1
|
Zhou Y, Xu J, Fan X, Xia Q, Zhou C, Hu Y, Yan H, Sun Y, Pan D. Effect of pulsed electric field pretreatment synergistic mixed bacterial agent fermentation on the flavor and quality of air-dried goose meat and its molecular mechanism. Poult Sci 2025; 104:104926. [PMID: 40014970 PMCID: PMC11910709 DOI: 10.1016/j.psj.2025.104926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/16/2025] [Accepted: 02/18/2025] [Indexed: 03/01/2025] Open
Abstract
In this study, the effect of pulsed electric field (PEF) pretreatment synergistic mixed bacterial agent (Lactiplantibacillus plantarum PDD-1 and Lactococcus lactis subsp. lactis JCM5805) fermentation on the flavor and quality of air-dried goose meat and its molecular mechanism were investigated. The results showed that PEF combined with the mixed bacteria fermentation increased activity of monoamine oxidase (232.57 U/mg protein), decreased TBARS (0.3 mg/kg) and TVB-N (15.75 mg/100 g) content, and the hardness and chewiness in air-dried goose. The improvement in flavor due to the synergistic fermentation following PEF pretreatment was primarily attributed to increased levels of aromatic compounds such as Heptanal (green, sweet), (Z)-3-Hexenyl acetate (green fruity), 3-(methylthio)-propanol (onion, bouillion-like note), alongside decreased levels of off-flavor compounds like methyl phenylacetate and 5-methyl-2-acetylfuran, as determined by the e-nose and GC-IMS. Colony counts and high-throughput sequencing demonstrated that Lactococcus and Staphylococcus predominated as the primary bacterial species, with different bioma onion, bouillion-like note rkers present in different air-dried goose groups. This is of strategic importance to develop the unique flavor and quality guarantee of air-dried goose.
Collapse
Affiliation(s)
- Yujing Zhou
- State Key Laboratory of Agricultural Products Safety, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Jue Xu
- State Key Laboratory of Agricultural Products Safety, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Xiankang Fan
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410114, China.
| | - Qiang Xia
- State Key Laboratory of Agricultural Products Safety, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Changyu Zhou
- State Key Laboratory of Agricultural Products Safety, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Yangyang Hu
- State Key Laboratory of Agricultural Products Safety, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Hongbing Yan
- Hangzhou Dakang Pickled Food Co., Ltd., 175 Zhonghe Road, Renhe Street, Yuhang District, Hangzhou, Zhejiang Province, China
| | - Yangying Sun
- State Key Laboratory of Agricultural Products Safety, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Daodong Pan
- State Key Laboratory of Agricultural Products Safety, Ningbo University, Ningbo, Zhejiang 315211, China; College of Food Science and Engineering, Ningbo University, Ningbo 315800, China.
| |
Collapse
|
2
|
Zhu C, Xu Y, Wang D. Magnesium ions enhance biogenic amine degradation by Pichia kudriavzevii MZ5: Insights from transcriptomics and novel recombinant enzyme expression. Int J Biol Macromol 2025; 306:141617. [PMID: 40024410 DOI: 10.1016/j.ijbiomac.2025.141617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/12/2025] [Accepted: 02/27/2025] [Indexed: 03/04/2025]
Abstract
The modification of enzymes by Mg2+ may enhance their functional properties. In this study, we investigated the role of Mg2+ in the degradation of biogenic amines (BAs) using yeast enzymes. Research has found that adding 0.2 g/L Mg2+ significantly enhances the degradation efficiency of Pichia kudriavzevii MZ5 towards BAs, increasing the degradation rates of histamine and tyramine by 6.6 times and 5.4 times, respectively. Through transcriptome analysis and NCBI database screening, the gene 0PichiaG024360, homologous to the known laccase gene 18-L-14 and specific to P. kudriavzevii, was identified and shown to have 2.8 times higher expression in Mg2+-treated yeast. Kyoto Encyclopedia of Genes and Genomes analysis indicated that Mg2+ activates energy and amino acid metabolism pathways, thereby enhancing BA degradation. The PichiaZGC2436 enzyme encoded by the 0PichiaG024360 gene was expressed in Escherichia coli BL-21(DE3) and showed stability at pH 4.5-6 and 25-37 °C, optimal pH at 4.5 and optimal temperature at 37 °C. This enzyme degraded several BAs, achieving a 93 % total amine degradation rate within 48 h, including 54.1 % histamine degradation and 100 % tryptamine, phenylethylamine, cadaverine, spermidine, and spermine degradation. These findings suggest a new strategy for enhancing yeast-mediated BA degradation using Mg2+ to improve the quality and safety of fermented foods.
