates enzymes by modifying the protein structure and active site conformation. NTTs may increase enzyme activity depending on the nature of the enzyme contained in FJs, the applied pressure, pH, temperature, and treatment period. This is due to the release of membrane-bound enzymes as well as changes in protein structure and active sites that allow substrate interaction. Additionally, the combination of several NTTs as a hurdle technology, as well as temperature and treatment periods, resulted in increased enzyme inactivation in FJs. Therefore, a combination of thermal and non-thermal technologies is suggested to increase the effectiveness of the process as well as preserve the juice quality.
Collapse
Affiliation(s)
- Muhammad Umair
- Department of Food Science and Engineering, College of Chemistry and Engineering, Shenzhen University, 518060 Shenzhen, Guangdong, China; Key Laboratory of Optoelectronic Devices and Systems, College of Physics and Optoelectronic Engineering, Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, Guangdong, China
| | - Sidra Jabeen
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Zekai Ke
- Department of Orthopaedics, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen, Guangdong, China
| | - Saqib Jabbar
- Food Science Research Institute (FSRI), National Agricultural Research Centre (NARC), Islamabad, Pakistan
| | - Faiqa Javed
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Muhammad Abid
- Institute of Food and Nutritional Sciences, Pir Mehr Ali Shah, Arid Agriculture University Rawalpindi, Pakistan
| | - Kashif-Ur Rehman Khan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, 63100 Bahawalpur, Pakistan
| | - Yu Ji
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, Aachen 52074, Germany.
| | - Sameh A Korma
- Department of Food Science, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt
| | - Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt
| | - Liqing Zhao
- Department of Food Science and Engineering, College of Chemistry and Engineering, Shenzhen University, 518060 Shenzhen, Guangdong, China.
| | - Ilaria Cacciotti
- Department of Engineering, INSTM RU, University of Rome "Niccolò Cusano", Roma 00166, Italy
| | | | - Carlos Adam Conte-Junior
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-598, Brazil
| |
Collapse
|
22
|
Basak S, Chakraborty S. The potential of nonthermal techniques to achieve enzyme inactivation in fruit products. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.03.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Roobab U, Khan AW, Irfan M, Madni GM, Zeng X, Nawaz A, Walayat N, Manzoor MF, Aadil RM. Recent developments in ohmic technology for clean label fruit and vegetable processing: An overview. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Ume Roobab
- School of Food Science and Engineering South China University of Technology Guangzhou China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center) Guangzhou China
| | - Abdul Waheed Khan
- School of Food Science and Engineering South China University of Technology Guangzhou China
| | - Muhammad Irfan
- School of Food Science and Engineering South China University of Technology Guangzhou China
| | - Ghulam Muhammad Madni
- National Institute of Food Science and Technology University of Agriculture Faisalabad Pakistan
| | - Xin‐An Zeng
- School of Food Science and Engineering South China University of Technology Guangzhou China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center) Guangzhou China
- Guangdong Key Laboratory of Food Intelligent Manufacturing Foshan University Foshan Guangdong China
| | - Asad Nawaz
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study Shenzhen University Shenzhen China
| | - Noman Walayat
- College of Food Science and Technology Zhejiang University of Technology Hangzhou China
| | - Muhammad Faisal Manzoor
- School of Food and Biological Engineering Jiangsu University Zhenjiang Jiangsu Province China
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology University of Agriculture Faisalabad Pakistan
| |
Collapse
|
24
|
Tsikrika K, Tzima K, Rai DK. Recent advances in anti‐browning methods in minimally processed potatoes—A review. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16298] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Konstantina Tsikrika
- Department of Food Biosciences Teagasc Food Research Centre Dublin Ireland
- Laboratory of Food Microbiology and Biotechnology Department of Food Science and Technology Agricultural University of Athens Athens Greece
| | - Katerina Tzima
- Department of Food Biosciences Teagasc Food Research Centre Dublin Ireland
| | - Dilip K. Rai
- Department of Food Biosciences Teagasc Food Research Centre Dublin Ireland
| |
Collapse
|
25
|
HARDINASINTA G, MURSALIM M, MUHIDONG J, SALENGKE S. Degradation kinetics of anthocyanin, flavonoid, and total phenol in bignay (Antidesma bunius) fruit juice during ohmic heating. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.64020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
26
|
