1
|
Li L, Su H, Pang L, Pan Y, Li X, Xu Q, Song J, Qiao L. Thermosonication enhanced the bioactive, antioxidant, and flavor attributes of freshly squeezed tomato juice. ULTRASONICS SONOCHEMISTRY 2025; 115:107299. [PMID: 40048990 PMCID: PMC11924931 DOI: 10.1016/j.ultsonch.2025.107299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/28/2025] [Accepted: 03/01/2025] [Indexed: 03/23/2025]
Abstract
The sterilization of freshly squeezed juices typically results in a compromise to the natural flavor, bio-active components, and nutritional value. Developing a new sterilization method for controlling the diverse effects has emerged as a significant challenge. This research aims to explore the potential application of thermosonication (TS) for freshly squeezed tomato juice. Results revealed that both TS (temperature 50, 60, and 70 ℃; time 5, 10, and 15 min) and thermal pasteurization (TP, 85 ℃/10 min) effectively inactivated microorganisms. No significant differences were observed in the basis properties (pH, total soluble solids (TSS) and titratable acidity (TA)) of tomato juice. Notably, TS effectively enhanced the juice quality, and the optimal condition is TS 60 ℃ 15 min. Its retention rates in color and suspension stability were greatly enhanced. Meanwhile, TS (60 ℃, 15 min) not only significantly increased lycopene content (42.13 %), ascorbic acid content (36.64 %), flavonoids content (33.94 %), and total phenols content (34.06 %), but also maintain a higher antioxidant capacity compared to PJ samples. Moreover, the sensory quality and volatile substances of TS treated were enhanced. It can be inferred that TS through ultrasonic cavitation ensured the microbial safety, improved nutritional value and sensory quality of tomato juice. This report provide a basis that a proper lower pasteurization temperature produced better effect in tomato juice when combined with ultrasound.
Collapse
Affiliation(s)
- Limei Li
- Tianjin Key Laboratory of Integrated Design and On-line Monitoring for Light Industry & Food Machinery and Equipment, College of Mechanical Engineering, State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Hang Su
- Tianjin Key Laboratory of Integrated Design and On-line Monitoring for Light Industry & Food Machinery and Equipment, College of Mechanical Engineering, State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Lingling Pang
- Institute of Western Agriculture, Chinese Academy of Agricultural Sciences, Changji 831100, China; Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Yanfang Pan
- Institute of Western Agriculture, Chinese Academy of Agricultural Sciences, Changji 831100, China; Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Xihong Li
- Tianjin Key Laboratory of Integrated Design and On-line Monitoring for Light Industry & Food Machinery and Equipment, College of Mechanical Engineering, State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Qing Xu
- Tianjin Key Laboratory of Integrated Design and On-line Monitoring for Light Industry & Food Machinery and Equipment, College of Mechanical Engineering, State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Jitian Song
- Tianjin Key Laboratory of Integrated Design and On-line Monitoring for Light Industry & Food Machinery and Equipment, College of Mechanical Engineering, State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Liping Qiao
- Tianjin Key Laboratory of Integrated Design and On-line Monitoring for Light Industry & Food Machinery and Equipment, College of Mechanical Engineering, State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; Tianjin Gasin-DH Preservation Technology Co., Ltd., Tianjin 300300, China.
| |
Collapse
|
2
|
Zhang L, Song X, Dong Y, Zhao X. Green Synthesis of Molecularly Imprinted Polymers for Selective Extraction of Protocatechuic Acid from Mango Juice. Foods 2024; 13:2955. [PMID: 39335883 PMCID: PMC11431359 DOI: 10.3390/foods13182955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/09/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
A novel and environmentally friendly molecularly imprinted polymer (PCA-MIP) was successfully synthesized in an aqueous solution for the selective extraction of protocatechuic acid (PCA). In this study, a deep eutectic solvent (DES, choline chloride/methacrylic acid, 1:2, mol/mol) and chitosan were employed as the eco-friendly functional monomers. These two components interacted with PCA through hydrogen bonding, integrating a multitude of recognition sites within the PCA-MIP. Thus, the resulting PCA-MIP exhibited outstanding adsorption performance, rapid adsorption rate, and better selectivity, with a maximum binding capacity of 30.56 mg/g and an equilibrium time of 30 min. The scanning electron microscope (SEM) and Brunauer-Emmett-Teller (BET) analyses revealed that the synthesized polymers possessed a uniform morphology and substantial surface areas, which were conducive to their adsorption properties. Moreover, the PCA-MIP integrated with HPLC demonstrated its efficacy as an adsorbent for the selective extraction of PCA from mango juice. The PCA-MIP presented itself as an exemplary adsorbent, offering a highly effective and eco-friendly method for the enrichment of PCA from complex matrices.
Collapse
Affiliation(s)
- Liping Zhang
- School of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang 471000, China
| | - Xin Song
- School of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang 471000, China
| | - Yuxiao Dong
- School of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang 471000, China
| | - Xiyan Zhao
- School of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang 471000, China
| |
Collapse
|
3
|
Pei L, Liu W, Jiang L, Xu H, Liu L, Wang X, Liu M, Abudureheman B, Zhang H, Chen J. Effect of high hydrostatic pressure on aroma volatile compounds and aroma precursors of Hami melon juice. Front Nutr 2023; 10:1285590. [PMID: 38024363 PMCID: PMC10667450 DOI: 10.3389/fnut.2023.1285590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
High hydrostatic pressure (HHP) treatment is an effective technique for processing heat-sensitive fruits and causes changes in volatile compounds and their precursors while maintaining quality. We investigated the changes and correlations of volatile compounds, related enzyme activities and precursor amino acids, and fatty acids in Hami melon juice under 350-500 MPa pressure. The application of HHP treatment resulted in a considerable reduction of esters and a substantial increase in aldehydes and alcohols in C6 and C9. Activities of lipoxygenase (LOX), alcohol acyltransferase (AAT), and phospholipase A2 (PLA2) were lower than those of the untreated group, alcohol dehydrogenase (ADH) activity was reversed. When compared to fresh cantaloupe juice, there was an increase in both the types and contents of amino acids with lower total fatty acid contents than the control group. Positive correlations were observed among six ester-related substances and eight alcohol-related substances. Additionally, the correlations between volatile compounds and fatty acids were more substantial compared to those between volatile compounds and amino acids. HHP treatment increases Hami melon flavor precursors and is an effective way to maintain the aroma volatile compounds and flavor of Hami melon juice.