Collapse
Affiliation(s)
- Cuicui Zhu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266404, PR China
| | - Ying Xu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266404, PR China.
| | - Dongfeng Wang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266404, PR China
| |
Collapse
|
3
|
Banicod RJS, Ntege W, Njiru MN, Abubakar WH, Kanthenga HT, Javaid A, Khan F. Production and transformation of biogenic amines in different food products by the metabolic activity of the lactic acid bacteria. Int J Food Microbiol 2025; 428:110996. [PMID: 39615409 DOI: 10.1016/j.ijfoodmicro.2024.110996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 12/12/2024]
Abstract
Protein-rich diets often contain high quantities of biogenic amines (BAs), notably histamine and tyramine, which pose substantial health hazards owing to their toxicity. BAs are primarily produced by the microbial decarboxylation of free amino acids. Lactic acid bacteria (LAB) can either produce BAs using substrate-specific decarboxylase enzymes or degrade them into non-toxic compounds using amine-degrading enzymes such as amine oxidase and multicopper oxidase. Furthermore, LAB may inhibit BA-producing microbes by generating bioactive metabolites, including organic acids and bacteriocins. This paper thoroughly explores the processes underlying BA production and degradation in LAB, with a focus on the diversity of enzymes involved. Metabolic mapping of LAB strains at the genus and species levels reveals their involvement in BA metabolism, from production to degradation. The phylogenetic-based evolutionary relatedness of BA-producing and BA-degrading enzymes among LAB strains sheds light on their functional adaptability to various metabolic needs and ecological settings. These findings have significant practical implications for establishing better microbial management strategies in food production, particularly through strategically using starter or bioprotective cultures to reduce BA buildup. By highlighting the evolutionary and metabolic diversity of LAB, this review helps to optimize industrial fermentation processes, improve food safety protocols, and advance future research and innovation in BA management, ultimately protecting consumer health and supporting regulatory compliance.
Collapse
Affiliation(s)
- Riza Jane S Banicod
- KOICA-PKNU International Graduate Program of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea; Fisheries Postharvest Research and Development Division, National Fisheries Research and Development Institute, Quezon City 1103, Philippines
| | - Wilson Ntege
- KOICA-PKNU International Graduate Program of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea; Fisheries Control Regulation and Quality Assurance, Ministry of Agriculture, Animal Industry and Fisheries, Entebbe 10101, Uganda
| | - Moses Njeru Njiru
- KOICA-PKNU International Graduate Program of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea; Department of Fisheries and Aquaculture, Turkana County Government, Lodwar 30500, Kenya
| | - Woru Hamzat Abubakar
- KOICA-PKNU International Graduate Program of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea; Aquaculture and Biotechnology Department, National Institute for Freshwater Fisheries Research, New Bussa, Niger State 913003, Nigeria
| | - Hopeful Tusalifye Kanthenga
- KOICA-PKNU International Graduate Program of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea; Department of Fisheries, Malawi College of Fisheries, Mangochi 301401, Malawi
| | - Aqib Javaid
- Department of Biotechnology and Bioinformatics, University of Hyderabad, India
| | - Fazlurrahman Khan
- Ocean and Fisheries Development International Cooperation Institute, Pukyong National University, Busan 48513, Republic of Korea; International Graduate Program of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea; Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea.