Possibility of Pulsed Electric Field and Essential Oil Pre-treatment, Microwave-air Dehydration to the Quality of the Dehydrated Sesban (Sesbania sesban) Flower. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021. [DOI: 10.22207/jpam.15.4.55] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Non-heat ahead-treatment in advance of the main dehydration is essential to preserve the quality and ensure food safety. Pulsed electric field (PEF) utilizes a high-voltage electric field in a very short duration to inhibit microbes and enzymes while maintaining the most sensory and nutritional characteristics. For thermal sensitive components, the dehydration process should be performed at low temperatures. Freeze dehydration, vacuum dehydration required high cost for equipment, energy consumption, low quantity in long dehydration time. Microwave-air dehydration is considered as a promising alternative technical approach. Sesban (Sesbania sesban) flower contains numerous phytochemical components promoting health-benefit. However, it’s highly perishable after harvesting. Consumers enjoy the dried sesban flower as a healthy drink. This study examined the possibility of PEF ahead-treatment in microbial inhibition and enzymatic inactivation; essential oil and Microwave-air dehydration on retention of total phenolic content (TPC), vitamin C, 2,2 diphenyl-1-picrylhydrazyl of free radical scavenging (DPPH), ferric reducing antioxidant power (FRAP) of the dehydrated sesban flower. Research also monitored the microbial stability of the dehydrated sesban flower during 12 months of preservation. Results showed that PEF at pulse strength 1000 kV/cm, pulse duration 90 µs, pulse number 45 was remarkably inactivated polyphenol oxidase and peroxidase in raw material. Rosemary essential oil soaked for sesban flower before dehydration positively preserved the ascorbic acid, phenolic content and antioxidant capacity. These PEF and essential oil ahead-treatments strongly facilitated for the main Microwave-air dehydration. Among different air temperatures from 20°C to 40°C in microwave-air dehydration, the highest Vitamin C, TPC, DPPH and FRAP of the dried flower were recorded at air temperature from 20°C to 30°C with no significant difference. Meanwhile, airspeed 1.2 m/s showed the highest Vitamin C, TPC, DPPH and FRAP of the dried flower with no significant difference with airspeed 1.4 m/s and 1.6 m/s. There was no significant difference in Vitamin C, TPC, DPPH and FRAP of the dried flower by microwave power from 1.15 to 1.45W/g. Therefore, a combination of microwave and air dehydration at air temperature 25°C, airspeed 1.2 m/s, the microwave energy density of 1.45 W/g was recommended to better preserve vitamin C, TPC, DPPH, FRAP. Microbial stability of the dehydrated flower was also observed during 12 months of storage by 3 month-interval sampling. Coliform, yeast and mold criteria in dried product were stable within acceptable limits.
Collapse
|
27
|
Shao L, Zhao Y, Zou B, Li X, Dai R. Ohmic heating in fruit and vegetable processing: Quality characteristics, enzyme inactivation, challenges and prospective. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.10.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
28
|
He C, Yang N, Jin Y, Wu S, Pan Y, Xu X, Jin Z. Application of induced electric field for inner heating of kiwifruit juice and its analysis. J FOOD ENG 2021. [DOI: 10.1016/j.jfoodeng.2021.110609] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
29
|
Hardinasinta G, Salengke S, Mursalim M, Muhidong J. Effect of Ohmic Heating on the Rheological Characteristics and Electrical Conductivity of Mulberry (Morus nigra) Puree. POL J FOOD NUTR SCI 2021. [DOI: 10.31883/pjfns/140151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
30
|
Jadhav HB, Annapure US, Deshmukh RR. Non-thermal Technologies for Food Processing. Front Nutr 2021; 8:657090. [PMID: 34169087 PMCID: PMC8217760 DOI: 10.3389/fnut.2021.657090] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/26/2021] [Indexed: 12/31/2022] Open
Abstract
Food is subjected to various thermal treatments during processes to enhance its shelf-life. But these thermal treatments may result in deterioration of the nutritional and sensory qualities of food. With the change in the lifestyle of people around the globe, their food needs have changed as well. Today's consumer demand is for clean and safe food without compromising the nutritional and sensory qualities of food. This directed the attention of food professionals toward the development of non-thermal technologies that are green, safe, and environment-friendly. In non-thermal processing, food is processed at near room temperature, so there is no damage to food because heat-sensitive nutritious materials are intact in the food, contrary to thermal processing of food. These non-thermal technologies can be utilized for treating all kinds of food like fruits, vegetables, pulses, spices, meat, fish, etc. Non-thermal technologies have emerged largely in the last few decades in food sector.