Collapse
Affiliation(s)
- Longying Pei
- College of Food Science and Engineering, Xinjiang Institute of Technology, Aksu, Xinjiang Province, China
| | - Wei Liu
- College of Food Science and Engineering, Tarim University, Alar, Xinjiang Province, China
| | - Luxi Jiang
- College of Food Science and Engineering, Xinjiang Institute of Technology, Aksu, Xinjiang Province, China
| | - Heng Xu
- College of Food Science and Engineering, Xinjiang Institute of Technology, Aksu, Xinjiang Province, China
| | - Luping Liu
- College of Food Science and Engineering, Xinjiang Institute of Technology, Aksu, Xinjiang Province, China
| | - Xiaoyu Wang
- College of Food Science and Engineering, Xinjiang Institute of Technology, Aksu, Xinjiang Province, China
| | - Manli Liu
- College of Food Science and Engineering, Xinjiang Institute of Technology, Aksu, Xinjiang Province, China
| | - Buhailiqiemu Abudureheman
- College of Food Science and Engineering, Xinjiang Institute of Technology, Aksu, Xinjiang Province, China
| | - Heng Zhang
- College of Food Science and Engineering, Xinjiang Institute of Technology, Aksu, Xinjiang Province, China
| | - Jiluan Chen
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang Province, China
| |
Collapse
|
4
|
Kalsi BS, Singh S, Alam MS, Bhatia S. Application of thermosonication for guava juice processing: Impacts on bioactive, microbial, enzymatic and quality attributes. ULTRASONICS SONOCHEMISTRY 2023; 99:106595. [PMID: 37699293 PMCID: PMC10506052 DOI: 10.1016/j.ultsonch.2023.106595] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/29/2023] [Accepted: 09/06/2023] [Indexed: 09/14/2023]
Abstract
The present work explores different conditions of thermosonication (TS) processing that would ensure microbiological and enzymatic safety for guava juice while simultaneously maximizing the preservation of its quality attributes. The guava juice was subjected to TS treatment (frequency: 40 kHz; power: 200 W; Temperature: 40, 60, and 80 °C; Time: 2, 6 and 10 min) and was compared with fresh and pasteurized (90 °C/60 s) juice samples. The objectives of the research work were to determine the effect of thermosonication on the quality attributes such as total soluble solids (TSS), pH, titratable acidity, cloud value, color attributes, total phenolic contents, total flavonoid contents, antioxidant activity, ascorbic acid levels, enzymatic, microbiological, and sensory properties. The thermosonicated and pasteurized samples showed no significant (p > 0.05) changes in pH, total soluble solids, and titratable acidity. TS improved the cloud value and color attributes. Furthermore, TS enhanced total phenols (10 to17%), flavonoids (5 to 25%), antioxidant activity (10.45% to 14.55%) and retention of ascorbic acid (61.98-83.32%) relative to control. Thermosonicated sample at 80 °C/10 min gives the maximum inactivation of Pectin methyl esterase (PME), Peroxidase (POD) and Polyphenol oxidase (PPO) enzymes. While both thermosonication and pasteurization drastically decreased the microbial count to undetectable levels, only TS exhibited modest improvement in sensory qualities. The results demonstrated that TS can enhance the overall safety, quality, and commercial viability of guava juice as a practical substitute to pasteurization.
Collapse
Affiliation(s)
- Baldev Singh Kalsi
- Department of Processing & Food Engineering, Punjab Agricultural University, Ludhiana, Punjab, India.
| | - Sandhya Singh
- Department of Processing & Food Engineering, Punjab Agricultural University, Ludhiana, Punjab, India.
| | - Mohammed Shafiq Alam
- Department of Processing & Food Engineering, Punjab Agricultural University, Ludhiana, Punjab, India.
| | - Surekha Bhatia
- Department of Processing & Food Engineering, Punjab Agricultural University, Ludhiana, Punjab, India.
| |
Collapse
|
5
|
Saroj N, Prasad K, Singh SK, Kumar V, Maurya S, Maurya P, Tiwari RK, Lal MK, Kumar R. Characterization of bioactive and fruit quality compounds of promising mango genotypes grown in Himalayan plain region. PeerJ 2023; 11:e15867. [PMID: 37609435 PMCID: PMC10441536 DOI: 10.7717/peerj.15867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/18/2023] [Indexed: 08/24/2023] Open
Abstract
Twenty mango genotypes grown in the plains of the Himalayas were characterized by their physical, physiological, biochemical, mineral and organoleptic attributes: fruit firmness, weight, peel thickness, shape, dry seed weight, respiration rate, weight loss, and shelf life. Biochemical attributes such as soluble solids, total carotenoids, total phenolic content, antioxidant activity, titratable acidity, ascorbic acid and total sugars were also determined. In addition, mineral content and fruit-softening enzymes were measured, and an organoleptic evaluation was performed. Polygalactouronase (PG), pectin methylesterase (PME) and lipoxygenase (LOX) were measured from the pulp adjacent to the peel. Similarly, biochemical attributes and mineral content were evaluated using fruit pulp, while organoleptic evaluation included fruit pulp characters and the fruit's external appearance. The results of the study showed that the 'Malda' genotype exhibited the highest total phenolic content (560.60 µg/100 g), total antioxidant (5.79 µmol TE/g), and titratable acidity (0.37%) among the tested genotypes. 'Amrapali' had the highest soluble solid content (25.20 °B), 'Jawahar' had the highest ascorbic acid content (44.20 mg/100 g pulp), 'Mallika' had the highest total flavonoid content (700.00 µg/g) and 'Amrapali' had the highest total carotenoid content (9.10 mg/100 g). Moreover, the genotypes 'Malda', 'Safed Malda'and 'Suvarnarekha' had a shelf life of 4-5 days longer than other tested genotypes. The genotypes with high biochemical attributes have practical utility for researchers for quality improvement programmes and processing industries as functional ingredients in industrial products. This study provides valuable information on the nutritional and functional properties of different mango genotypes, which can aid in developing improved varieties with enhanced health benefits and greater practical utility for processing industries.