| |
Collapse
|
4
|
Moreira L, Milheiro J, Filipe-Ribeiro L, Cosme F, Nunes FM. Exploring factors influencing the levels of biogenic amines in wine and microbiological strategies for controlling their occurrence in winemaking. Food Res Int 2024; 190:114558. [PMID: 38945562 DOI: 10.1016/j.foodres.2024.114558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/22/2024] [Accepted: 05/26/2024] [Indexed: 07/02/2024]
Abstract
Fermented beverages, including wine, can accumulate high concentrations of biogenic amines (BAs), which can pose potential health risks. BAs are produced by various yeasts and lactic acid bacteria (LAB) during winemaking. LAB are the main contributors to the formation of histamine and tyramine, the most toxic and food safety relevant biogenic amines. Numerous factors, ranging from agricultural and oenological practices to sanitation conditions, can contribute to the formation of BAs in wines. Moreover, organic and biodynamic wines impose limitations on the use of common food additives employed to control the proliferation of native and spoilage microorganisms during vinification and storage. To mitigate histamine production, commercial starter cultures incapable of synthesising histamine have been effectively utilised to reduce wine histamine content. Alternative fermentative microorganisms are currently under investigation to enhance the safety, quality, and typicity of wines, including indigenous LAB, non-Saccharomyces yeasts, and BAs degrading strains. Furthermore, exploration of extracts from BAs-degrading microorganisms and their purified enzymes has been undertaken to reduce BAs levels in wines. This review highlights microbial contributors to BAs in wines, factors affecting their growth and BA production, and alternative microorganisms that can degrade or avoid BAs. The aim is to lessen reliance on additives, providing consumers with safer wine choices.
Collapse
Affiliation(s)
- Luís Moreira
- Chemistry Research Centre - Vila Real (CQ-VR), Food and Wine Chemistry Lab, University of Trás-os-Montes and Alto Douro, School of Life Sciences and Environment, 5000-801 Vila Real, Portugal
| | - Juliana Milheiro
- Chemistry Research Centre - Vila Real (CQ-VR), Food and Wine Chemistry Lab, University of Trás-os-Montes and Alto Douro, School of Life Sciences and Environment, 5000-801 Vila Real, Portugal
| | - Luís Filipe-Ribeiro
- Chemistry Research Centre - Vila Real (CQ-VR), Food and Wine Chemistry Lab, University of Trás-os-Montes and Alto Douro, School of Life Sciences and Environment, 5000-801 Vila Real, Portugal
| | - Fernanda Cosme
- Chemistry Research Centre - Vila Real (CQ-VR), Food and Wine Chemistry Lab, Biology and Environment Department, University of Trás-os-Montes and Alto Douro, School of Life Sciences and Environment, 5000-801 Vila Real, Portugal
| | - Fernando M Nunes
- Chemistry Research Centre - Vila Real (CQ-VR), Food and Wine Chemistry Lab, Chemistry Department, University of Trás-os-Montes and Alto Douro, School of Life Sciences and Environment, 5000-801 Vila Real, Portugal.
| |
Collapse
|
5
|
Liao H, Asif H, Huang X, Luo Y, Xia X. Mitigation of microbial nitrogen-derived metabolic hazards as a driver for safer alcoholic beverage choices: An evidence-based review and future perspectives. Compr Rev Food Sci Food Saf 2023; 22:5020-5062. [PMID: 37823801 DOI: 10.1111/1541-4337.13253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/13/2023]
Abstract
Alcoholic beverages have been enjoyed worldwide as hedonistic commodities for thousands of years. The unique quality and flavor are attributed to the rich microbiota and nutritional materials involved in fermentation. However, the metabolism of these microbiota can also introduce toxic compounds into foods. Nitrogen-derived metabolic hazards (NMH) are toxic metabolic hazards produced by microorganisms metabolizing nitrogen sources that can contaminate alcoholic beverages during fermentation and processing. NMH contamination poses a risk to dietary safety and human health without effective preventive strategies. Existing literature has primarily focused on investigating the causes of NMH formation, detection methods, and abatement techniques for NMH in fermentation end-products. Devising effective process regulation strategies represents a major challenge for the alcoholic beverage industry considering our current lack of understanding regarding the processes whereby NMH are generated, real-time and online detection, and the high degradation rate after NMH formation. This review summarizes the types and mechanisms of nitrogenous hazard contamination, the potential risk points, and the analytical techniques to detect NMH contamination. We discussed the changing patterns of NMH contamination and effective strategies to prevent contamination at different stages in the production of alcoholic beverages. Moreover, we also discussed the advanced technologies and methods to control NMH contamination in alcoholic beverages based on intelligent monitoring, synthetic ecology, and computational assistance. Overall, this review highlights the risks of NMH contamination during alcoholic beverage production and proposes promising strategies that could be adopted to eliminate the risk of NMH contamination.