Collapse
Affiliation(s)
- Harsh Bhaskar Jadhav
- Department of Food Engineering and Technology, Institute of Chemical Technology, Mumbai, India
| | - Uday S. Annapure
- Department of Food Engineering and Technology, Institute of Chemical Technology, Mumbai, India
| | | |
Collapse
|
31
|
Negri Rodríguez LM, Arias R, Soteras T, Sancho A, Pesquero N, Rossetti L, Tacca H, Aimaretti N, Rojas Cervantes ML, Szerman N. Comparison of the quality attributes of carrot juice pasteurized by ohmic heating and conventional heat treatment. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111255] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
32
|
Physicochemical characterization and polyphenol oxidase inactivation of Ataulfo mango pulp pasteurized by conventional and ohmic heating processes. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111113] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
33
|
Electrical systems for pulsed electric field applications in the food industry: An engineering perspective. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.07.008] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
34
|
Thermal and non-thermal processing effect on açai juice composition. Food Res Int 2020; 136:109506. [DOI: 10.1016/j.foodres.2020.109506] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 06/12/2020] [Accepted: 06/26/2020] [Indexed: 01/06/2023]
|
35
|
Rybak K, Wiktor A, Witrowa-Rajchert D, Parniakov O, Nowacka M. The Effect of Traditional and Non-Thermal Treatments on the Bioactive Compounds and Sugars Content of Red Bell Pepper. Molecules 2020; 25:molecules25184287. [PMID: 32962060 PMCID: PMC7571178 DOI: 10.3390/molecules25184287] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/10/2020] [Accepted: 09/13/2020] [Indexed: 12/29/2022] Open
Abstract
The aim of the study was an investigation of the effect of traditional and non-thermal treatment on the bioactive compounds of red bell pepper. As a thermal process, blanching in water and in steam was studied, while for non-thermal the sonication, pulsed electric field treatment and their combination were used in this experiment. The red bell peppers were evaluated based on quality attributes such as: total carotenoids content; polyphenols; vitamin C; antioxidant activity and sugars content. Vitamin C and sugar content were analyzed using liquid chromatography and other measurements were determined based on the spectrophotometric method. Results showed that the blanching in water or in steam reduced bioactive compounds concentration; whereas non-thermal treatments as pulsed electric field (PEF) applied separately or in combination with ultrasound (US + PEF) let to obtain similar or slightly lower content of bioactive compounds in comparison to untreated peppers. When sonication (US) and combined treatment as PEF + US were applied; in most cases reduction of bioactive compounds concentration occurred. This effect was probably related to the effect of relatively long (30 min) ultrasound treatment. The application of appropriate parameters of non-thermal processing is crucial for the high quality of processed material.
Collapse
Affiliation(s)
- Katarzyna Rybak
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences–SGGW, 02-787 Warsaw, Poland; (K.R.); (A.W.); (D.W.-R.)
| | - Artur Wiktor
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences–SGGW, 02-787 Warsaw, Poland; (K.R.); (A.W.); (D.W.-R.)
| | - Dorota Witrowa-Rajchert
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences–SGGW, 02-787 Warsaw, Poland; (K.R.); (A.W.); (D.W.-R.)
| | - Oleksii Parniakov
- Elea Vertriebs- und Vermarktungsgesellschaft mbH, 49610 Quakenbrück, Germany;
| | - Małgorzata Nowacka
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences–SGGW, 02-787 Warsaw, Poland; (K.R.); (A.W.); (D.W.-R.)
- Correspondence: ; Tel.: +48-22-593-75-79
| |
Collapse
|
36
|
Rinaldi M, Littardi P, Paciulli M, Ganino T, Cocconi E, Barbanti D, Rodolfi M, Aldini A, Chiavaro E. Impact of Ohmic Heating and High Pressure Processing on Qualitative Attributes of Ohmic Treated Peach Cubes in Syrup. Foods 2020; 9:E1093. [PMID: 32796512 PMCID: PMC7466281 DOI: 10.3390/foods9081093] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/07/2020] [Accepted: 08/07/2020] [Indexed: 02/02/2023] Open
Abstract
Stabilization of ohmic pretreated peach cubes (ohm) in syrup, representative of semifinished fruit products, was finalized by ohmic heating (OHM) and high pressure processing (HPP), proposed respectively as thermal and nonthermal pasteurization, in comparison to a conventional pasteurization treatment (DIM). The samples were then studied in terms of histological, physical (dimensional distribution, tenderometry, texture, viscosity of syrup and colour), chemical (total phenolic and ascorbic acid content), and sensorial (triangle test) properties. Severe modifications of the cell walls were observed in ohm-DIM and ohm-OHM samples, with swelling and electroporation, respectively. From chemical analyses, significant reduction of ascorbic acid and simultaneous increase of total phenolics content were observed for ohm-DIM and ohm-OHM, probably in relation to the cell wall damages. ohm-HPP showed the best preservation of the dimensional characteristics and hardness, followed by ohm-OHM and ohm-DIM. In addition, textural and colour parameters evidenced similar results, with ohm-HPP as the less different from ohm. Finally, the sensorial analysis confirmed ohm-HPP and ohm-OHM samples as the most similar to ohm as well as the most appreciated in terms of colour and consistency.