Collapse
Affiliation(s)
- Neetu Saroj
- Department of Horticulture, Post-Graduate College of Agriculture (PGCA), RPCAU, Pusa, Bihar, India
| | - K. Prasad
- Department of Horticulture, Tirhut College of Agriculture (TCA), Dr. Rajendra Prasad Central Agricultural University (RPCAU), Pusa, Bihar, India
| | | | - Vishal Kumar
- Department of Processing and Food Engineering, College of Agricultural Engineering, RPCAU, Pusa, Bihar, India
| | - Shubham Maurya
- Department of Horticulture, Post-Graduate College of Agriculture (PGCA), RPCAU, Pusa, Bihar, India
| | - Poonam Maurya
- Department of Horticulture, Post-Graduate College of Agriculture (PGCA), RPCAU, Pusa, Bihar, India
| | - Rahul Kumar Tiwari
- ICAR, ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India
| | - Milan Kumar Lal
- ICAR, ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India
| | - Ravinder Kumar
- ICAR, ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India
| |
Collapse
|
6
|
Gokul Nath K, Pandiselvam R, Sunil C. High-pressure processing: Effect on textural properties of food- A review. J FOOD ENG 2023. [DOI: 10.1016/j.jfoodeng.2023.111521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
7
|
Krishnan Kesavan R, Begum S, Das P, Nayak PK. Hurdle effect of thermosonication and non‐thermal processing on the quality characteristics of fruit juices: An overview. J FOOD PROCESS ENG 2023. [DOI: 10.1111/jfpe.14310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Affiliation(s)
- Radha Krishnan Kesavan
- Department of FET Central Institute of Technology, Deemed to be University Under MoE Government of India Assam Kokrajhar India
| | - Sehnaj Begum
- Department of FET Central Institute of Technology, Deemed to be University Under MoE Government of India Assam Kokrajhar India
| | - Puja Das
- Department of FET Central Institute of Technology, Deemed to be University Under MoE Government of India Assam Kokrajhar India
| | - Prakash Kumar Nayak
- Department of FET Central Institute of Technology, Deemed to be University Under MoE Government of India Assam Kokrajhar India
| |
Collapse
|
8
|
Ma J, Wang Y, Zhao M, Tong P, Lv L, Gao Z, Liu J, Long F. High Hydrostatic Pressure Treatments Improved Properties of Fermentation of Apple Juice Accompanied by Higher Reserved Lactobacillus plantarum. Foods 2023; 12:foods12030441. [PMID: 36765970 PMCID: PMC9913918 DOI: 10.3390/foods12030441] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/29/2022] [Accepted: 01/10/2023] [Indexed: 01/19/2023] Open
Abstract
This study aimed to assess the feasibility of high hydrostatic pressure (HHP) treatment to obtain high quality juice, and prepared functional apple juice using fermentation technology. The physicochemical properties of HHP (10 min) pasteurized and pasteurized (85 °C, 15 min) apple juices were compared during fermentation. Moreover, the survival of Lactobacillus plantarum after fermentation under simulated gastrointestinal conditions was evaluated. Results showed that HHP-treated apple juice had better properties than that of pasteurized in terms of color difference, total phenol content, and antioxidant activity. After fermentation, about 2.00 log CFU/mL increase in viability of cells was observed and there was around 0.8 reduction in pH value, and the antioxidant capacities were also significantly improved. Additionally, the content of caffeic acid, ferulic acid, and chlorogenic acid significantly increased after 24 h of fermentation. The survival of Lactobacillus plantarum in simulated gastric fluid reached 97.37% after fermentation. Overall, HHP treatment is expected to be a substitute technology to pasteurization in order to obtain higher quality fermented fruit juice. This study could also be helpful for exploitation of fermented juice.
Collapse
Affiliation(s)
- Jing Ma
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China
| | - Yu Wang
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China
| | - Mengya Zhao
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China
| | - Pengyan Tong
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China
| | - Liuqing Lv
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China
| | - Zhenpeng Gao
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China
| | - Jing Liu
- Institute of Animal Husbandry and Veterinary Medicine, Guizhou Academy of Agricultural Sciences, Guiyang 550005, China
| | - Fangyu Long
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China
- Correspondence: ; Tel./Fax: +86-29-87092486
| |
Collapse
|
9
|
Choo YX, Teh LK, Tan CX. Effects of Sonication and Thermal Pasteurization on the Nutritional, Antioxidant, and Microbial Properties of Noni Juice. Molecules 2022; 28:molecules28010313. [PMID: 36615507 PMCID: PMC9822281 DOI: 10.3390/molecules28010313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 01/04/2023] Open
Abstract
Sonication is recognized as a potential food processing method to improve the functional properties of fruit juice. This study evaluated the effects of different sonication durations (20, 40, and 60 min) and thermal pasteurization on the nutritional, antioxidant, and microbial properties of noni juice. Fresh noni juice served as the control. The main organic acids detected were malic (57.54−89.31 mg/100 mL) and ascorbic (17.15−31.55 mg/100 mL) acids. Compared with the fresh sample, the concentrations of these compounds were significantly improved (p < 0.05) in the 60 min sonicated sample but reduced (p < 0.05) in the pasteurized sample. Moreover, sonication for 60 min resulted in increments of scopoletin, rutin, and vanillic acid compared to the fresh sample. The antioxidant activity of the juice sample was improved in the sample sonicated for 60 min. Irrespective of juice processing method, the level of microbial counts in noni juice was within the satisfactory level over the 8 weeks of refrigerated (4 °C) storage. This study highlights the feasibility of using ultrasound processing to enhance the quality of noni juice on the industrial scale.