Collapse
Affiliation(s)
- Hui Liao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, P. R. China
| | - Hussain Asif
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, P. R. China
| | - Xinlei Huang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, P. R. China
| | - Yi Luo
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, P. R. China
| | - Xiaole Xia
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, P. R. China
| |
Collapse
|
6
|
Liu S, Zhang ZF, Mao J, Zhou Z, Zhang J, Shen C, Wang S, Marco ML, Mao J. Integrated meta-omics approaches reveal Saccharopolyspora as the core functional genus in huangjiu fermentations. NPJ Biofilms Microbiomes 2023; 9:65. [PMID: 37726290 PMCID: PMC10509236 DOI: 10.1038/s41522-023-00432-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 08/24/2023] [Indexed: 09/21/2023] Open
Abstract
Identification of the core functional microorganisms in food fermentations is necessary to understand the ecological and functional processes for making those foods. Wheat qu, which provides liquefaction and saccharifying power, and affects the flavor quality, is a key ingredient in ancient alcoholic huangjiu fermentation, while core microbiota of them still remains indistinct. In this study, metagenomics, metabolomics, microbial isolation and co-fermentation were used to investigate huangjiu. Although Aspergillus is usually regarded as core microorganism in wheat qu to initiate huangjiu fermentations, our metagenomic analysis showed that bacteria Saccharopolyspora are predominant in wheat qu and responsible for breakdown of starch and cellulose. Metabolic network and correlation analysis showed that Saccharopolyspora rectivirgula, Saccharopolyspora erythraea, and Saccharopolyspora hirsuta made the greatest contributions to huangjiu's metabolites, consisting of alcohols (phenylethanol, isoamylol and isobutanol), esters, amino acids (Pro, Arg, Glu and Ala) and organic acids (lactate, tartrate, acetate and citrate). S. hirsuta J2 isolated from wheat qu had the highest amylase, glucoamylase and protease activities. Co-fermentations of S. hirsuta J2 with S. cerevisiae HJ resulted in a higher fermentation rate and alcohol content, and huangjiu flavors were more similar to that of traditional huangjiu compared to co-fermentations of Aspergillus or Lactiplantibacillus with S. cerevisiae HJ. Genome of S. hirsuta J2 contained genes encoding biogenic amine degradation enzymes. By S. hirsuta J2 inoculation, biogenic amine content was reduced by 45%, 43% and 62% in huangjiu, sausage and soy sauce, respectively. These findings show the utility of Saccharopolyspora as a key functional organism in fermented food products.
Collapse
Affiliation(s)
- Shuangping Liu
- National Engineering Laboratory for Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
- Shaoxing Key Laboratory of Traditional Fermentation Food and Human Health, Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, Zhejiang, 312000, China
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine CO., LTD, Shaoxing, Zhejiang, 312000, China
| | - Zhi-Feng Zhang
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Jieqi Mao
- Department of Food Science and Technology, National University of Singapore, Science Drive 2, 117542, Singapore, Singapore
| | - Zhilei Zhou
- National Engineering Laboratory for Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
- Shaoxing Key Laboratory of Traditional Fermentation Food and Human Health, Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, Zhejiang, 312000, China
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine CO., LTD, Shaoxing, Zhejiang, 312000, China
| | - Jing Zhang
- National Engineering Laboratory for Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Caihong Shen
- National Engineering Research Center of Solid-State Brewing, Luzhou, China
| | - Songtao Wang
- National Engineering Research Center of Solid-State Brewing, Luzhou, China
| | - Maria L Marco
- Department of Food Science and Technology, University of California, Davis, CA, USA.
| | - Jian Mao
- National Engineering Laboratory for Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
- Shaoxing Key Laboratory of Traditional Fermentation Food and Human Health, Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, Zhejiang, 312000, China.