Collapse
Affiliation(s)
- Massimiliano Rinaldi
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy; (M.R.); (P.L.); (T.G.); (D.B.); (M.R.); (E.C.)
| | - Paola Littardi
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy; (M.R.); (P.L.); (T.G.); (D.B.); (M.R.); (E.C.)
| | - Maria Paciulli
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy; (M.R.); (P.L.); (T.G.); (D.B.); (M.R.); (E.C.)
| | - Tommaso Ganino
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy; (M.R.); (P.L.); (T.G.); (D.B.); (M.R.); (E.C.)
- National Research Council, Institute of BioEconomy (IBE), via Madonna del Piano, 10-50019 Sesto Fiorentino (FI), Italy
| | - Emanuela Cocconi
- Experimental Station for the Food Preserving Industry (SSICA), Viale Tanara, 31/a, 43121 Parma, Italy;
| | - Davide Barbanti
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy; (M.R.); (P.L.); (T.G.); (D.B.); (M.R.); (E.C.)
| | - Margherita Rodolfi
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy; (M.R.); (P.L.); (T.G.); (D.B.); (M.R.); (E.C.)
| | - Antonio Aldini
- John Bean Technology SpA, Via Mantova 63/A, 43123 Parma, Italy;
| | - Emma Chiavaro
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy; (M.R.); (P.L.); (T.G.); (D.B.); (M.R.); (E.C.)
| |
Collapse
|
37
|
Aboud SA, Altemimi AB, Al‐Hilphy ARS, Watson DG. Effect of batch infrared extraction pasteurizer (BIREP)‐based processing on the quality preservation of dried lime juice. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14759] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Salam A. Aboud
- Department of Food Science College of AgricultureUniversity of Al‐Basrah Basrah Iraq
| | - Ammar B. Altemimi
- Department of Food Science College of AgricultureUniversity of Al‐Basrah Basrah Iraq
| | - Asaad R. S. Al‐Hilphy
- Department of Food Science College of AgricultureUniversity of Al‐Basrah Basrah Iraq
| | - Dennis G. Watson
- School of Agricultural Sciences Southern Illinois University Carbondale IL USA
| |
Collapse
|
38
|
Enhancement of the Antioxidant, Anti-Tyrosinase, and Anti-Hyaluronidase Activity of Morus alba L. Leaf Extract by Pulsed Electric Field Extraction. Molecules 2020; 25:molecules25092212. [PMID: 32397313 PMCID: PMC7249078 DOI: 10.3390/molecules25092212] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/06/2020] [Accepted: 05/06/2020] [Indexed: 12/14/2022] Open
Abstract
In this study we aimed to compare the chemical composition and biological activity between Morus alba L. leaf extract obtained with 95% v/v ethanol using a pulsed electric field (PEF) and the conventional maceration method. Extracts of M. alba leaves collected from Chiang Mai (CM), Sakon Nakon (SK), and Buriram (BR), Thailand, were investigated for 1-deoxynojirimycin content by high-performance liquid chromatography and for total phenolic content by the Folin–Ciocalteu method. Antioxidant activity was investigated by 2,2′-diphenyl-1-picrylhydrazyl (DPPH), 2,2’-azinobis-3-ethylbenzothiazoline-6-sulphonate (ABTS), and ferric reducing antioxidant power (FRAP) assay. Anti-tyrosinase and anti-hyaluronidase activity was investigated by in vitro spectrophotometry. The results show that this is the first study to indicate PEF as a novel method for enhancing the phenolic content and antioxidant, anti-tyrosinase, and anti-hyaluronidase activity of M. alba leaf extract (P < 0.05). PEF extract of M. alba leaves collected from BR had comparable ABTS•+ scavenging activity to l-ascorbic acid and comparable anti-tyrosinase activity to kojic acid (P > 0.05). On the other hand, PEF extract of M. alba leaves collected from SK exhibited significantly high anti-hyaluronidase activity, comparable to that of oleanolic acid (P > 0.05). Therefore, PEF is suggested for further M. alba leaf extraction in the production of natural whitening and anti-aging cosmetic ingredients.
Collapse
|
39
|
|