Collapse
|
10
|
Joly V, Brat P, Nigen M, Lebrun M, Maraval I, Ricci J, Nelly F, Servent A. Effect of high‐pressure homogenization on the sensory, nutritional and physical characteristics of mango nectar (
Mangifera indica
L.). J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.17049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Victoria Joly
- CIRAD, UMR Qualisud, F‐34398 Montpellier France
- Qualisud, Univ Montpellier, CIRAD, Montpellier SupAgro, Université d’Avignon Université de la Réunion Montpellier France
| | - Pierre Brat
- CIRAD, UMR Qualisud, F‐34398 Montpellier France
- Qualisud, Univ Montpellier, CIRAD, Montpellier SupAgro, Université d’Avignon Université de la Réunion Montpellier France
| | - Michael Nigen
- IATE, Univ Montpellier, CIRAD, INRAE Agro Institute Montpellier France
| | - Marc Lebrun
- CIRAD, UMR Qualisud, F‐34398 Montpellier France
- Qualisud, Univ Montpellier, CIRAD, Montpellier SupAgro, Université d’Avignon Université de la Réunion Montpellier France
| | - Isabelle Maraval
- CIRAD, UMR Qualisud, F‐34398 Montpellier France
- Qualisud, Univ Montpellier, CIRAD, Montpellier SupAgro, Université d’Avignon Université de la Réunion Montpellier France
| | - Julien Ricci
- CIRAD, UMR Qualisud, F‐34398 Montpellier France
- Qualisud, Univ Montpellier, CIRAD, Montpellier SupAgro, Université d’Avignon Université de la Réunion Montpellier France
| | - Forestier‐Chiron Nelly
- CIRAD, UMR Qualisud, F‐34398 Montpellier France
- Qualisud, Univ Montpellier, CIRAD, Montpellier SupAgro, Université d’Avignon Université de la Réunion Montpellier France
| | - Adrien Servent
- CIRAD, UMR Qualisud, F‐34398 Montpellier France
- Qualisud, Univ Montpellier, CIRAD, Montpellier SupAgro, Université d’Avignon Université de la Réunion Montpellier France
| |
Collapse
|
11
|
Soto-Caballero MC, Cano-Monge EE, Cano-Monge SM, Welti-Chanes J, Escobedo-Avellaneda Z. Effect of high hydrostatic pressures on microorganisms, total phenolic content and enzyme activity of mamey (Pouteria sapota) nectar. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:2599-2604. [PMID: 35734125 PMCID: PMC9206978 DOI: 10.1007/s13197-021-05278-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 07/13/2021] [Accepted: 09/13/2021] [Indexed: 06/01/2023]
Abstract
Mamey (Pouteria sapota) is a Mexican native fruit of sweet flavor and high content of antioxidants. Some of these antioxidants are sensitive to high temperatures. Nonthermal technologies such as high hydrostatic pressures (HHP) could be an adequate alternative to traditional thermal pasteurization. Mamey nectars were treated under different HHP conditions and the effects on native microorganisms (mesophilic bacteria, molds and yeast), pectinmethylesterase (PME) and polyphenoloxidase (PPO) activities as well as on total phenolic content (TPC), were evaluated. Most HHP treatments conditions were equally effective to inactive native microorganisms. The application of HHP improved the extraction of TPC showing increments of 24% (400 MPa/2 min) to 64% (500 MPa/2 min) compared with the control samples. At 500 MPa/5 and 10 min maximum inactivation levels of PPO of about 40% were obtained, while PME activity showed decrements up to 70% at 400 MPa/5 min. HHP showed to be a potential technology to preserve mamey nectar, but more conditions should be tested to reach higher enzyme inactivation.
Collapse
Affiliation(s)
- Mayra Cristina Soto-Caballero
- Facultad de Ciencias Agrotecnologicas, Universidad Autonoma de Chihuahua, Av. Presa de la Amistad 2015, Col. Barrio La Presa., 31510 Cuauhtémoc, Chihuahua, Mexico
| | - Erick Eduardo Cano-Monge
- Facultad de Ciencias Agrotecnologicas, Universidad Autonoma de Chihuahua, Av. Presa de la Amistad 2015, Col. Barrio La Presa., 31510 Cuauhtémoc, Chihuahua, Mexico
| | - Sayra Mayret Cano-Monge
- Facultad de Ciencias Agrotecnologicas, Universidad Autonoma de Chihuahua, Av. Presa de la Amistad 2015, Col. Barrio La Presa., 31510 Cuauhtémoc, Chihuahua, Mexico
| | - Jorge Welti-Chanes
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, 64849 Monterrey, Nuevo León, Mexico
| | - Zamantha Escobedo-Avellaneda
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, 64849 Monterrey, Nuevo León, Mexico
| |
Collapse
|
12
|
Oliva E, Fanti F, Palmieri S, Viteritti E, Eugelio F, Pepe A, Compagnone D, Sergi M. Predictive Multi Experiment Approach for the Determination of Conjugated Phenolic Compounds in Vegetal Matrices by Means of LC-MS/MS. Molecules 2022; 27:molecules27103089. [PMID: 35630565 PMCID: PMC9147803 DOI: 10.3390/molecules27103089] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 11/16/2022] Open
Abstract
Polyphenols (PCs) are a numerous class of bioactive molecules and are known for their antioxidant activity. In this work, the potential of the quadrupole/linear ion trap hybrid mass spectrometer (LIT-QqQ) was exploited to develop a semi-untargeted method for the identification of polyphenols in different food matrices: green coffee, Crocus sativus L. (saffron) and Humulus lupulus L. (hop). Several conjugate forms of flavonoids and hydroxycinnamic acid were detected using neutral loss (NL) as a survey scan coupled with dependent scans with enhanced product ion (EPI) based on information-dependent acquisition (IDA) criteria. The presented approach is focused on a specific class of molecules and provides comprehensive information on the different conjugation models that are related to specific base molecules, thus allowing a quick and effective identification of all possible combinations, such as mono-, di-, or tri-glycosylation or another type of conjugation such as quinic acid esters.
Collapse
|
13
|
Xie X, Wang X, Bi X, Ning N, Li M, Xing Y, Che Z. Effects of ultrafiltration combined with high‐pressure processing, ultrasound and heat treatments on the quality of a blueberry–grape–pineapple–cantaloupe juice blend. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Xinyao Xie
- Sichuan Key Laboratory of Food Biotechnology School of Food and Bioengineering Xihua University Chengdu 610039 China
| | - Xiaoqiong Wang
- Sichuan Key Laboratory of Food Biotechnology School of Food and Bioengineering Xihua University Chengdu 610039 China
- The Agricultural and rural Bureau of Yilong County Nanchong 637600 China
| | - Xiufang Bi
- Sichuan Key Laboratory of Food Biotechnology School of Food and Bioengineering Xihua University Chengdu 610039 China
| | - Nan Ning
- Sichuan Key Laboratory of Food Biotechnology School of Food and Bioengineering Xihua University Chengdu 610039 China
- Key Laboratory of Food Non‐thermal Processing Engineering Technology Research Center of Non‐thermal Food Processing Yibin Xihua University Research Institute Yibin 644004 China
| | - Mingyuan Li
- Sichuan Key Laboratory of Food Biotechnology School of Food and Bioengineering Xihua University Chengdu 610039 China
| | - Yage Xing
- Sichuan Key Laboratory of Food Biotechnology School of Food and Bioengineering Xihua University Chengdu 610039 China
| | - Zhenming Che
- Sichuan Key Laboratory of Food Biotechnology School of Food and Bioengineering Xihua University Chengdu 610039 China
| |
Collapse
|
14
|
Umair M, Jabbar S, Lin Y, Nasiru MM, Zhang J, Abid M, Murtaza MA, Zhao L. Comparative study: Thermal and non‐thermal treatment on enzyme deactivation and selected quality attributes of fresh carrot juice. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15535] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Muhammad Umair
- Department of Food Science and Engineering College of Chemistry and Environmental Engineering Shenzhen University Shenzhen Guangdong 518060 China