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine CO., LTD, Shaoxing, Zhejiang, 312000, China.
| |
Collapse
|
7
|
Microbial toxins in fermented foods: health implications and analytical techniques for detection. J Food Drug Anal 2022; 30:523-537. [PMID: 36753631 PMCID: PMC9910295 DOI: 10.38212/2224-6614.3431] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/09/2022] [Indexed: 11/27/2022] Open
Abstract
Recently, demand for fermented foods has increased due to their improved nutritional value, taste, and health-promoting properties. Worldwide consumption of these products is increasing. Fermented foods are generally safe for human consumption. However, some toxins, primarily biogenic amines (putrescine, phenylethylamine, histamine, tyramine, and cadaverine), mycotoxins (fumonisins, aflatoxins, ochratoxin A, zearalenone, and trichothecenes), and bacterial toxins (endotoxins, enterotoxins, and emetic toxins) can be produced as a result of using an inappropriate starter culture, processing conditions, and improper storage. These toxins can cause a multitude of foodborne illnesses and can lead to cardiovascular aberration and adverse gastrointestinal symptoms. Analytical techniques are in use for the detection of toxins in fermented foods for monitoring and control purposes. These include culture, chromatographic, immunoassays, and nano sensor-based techniques. These detection techniques can be used during the production process and along the food chain. On an industrial scale, HPLC is widely used for sensitive quantification of toxins in fermented foods. Recently, biosensor and nano sensor-based techniques have gained popularity due to accuracy, time efficiency, and simultaneous detection of multiple toxins. Other strategic methods being investigated for the removal of toxins from fermented foods include the use of specific starter cultures for bio-preservation, aflatoxin-binding, and biogenic amine-degradation agents that may help to appropriately manage the food safety concerns associated with fermented foods.
Collapse
|
8
|
Liu S, Yao H, Sun M, Zhou Z, Mao J. Heterologous expression and characterization of amine oxidases from Saccharopolyspora to reduce biogenic amines in huangjiu. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
9
|
Gao X, Li C, He R, Zhang Y, Wang B, Zhang ZH, Ho CT. Research advances on biogenic amines in traditional fermented foods: Emphasis on formation mechanism, detection and control methods. Food Chem 2022. [DOI: 10.1016/j.foodchem.2022.134911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
10
|
KAREENA A, SIRIPONGVUTIKORN S, USAWAKESMANEE W, WICHIENCHOT S. In vitro evaluation of probiotic bacteria and yeast growth, pH changes and metabolites produced in a pure culture system using protein base products with various added carbon sources. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.18321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
11
|
Tian S, Zeng W, Fang F, Zhou J, Du G. The microbiome of Chinese rice wine (Huangjiu). Curr Res Food Sci 2022; 5:325-335. [PMID: 35198991 PMCID: PMC8844729 DOI: 10.1016/j.crfs.2022.01.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/30/2021] [Accepted: 01/09/2022] [Indexed: 12/30/2022] Open
|
12
|
Liu S, Sun H, Liu C, Zhou Z, Mao J, Hu Z, Xu X, Han X, Zhang S, Mao J. Reducing biogenic amine in seriflux and huangjiu by recycling of seriflux inoculated with Lactobacillus plantarum JN01. Food Res Int 2021; 150:110793. [PMID: 34865808 DOI: 10.1016/j.foodres.2021.110793] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 09/22/2021] [Accepted: 10/24/2021] [Indexed: 01/19/2023]
Abstract
High content of biogenic amine (BA) in huangjiu could pose serious quality concerns. More than 71% of BA in huangjiu were carried over from seriflux (rice soaking wastewater), which were produced by some BA producing bacteria during rice soaking process. A BA non-producing strain, Lactobacillus plantarum JN01, was introduced to rice soaking process, which decreased BA content in seriflux by 93.8% by niche competition at bench scale. Recycling of seriflux inoculated with L. plantarum JN01 at pilot run scale for ten batches demonstrated that BA in seriflux and huangjiu were reduced by 78.4% and 87.7%, respectively. The safety of huangjiu was enormously improved without affecting on the profiles of flavor compounds. Our results demostrated that seriflux recycling technology could reduce 50% of water consumption and achieve "zero effluents" in rice soaking process, which might potentially be a "green technology" not only for huangjiu brewing industry, but also for other related traditional fermented food industries.