- Key Laboratory of Optoelectronic Devices and Systems College of Physics and Optoelectronic Engineering Ministry of Education and Guangdong Province Shenzhen University Shenzhen 518060 China
| | - Saqib Jabbar
- Food Science Research Institute (FSRI) National Agricultural Research Centre (NARC) Islamabad 46000 Pakistan
| | - Yue Lin
- Department of Food Science and Engineering College of Chemistry and Environmental Engineering Shenzhen University Shenzhen Guangdong 518060 China
| | - Mustapha Muhammad Nasiru
- College of Food Science and Technology Nanjing Agricultural University Nanjing Jiangsu 210095 China
| | - Jianhao Zhang
- College of Food Science and Technology Nanjing Agricultural University Nanjing Jiangsu 210095 China
| | - Muhammad Abid
- Institute of Food and Nutritional Sciences Pir Mehr Ali Shah, Arid Agriculture University Rawalpindi Rawalpindi 44000 Pakistan
| | - Mian Anjum Murtaza
- Institute of Food Science and Nutrition University of Sargodha Sargodha 40100 Pakistan
| | - Liqing Zhao
- Department of Food Science and Engineering College of Chemistry and Environmental Engineering Shenzhen University Shenzhen Guangdong 518060 China
| |
Collapse
|
15
|
Industry-scale microfluidizer system produced whole mango juice: Effect on the physical properties, microstructure and pectin properties. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2021.102887] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Roobab U, Abida A, Afzal R, Madni GM, Zeng X, Rahaman A, Aadil RM. Impact of high‐pressure treatments on enzyme activity of fruit‐based beverages: an overview. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15492] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ume Roobab
- School of Food Science and Engineering South China University of Technology Guangzhou 510641 China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center) Guangzhou 510640 China
| | - Afeera Abida
- National Institute of Food Science and Technology University of Agriculture Faisalabad 38000 Pakistan
| | - Rehan Afzal
- National Institute of Food Science and Technology University of Agriculture Faisalabad 38000 Pakistan
| | - Ghulam Muhammad Madni
- National Institute of Food Science and Technology University of Agriculture Faisalabad 38000 Pakistan
| | - Xin‐An Zeng
- School of Food Science and Engineering South China University of Technology Guangzhou 510641 China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center) Guangzhou 510640 China
| | - Abdul Rahaman
- School of Food Science and Engineering South China University of Technology Guangzhou 510641 China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center) Guangzhou 510640 China
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology University of Agriculture Faisalabad 38000 Pakistan
| |
Collapse
|
17
|
Lalou S, Ordoudi SA, Mantzouridou FT. On the Effect of Microwave Heating on Quality Characteristics and Functional Properties of Persimmon Juice and Its Residue. Foods 2021; 10:2650. [PMID: 34828930 PMCID: PMC8624191 DOI: 10.3390/foods10112650] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/24/2021] [Accepted: 10/28/2021] [Indexed: 11/28/2022] Open
Abstract
In this study, it was investigated whether integration of microwave-heating into the pretreatment step of persimmon juice processing allows the concomitant production of both functional juice and added-value solid residue from the Diospyros Kaki "Jiro" cultivar. In this direction, persimmon pulp was treated under three different microwave-heating conditions (0.7, 4.2, and 8.4 kJ/g) prior to enzymatic maceration and compared to the non-heated material. Irrespective of microwave energy employed, the proposed hybrid treatment was highly efficient in terms of juice yield (70% w/w). The mildest heating conditions resulted in juice and residue that were both of inferior quality. Intensification of the microwave energy reduced the microbial load of the juice up to 2-log without compromising the content in total soluble solids, sugars, and L-ascorbic acid. Under the most drastic conditions, the juice was enriched in gallic acid, polyphenols, and potent DPPH● scavengers, but its orange color faded and was more acidic. In parallel, the solid juice residue retained pro-vitamin A carotenoids (~278 µg retinol activity equivalents) and low-methoxy pectin (9 g/100 g DW). Overall, our findings can assist the efforts of the local juice processing industry to utilize persimmon fruits through energy-efficient technologies in a sustainable approach.
Collapse
Affiliation(s)
- Sofia Lalou
- Laboratory of Food Chemistry and Technology, School of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Stella A. Ordoudi
- Laboratory of Food Chemistry and Technology, School of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
- Natural Products Research Center of Excellence (NatPro-AUTH), Center for Interdisciplinary Research and Innovation (CIRI-AUTH), 57001 Thessaloniki, Greece
| | - Fani Th. Mantzouridou
- Laboratory of Food Chemistry and Technology, School of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
- Natural Products Research Center of Excellence (NatPro-AUTH), Center for Interdisciplinary Research and Innovation (CIRI-AUTH), 57001 Thessaloniki, Greece
| |
Collapse
|
18
|
Fu Y, Liu W, Soladoye OP. Towards innovative food processing of flavonoid compounds: Insights into stability and bioactivity. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111968] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
19
|
Manzoor MF, Xu B, Khan S, Shukat R, Ahmad N, Imran M, Rehman A, Karrar E, Aadil RM, Korma SA. Impact of high-intensity thermosonication treatment on spinach juice: Bioactive compounds, rheological, microbial, and enzymatic activities. ULTRASONICS SONOCHEMISTRY 2021; 78:105740. [PMID: 34492523 PMCID: PMC8427224 DOI: 10.1016/j.ultsonch.2021.105740] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 05/04/2023]
Abstract
To study the impacts of thermosonication (TS), the spinach juice treated with TS (200 W, 400 W, and 600 W, 30 kHz, at 60 ± 1 °C for 20 mint) were investigated for bioactive compounds, antioxidant activities, color properties, particle size, rheological behavior, suspension stability, enzymatic and microbial loads. As a result, TS processing significantly improved the bioactive compounds (total flavonols, total flavonoids, total phenolic, carotenoids, chlorophyll, and anthocyanins), antioxidant activities (DPPH and FRAP assay) in spinach juice. Also, TS treatments had higher b*,L*, hue angle (h0), and chroma (C) values, while minimuma* value as compared to untreated and pasteurized samples. TS processing significantly reduced the particle size, improved the suspension stability and rheological properties (shear stress, apparent viscosity, and shear rate) of spinach juice as compared to the untreated and pasteurized sample. TS plays a synergistic part in microbial reduction and gained maximum microbial safety. Moreover, TS treatments inactivated the polyphenol oxidase and peroxidase from 0.97 and 0.034 Abs min-1 (untreated) to 0.31 and 0.018 Abs min-1, respectively. The spinach juice sample treated at a high intensity (600 W, 30 kHz, at 60 ± 1 °C for 20 mint, TS3) exhibited complete inactivation of microbial loads (<1 log CFU/ml), the highest reduction in enzymatic activities, better suspension stability, color properties, and highest bioactive compounds. Collectively, the verdicts proposed that TS processing could be a worthwhile option to pasteurize the spinach juice to enhance the overall quality.