Collapse
Affiliation(s)
- Shuangping Liu
- National Engineering Laboratory for Cereal Fermentation Technology, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; Shaoxing Key Laboratory of Traditional Fermentation Food and Human Health, Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, Zhejiang 312000, China; National Engineering Research Center of Chinese Rice Wine, Zhejiang Guyuelongshan Shaoxing Wine Co., Ltd, Shaoxing, Zhejiang, China.
| | - Hailong Sun
- National Engineering Laboratory for Cereal Fermentation Technology, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; Shaoxing Key Laboratory of Traditional Fermentation Food and Human Health, Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, Zhejiang 312000, China; National Engineering Research Center of Chinese Rice Wine, Zhejiang Guyuelongshan Shaoxing Wine Co., Ltd, Shaoxing, Zhejiang, China
| | - Caixia Liu
- National Engineering Laboratory for Cereal Fermentation Technology, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; Shaoxing Key Laboratory of Traditional Fermentation Food and Human Health, Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, Zhejiang 312000, China
| | - Zhilei Zhou
- National Engineering Laboratory for Cereal Fermentation Technology, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; Shaoxing Key Laboratory of Traditional Fermentation Food and Human Health, Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, Zhejiang 312000, China; National Engineering Research Center of Chinese Rice Wine, Zhejiang Guyuelongshan Shaoxing Wine Co., Ltd, Shaoxing, Zhejiang, China
| | - Jieqi Mao
- College of Agriculture and Environmental Sciences, University of California, Davis, USA
| | - Zhiming Hu
- Shaoxing Nuerhong winery Co. Ltd, Shaoxing, Zhejiang 312000, China
| | - Xibiao Xu
- Shaoxing Nuerhong winery Co. Ltd, Shaoxing, Zhejiang 312000, China
| | - Xiao Han
- National Engineering Laboratory for Cereal Fermentation Technology, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; Shaoxing Key Laboratory of Traditional Fermentation Food and Human Health, Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, Zhejiang 312000, China; National Engineering Research Center of Chinese Rice Wine, Zhejiang Guyuelongshan Shaoxing Wine Co., Ltd, Shaoxing, Zhejiang, China
| | - Songjing Zhang
- Shaoxing Key Laboratory of Traditional Fermentation Food and Human Health, Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, Zhejiang 312000, China
| | - Jian Mao
- National Engineering Laboratory for Cereal Fermentation Technology, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; Shaoxing Key Laboratory of Traditional Fermentation Food and Human Health, Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, Zhejiang 312000, China; National Engineering Research Center of Chinese Rice Wine, Zhejiang Guyuelongshan Shaoxing Wine Co., Ltd, Shaoxing, Zhejiang, China.