Collapse
Affiliation(s)
- Muhammad Faisal Manzoor
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China; Riphah College of Rehabilitation and Allied Health Sciences, Riphah International University, Faisalabad, 38000 Pakistan
| | - Bin Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China.
| | - Sipper Khan
- University of Hohenheim, Institute of Agricultural Engineering, Tropics and Subtropics Group, Garbenstrasse 9, 70593 Stuttgart, Germany
| | - Rizwan Shukat
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Nazir Ahmad
- Department of Nutritional Sciences, Faculty of Medical Sciences, Government College University, Faisalabad, Pakistan
| | - Muhammad Imran
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore-Lahore, Pakistan
| | - Abdur Rehman
- State Key Laboratory of Food Science and Technology, Jiangnan University, Jiangsu, Wuxi 214122, China
| | - Emad Karrar
- State Key Laboratory of Food Science and Technology, Jiangnan University, Jiangsu, Wuxi 214122, China
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Sameh A Korma
- Department of Food Science, Faculty of Agriculture, Zagazing University, Sharkia, Egypt
| |
Collapse
|
20
|
Li M, Liu Q, Zhang W, Zhang L, Zhou L, Cai S, Hu X, Yi J. Evaluation of quality changes of differently formulated cloudy mixed juices during refrigerated storage after high pressure processing. Curr Res Food Sci 2021; 4:627-635. [PMID: 34557679 PMCID: PMC8445842 DOI: 10.1016/j.crfs.2021.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 12/02/2022] Open
Abstract
Cloudy fruit and vegetable mixed juice (MJ) pasteurized by high pressure processing (HPP) showed an increasing market demand. However, browning, sedimentation, and flavor changes of HPP juice during storage have been a great challenge for the beverage industry. The aim of this work was to investigate quality changes of HPP MJs during storage and to explore the potential to create the shelf-stable MJs with fresh-like organoleptic quality through HPP. In the work, commercial MJ1 (orange, mango, and kiwifruit) and MJ2 (carrot and pineapple) were formulated and their quality changes during storage were investigated. The results indicated no visible color changes and sedimentation were observed in MJ1 and MJ2 during refrigerated storage (90 days). However, sucrose decreased as glucose and fructose increased; a large number of aldehydes and alcohols decreased but some terpenoids increased during storage. In general, blending proper fruit and vegetable to produce MJs combing with HPP could maintain high cloud and color stability, but sugars and volatiles clearly changed during storage. HPP mixed juice showed high color and cloud stability during chilled storage. Aldehydes and alcohols decreased but terpenoids increased during storage. Sucrose decreased with glucose and fructose increasing during storage. Carrot-pinapple mixed juice showed high quality stability during storgae.
Collapse
Affiliation(s)
- Minbo Li
- Faculty of Food Science and Engineering, Yunnan Institute of Food Safety, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Qihui Liu
- Faculty of Food Science and Engineering, Yunnan Institute of Food Safety, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Wanzhen Zhang
- Faculty of Food Science and Engineering, Yunnan Institute of Food Safety, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Litao Zhang
- Yunnan Inja U-fresh Supply Chain Co., Ltd., Kunming, 650500, Yunnan, China
| | - Linyan Zhou
- Faculty of Food Science and Engineering, Yunnan Institute of Food Safety, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Shengbao Cai
- Faculty of Food Science and Engineering, Yunnan Institute of Food Safety, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Xiaosong Hu
- Faculty of Food Science and Engineering, Yunnan Institute of Food Safety, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China.,College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Junjie Yi
- Faculty of Food Science and Engineering, Yunnan Institute of Food Safety, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| |
Collapse
|
21
|
Roobab U, Shabbir MA, Khan AW, Arshad RN, Bekhit AED, Zeng XA, Inam-Ur-Raheem M, Aadil RM. High-pressure treatments for better quality clean-label juices and beverages: Overview and advances. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111828] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
22
|
Lan T, Bao S, Wang J, Ge Q, Zhang H, Yang W, Sun X, Ma T. Shelf life of non-industrial fresh mango juice: Microbial safety, nutritional and sensory characteristics. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101060] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
23
|
Herrera-Cazares LA, Ramírez-Jiménez AK, Luzardo-Ocampo I, Antunes-Ricardo M, Loarca-Piña G, Wall-Medrano A, Gaytán-Martínez M. Gastrointestinal metabolism of monomeric and polymeric polyphenols from mango (Mangifera indica L.) bagasse under simulated conditions. Food Chem 2021; 365:130528. [PMID: 34325350 DOI: 10.1016/j.foodchem.2021.130528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 05/30/2021] [Accepted: 07/01/2021] [Indexed: 11/19/2022]
Abstract
Mango bagasse (MB) is an agro-industrial by-product rich in bioactive polyphenols with potential application as a functional ingredient. This study aimed to delineate the metabolic fate of monomeric/polymeric MB polyphenols subjected to simulated gastrointestinal digestion. The main identified compounds by LC/MS-TOF-ESI were phenolic acids [gallic acid (GA) and derivates, and chlorogenic acid], gallotannins and derivatives [di-GA (DA) and 3GG-to-8GG], benzophenones [galloylated maclurins (MGH, MDH)], flavonoids [Quercetin (Quer) and (QuerH)] and xanthones [mangiferin isomers]. The bioaccessibility depended on the polyphenols' structure, being Quer, 5G to 8G the main drivers. The results suggested that the gastrointestinal fate of MB polyphenols is mainly governed by benzophenones and gallotannins degalloylation and spontaneous xanthone isomerization in vitro to sustain GA bioaccessibility.