| |
Collapse
|
13
|
Zhang J, Ji C, Han J, Zhao Y, Lin X, Liang H, Zhang S. Inhibition of biogenic amines accumulation during Yucha fermentation by autochthonous
Lactobacillus plantarum
strains. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15291] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jingbo Zhang
- School of Food Science and Technology Dalian Polytechnic University Dalian PR China
- National Engineering Research Center of Seafood Dalian PR China
| | - Chaofan Ji
- School of Food Science and Technology Dalian Polytechnic University Dalian PR China
- National Engineering Research Center of Seafood Dalian PR China
- Collaborative Innovation Center of Seafood Deep Processing Dalian Polytechnic University Dalian PR China
| | - Jing Han
- School of Food Science and Technology Dalian Polytechnic University Dalian PR China
- National Engineering Research Center of Seafood Dalian PR China
| | - Yunsong Zhao
- School of Food Science and Technology Dalian Polytechnic University Dalian PR China
- National Engineering Research Center of Seafood Dalian PR China
| | - Xinping Lin
- School of Food Science and Technology Dalian Polytechnic University Dalian PR China
- National Engineering Research Center of Seafood Dalian PR China
- Collaborative Innovation Center of Seafood Deep Processing Dalian Polytechnic University Dalian PR China
| | - Huipeng Liang
- School of Food Science and Technology Dalian Polytechnic University Dalian PR China
- National Engineering Research Center of Seafood Dalian PR China
- Collaborative Innovation Center of Seafood Deep Processing Dalian Polytechnic University Dalian PR China
| | - Sufang Zhang
- School of Food Science and Technology Dalian Polytechnic University Dalian PR China
- National Engineering Research Center of Seafood Dalian PR China
- Collaborative Innovation Center of Seafood Deep Processing Dalian Polytechnic University Dalian PR China
| |
Collapse
|
14
|
Shi C, Liu M, Zhao H, Liang L, Zhang B. Formation and Control of Biogenic Amines in Sufu-A Traditional Chinese Fermented Soybean Product: A Critical Review. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1936002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Chenshan Shi
- Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Miaomiao Liu
- Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Hongfei Zhao
- Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Lisong Liang
- State Key Laboratory of Tree Genetics and Breeding/Research Institute of Forestry, Chinese Academy of Forestry, Beijing China
| | - Bolin Zhang
- Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| |
Collapse
|
15
|
Biodiversity of Oenological Lactic Acid Bacteria: Species- and Strain-Dependent Plus/Minus Effects on Wine Quality and Safety. FERMENTATION 2021. [DOI: 10.3390/fermentation7010024] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Winemaking depends on several elaborate biochemical processes that see as protagonist either yeasts or lactic acid bacteria (LAB) of oenological interest. In particular, LAB have a fundamental role in determining the quality chemical and aromatic properties of wine. They are essential not only for malic acid conversion, but also for producing several desired by-products due to their important enzymatic activities that can release volatile aromatic compounds during malolactic fermentation (e.g., esters, carbonyl compounds, thiols, monoterpenes). In addition, LAB in oenology can act as bioprotectors and reduce the content of undesired compounds. On the other hand, LAB can affect wine consumers’ health, as they can produce harmful compounds such as biogenic amines and ethyl carbamate under certain conditions during fermentation. Several of these positive and negative properties are species- and strain-dependent characteristics. This review focuses on these aspects, summarising the current state of knowledge on LAB’s oenological diversity, and highlighting their influence on the final product’s quality and safety. All our reported information is of high interest in searching new candidate strains to design starter cultures, microbial resources for traditional/typical products, and green solutions in winemaking. Due to the continuous interest in LAB as oenological bioresources, we also underline the importance of inoculation timing. The considerable variability among LAB species/strains associated with spontaneous consortia and the continuous advances in the characterisation of new species/strains of interest for applications in the wine sector suggest that the exploitation of biodiversity belonging to this heterogeneous group of bacteria is still rising.
Collapse
|
16
|
Wang J, Zhang X, Li X, Yu Z, Hu J, Zhu Y. Effects of plant extracts on biogenic amine accumulation, bacterial abundance and diversity in fermented sausage. CYTA - JOURNAL OF FOOD 2021. [DOI: 10.1080/19476337.2021.1984994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Ji Wang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, China
| | - Xin Zhang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, China
| | - Xiaohong Li
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, China
| | - Zhihui Yu
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, China
| | - Jingrong Hu
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, China
| | - Yingchun Zhu
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, China
| |
Collapse
|
17
|
Moradi M, Kousheh SA, Almasi H, Alizadeh A, Guimarães JT, Yılmaz N, Lotfi A. Postbiotics produced by lactic acid bacteria: The next frontier in food safety. Compr Rev Food Sci Food Saf 2020; 19:3390-3415. [PMID: 33337065 DOI: 10.1111/1541-4337.12613] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/04/2020] [Accepted: 07/16/2020] [Indexed: 12/18/2022]
Abstract
There are many critical challenges in the use of primary and secondary cultures and their biological compounds in food commodities. An alternative is the application of postbiotics from the starter and protective lactic acid bacteria (LAB). The concept of postbiotics is relatively new and there is still not a recognized definition for this term. The word "postbiotics" is currently used to refer to bioactive compounds, which did not fit to the traditional definitions of probiotics, prebiotics, and paraprobiotics. Therefore, the postbiotics may be presently defined as bioactive soluble factors (products or metabolic byproducts), produced by some food-grade microorganisms during the growth and fermentation in complex microbiological culture (in this case named cell-free supernatant), food, or gut, which exert some benefits to the food or the consumer. Many LAB are considered probiotic and their postbiotic compounds present similar or additional health benefits to the consumer; however, this review aimed to address the most recent applications of the postbiotics with food safety purposes. The potential applications of postbiotics in food biopreservation, food packaging, and biofilm control were reviewed. The current uses of postbiotics in the reduction and biodegradation of some food safety-related chemical contaminants (e.g., biogenic amines) were considered. We also discussed the safety aspects, the obstacles, and future perspectives of using postbiotics in the food industry. This work will open up new insights for food applications of postbiotics prepared from LAB.