Collapse
Affiliation(s)
- Luz Abril Herrera-Cazares
- Research and Graduate Program in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N. Col. Centro, 76010 Santiago de Querétaro, Qro., Mexico
| | - Aurea K Ramírez-Jiménez
- Tecnologico de Monterrey, School of Engineering and Science, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849, Monterrey, N.L., Mexico
| | - Ivan Luzardo-Ocampo
- Research and Graduate Program in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N. Col. Centro, 76010 Santiago de Querétaro, Qro., Mexico
| | - Marilena Antunes-Ricardo
- Tecnologico de Monterrey, School of Engineering and Science, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849, Monterrey, N.L., Mexico
| | - Guadalupe Loarca-Piña
- Research and Graduate Program in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N. Col. Centro, 76010 Santiago de Querétaro, Qro., Mexico
| | - Abraham Wall-Medrano
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Anillo Envolvente del PRONAF y Estocolmo s/n, 32310 Ciudad Juárez, Chihuahua, Mexico
| | - Marcela Gaytán-Martínez
- Research and Graduate Program in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N. Col. Centro, 76010 Santiago de Querétaro, Qro., Mexico.
| |
Collapse
|
24
|
Bavisetty SCB, Venkatachalam K. Physicochemical qualities and antioxidant properties of juice extracted from ripe and overripe wax apple as affected by pasteurization and sonication. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15524] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | - Karthikeyan Venkatachalam
- Faculty of Innovative Agriculture and Fishery Establishment Project Prince of Songkla University (Surat Thani Campus) Muang Surat Thani Thailand
| |
Collapse
|
25
|
Patel V, Tripathi AD, Adhikari KS, Srivastava A. Screening of physicochemical and functional attributes of fermented beverage (wine) produced from local mango ( Mangifera indica) varieties of Uttar Pradesh using novel saccharomyces strain. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2021; 58:2206-2215. [PMID: 32904843 PMCID: PMC7459154 DOI: 10.1007/s13197-020-04731-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Revised: 07/17/2020] [Accepted: 08/13/2020] [Indexed: 11/30/2022]
Abstract
Mango (Mangifera Indica L.) is a major tropical fruit rich in sugar, organic acids and flavonoids, making it suitable fruit for wine making. In the present study, five varieties of mango (Baganpalli, Langra, Dashehari, Alphonso, and Totapuri) were utilized for wine production using two different yeast strains namely, Saccharomyces cerevisiae MTCC 178 and isolated yeast. The physiochemical analysis of wine produced from chosen mango varieties showed that North Indian local mango variety (Dashehari) gave better results in terms of organoleptic and functional attributes. The Saccharomyces cerevisiae MTCC 178 treated Dashehari wine possessed 6.1 ± 0.26% TSS, 2.1 ± 0.08% reducing sugar, 0.657% titratable acidity, 0.11 ± 0.00% volatile acidity, 12% ethanol (v/v) and pH 3.7 ± 0.10 comparable to Baganpalli mango wine. HPLC analysis of Saccharomyces cerevisiae MTCC 178 inoculated Dashehari mango wine revealed the presence of primarily; gallic acid (RT-4.4 min), Galloyl-A-type, procyanidin (RT-5.2 min), 2,2,6-Trimethyl-6-vinyltetrahydropyran (RT-8.91 min), β-Pinene (RT-11.47 min) and Caffeoyl-quinic acid (RT-12.15 min) showing potential antioxidant, anti-cancerous, anti-inflammatory and antimicrobial properties. The local mango varieties wine showed significant (p < 0.05) physicochemical properties, antioxidant potential and ethanol content comparable to Baganpalli wine and was cost effective.
Collapse
Affiliation(s)
- Vikash Patel
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh 221005 India
| | - Abhishek Dutt Tripathi
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh 221005 India
| | | | - Anurag Srivastava
- Department of Molecular Biotechnology, University of Turin, Turin, Italy
| |
Collapse
|
26
|
Cubeddu A, Fava P, Pulvirenti A, Haghighi H, Licciardello F. Suitability Assessment of PLA Bottles for High-Pressure Processing of Apple Juice. Foods 2021; 10:foods10020295. [PMID: 33540544 PMCID: PMC7912795 DOI: 10.3390/foods10020295] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/18/2021] [Accepted: 01/29/2021] [Indexed: 11/16/2022] Open
Abstract
The aim of the present study is to assess the use of polylactic acid (PLA) bottles as an alternative to polyethylene terephthalate (PET) ones for high-pressure processing (HPP) of apple juice. The treatment of PLA bottles at 600 MPa for 3 min did not cause alterations in the packaging shape and content, confirming the suitability of PLA bottles to withstand HPP conditions as well as PET bottles. Quantification of total mesophilic bacterial and fungal load suggested HPP treatment can be effectively applied as an alternative to pasteurization for apple juice packed in PLA bottles since it guarantees microbial stability during at least 28 days of refrigerated storage. The headspace gas level did not change significantly during 28 days of refrigerated storage, irrespective of the bottle material. Color parameters (L*, a*, and b*) of the HPP-treated juice were similar to those of the fresh juice. Irrespective of the packaging type, the total color variation significantly changed during storage, showing an exponential increase in the first 14 days, followed by a steady state until the end of observations. Overall, PLA bottles proved to offer comparable performances to PET both in terms of mechanical resistance and quality maintenance.
Collapse
Affiliation(s)
- Arianna Cubeddu
- Department of Life Sciences, University of Modena and Reggio Emilia, 42122 Reggio Emilia, Italy; (A.C.); (P.F.); (A.P.); (H.H.)
| | - Patrizia Fava
- Department of Life Sciences, University of Modena and Reggio Emilia, 42122 Reggio Emilia, Italy; (A.C.); (P.F.); (A.P.); (H.H.)
- Interdepartmental Research Centre BIOGEST-SITEIA, University of Modena and Reggio Emilia, 42124 Reggio Emilia, Italy
| | - Andrea Pulvirenti
- Department of Life Sciences, University of Modena and Reggio Emilia, 42122 Reggio Emilia, Italy; (A.C.); (P.F.); (A.P.); (H.H.)
- Interdepartmental Research Centre BIOGEST-SITEIA, University of Modena and Reggio Emilia, 42124 Reggio Emilia, Italy
| | - Hossein Haghighi
- Department of Life Sciences, University of Modena and Reggio Emilia, 42122 Reggio Emilia, Italy; (A.C.); (P.F.); (A.P.); (H.H.)
| | - Fabio Licciardello
- Department of Life Sciences, University of Modena and Reggio Emilia, 42122 Reggio Emilia, Italy; (A.C.); (P.F.); (A.P.); (H.H.)
- Interdepartmental Research Centre BIOGEST-SITEIA, University of Modena and Reggio Emilia, 42124 Reggio Emilia, Italy
- Correspondence:
| |
Collapse
|
27
|
Chemical composition and physicochemical properties of mango juice extracted using polygalacturonase produced by Aspergillus awamori CICC 2040 on pretreated orange peel. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109891] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
28
|
Gasiński A, Kawa-Rygielska J, Szumny A, Czubaszek A, Gąsior J, Pietrzak W. Volatile Compounds Content, Physicochemical Parameters, and Antioxidant Activity of Beers with Addition of Mango Fruit ( Mangifera Indica). Molecules 2020; 25:molecules25133033. [PMID: 32630803 PMCID: PMC7411757 DOI: 10.3390/molecules25133033] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/01/2020] [Accepted: 07/01/2020] [Indexed: 02/03/2023] Open
Abstract
This study was performed to determine the possibility of using mango fruit (Mangifera indica) in brewing technology. The aim of using the SPME-HS-GC-MS technique was to assess what changes occurred in the volatile composition of mango beers brewed in this study. Mango fruit was added to the beer in five different forms to ascertain what kind of preparation should be used to improve beer aroma. Analysis of the volatile components in mango beer showed that beer without mango addition was characterized by the lowest content of volatile compounds (1787.84 µg/100 mL). The addition of mango fruit increased the concentration of compounds, such as α-pinene, β-myrcene, terpinolene, α-terpineol, cis-β-ocimene, caryophyllene, and humulene, in beer. Beer prepared with mango pulp addition was characterized by the highest concentration of volatile components from mango beers (2112.15 µg/100 mL). Furthermore, beers with mango addition were characterized by a higher polyphenol content (up to 44% higher than control beer) and antioxidant activity than control beer and were evaluated by a trained panel as having a better taste and aroma than beer without fruit addition.
Collapse
Affiliation(s)
- Alan Gasiński
- Department of Fermentation and Cereals Technology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Science, Chełmońskiego 37 Street, 51-630 Wroclaw, Poland; (J.K.-R.); (A.C.); (J.G.); (W.P.)
- Correspondence: ; Tel./Fax: +48-71-3209418
| | - Joanna Kawa-Rygielska
- Department of Fermentation and Cereals Technology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Science, Chełmońskiego 37 Street, 51-630 Wroclaw, Poland; (J.K.-R.); (A.C.); (J.G.); (W.P.)
| | - Antoni Szumny
- Department of Chemistry, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, C. K. Norwida street 25, 50-375 Wrocław, Poland;
| | - Anna Czubaszek
- Department of Fermentation and Cereals Technology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Science, Chełmońskiego 37 Street, 51-630 Wroclaw, Poland; (J.K.-R.); (A.C.); (J.G.); (W.P.)
| | - Justyna Gąsior
- Department of Fermentation and Cereals Technology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Science, Chełmońskiego 37 Street, 51-630 Wroclaw, Poland; (J.K.-R.); (A.C.); (J.G.); (W.P.)
| | - Witold Pietrzak
- Department of Fermentation and Cereals Technology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Science, Chełmońskiego 37 Street, 51-630 Wroclaw, Poland; (J.K.-R.); (A.C.); (J.G.); (W.P.)
| |
Collapse
|
29
|
Qureshi TM, Nadeem M, Maken F, Tayyaba A, Majeed H, Munir M. Influence of ultrasound on the functional characteristics of indigenous varieties of mango (Mangifera indica L.). ULTRASONICS SONOCHEMISTRY 2020; 64:104987. [PMID: 32006934 DOI: 10.1016/j.ultsonch.2020.104987] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 06/10/2023]
Abstract
The present study was conducted to evaluate the effect of ultrasonic (US) treatment on chemical characteristics and antioxidant potential of pulps obtained from eight mango varieties indigenous to Pakistan. There was a significant (p < 0.05) effect of varieties and US treatment on chemical characteristics i.e. pH, acidity, TSS, vitamin C contents, total sugars (%), reducing sugars (%) and non-reducing sugars (%). Microstructure evaluation of pulp from all mango varieties showed deshaped middle lamella and cell wall of cells after 8 min of US treatment. At 4 min of US treatment as per shaped cell wall and middle lamella, the chemical characteristics and antioxidant potential were higher. The total phenolics (TP), flavonoids (TF) and total antioxidant activity (TAA) of pulp from most varieties increased significantly (p < 0.05) after US treatment for 4 min but decreased successively after each treatment i.e. 8 and 12 min. The maximum value (314.17 μg AAE/mL pulp) of DPPH was shown by pulp from Dosehri and the minimum (158.67 μg AAE/mL pulp) was found in pulp from Langra before US treatment. The DPPH values of pulp from most of the varieties increased significantly (p < 0.05) after US treatment for 4 min but decreased successively after each treatment but pulp from Langra showed increasing trend after 8 min of US treatment which decreased after 12 min of treatment. The total anthocyanin (TA) values of pulp from Chaunsa, Dosehri, Sindhri, Gulab Khas and Langra increased abruptly after US treatment for 4 min but decreased successively after subsequent treatment. The pulp from Desi, Anwar Ratol, Gulab Khas and Langra showed an abrupt decrease in TA after 8 min of US treatment. An increasing trend of values of total carotenoids (TC) was shown by pulp from all mango varieties after 4 min of US treatment but decreasing trend was observed with subsequent increase in time of US treatment.
Collapse
Affiliation(s)
- Tahir Mahmood Qureshi
- Department of Food Sciences, Cholistan University of Veterinary & Animal Sciences, Bahawalpur, Pakistan.
| | - Muhammad Nadeem
- Institute of Food Science and Nutrition, University of Sargodha, Pakistan
| | - Farzana Maken
- Institute of Food Science and Nutrition, University of Sargodha, Pakistan
| | - Anum Tayyaba
- Institute of Food Science and Nutrition, University of Sargodha, Pakistan
| | - Hamid Majeed
- Department of Food Sciences, Cholistan University of Veterinary & Animal Sciences, Bahawalpur, Pakistan
| | - Masooma Munir
- Food Science Research Institute, National Agricultural Research Centre, Islamabad, Pakistan
| |
Collapse
|
30
|
Safety, Quality, and Processing of Fruits and Vegetables. Foods 2019; 8:foods8110569. [PMID: 31766141 PMCID: PMC6915616 DOI: 10.3390/foods8110569] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/11/2019] [Accepted: 11/11/2019] [Indexed: 01/30/2023] Open
Abstract
Nowadays, one of the main objectives of the fruit and vegetable industry is to develop innovative novel products with high quality, safety, and optimal nutritional characteristics in order to respond with efficiency to the increasing consumer expectations. Various emerging, unconventional technologies (e.g., pulsed electric field, pulsed light, ultrasound, high pressure, and microwave drying) enable the processing of fruits and vegetables, increasing their stability while preserving their thermolabile nutrients, flavour, texture, and overall quality. Some of these technologies can also be used for waste and by-product valorisation. The application of fast noninvasive methods for process control is of great importance for the fruit and vegetable industry. The following Special Issue “Safety, Quality, and Processing of Fruits and Vegetables” consists of 11 papers, which provide a high-value contribution to the existing knowledge on safety aspects, quality evaluation, and emerging processing technologies for fruits and vegetables.
Collapse
|