Collapse
Affiliation(s)
- Mehran Moradi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Seyedeh Alaleh Kousheh
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Hadi Almasi
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Arash Alizadeh
- Division of Pharmacology and Toxicology, Department of Basic Science, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Jonas T Guimarães
- Department of Food Technology, Faculty of Veterinary Medicine, Federal Fluminense University (UFF), Niterói, Brazil
| | - Nurten Yılmaz
- Department of Animal Science, Faculty of Agriculture, Cukurova University, Adana, Turkey
| | - Anita Lotfi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| |
Collapse
|
18
|
López-Seijas J, García-Fraga B, da Silva AF, Zas-García X, Lois LC, Gago-Martínez A, Leão-Martins JM, Sieiro C. Evaluation of Malolactic Bacteria Associated with Wines from Albariño Variety as Potential Starters: Screening for Quality and Safety. Foods 2020; 9:foods9010099. [PMID: 31963478 PMCID: PMC7022644 DOI: 10.3390/foods9010099] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/03/2020] [Accepted: 01/13/2020] [Indexed: 01/01/2023] Open
Abstract
The biodiversity of lactic acid bacteria in musts and wines of Albariño variety has been studied. The identification of species was addressed through a combination of biochemical and genetic methods (API® 50 CHL test, 16S rDNA and recA gene sequences, Amplified Ribosomal DNA Restriction Analysis -ARDRA- and 16S-26S intergenic region analysis). The results grouped the isolates into six species predominating those of the genus Lactobacillus and showing a typical biogeographical distribution. Among sixteen strains evaluated, eight of them showed malolactic activity. The study of the presence of genes hdc, odc, and tdc, along with the LC/MS-MS analysis of biogenic amines in wine, showed five strains lacking aminogenic ability. The absence of the pad gene in the above-mentioned strains discards its ability to produce volatile phenols that may adversely affect the aroma. Finally, all malolactic strains showed β-glucosidase activity so that they could contribute to enhance and differentiate the aromatic profile of Albariño wines.
Collapse
Affiliation(s)
- Jacobo López-Seijas
- Department of Functional Biology and Health Sciences, Microbiology Area, University of Vigo, Lagoas–Marcosende, 36310 Vigo, Spain; (J.L.-S.); (B.G.-F.); (A.F.d.S.)
| | - Belén García-Fraga
- Department of Functional Biology and Health Sciences, Microbiology Area, University of Vigo, Lagoas–Marcosende, 36310 Vigo, Spain; (J.L.-S.); (B.G.-F.); (A.F.d.S.)
| | - Abigail F. da Silva
- Department of Functional Biology and Health Sciences, Microbiology Area, University of Vigo, Lagoas–Marcosende, 36310 Vigo, Spain; (J.L.-S.); (B.G.-F.); (A.F.d.S.)
| | - Xavier Zas-García
- Department of Research & Development of Cellar “Condes de Albarei”, Lugar A Bouza 1, 36639 Cambados, Spain; (X.Z.-G.); (L.C.L.)
| | - Lucía C. Lois
- Department of Research & Development of Cellar “Condes de Albarei”, Lugar A Bouza 1, 36639 Cambados, Spain; (X.Z.-G.); (L.C.L.)
| | - Ana Gago-Martínez
- Department of Analytical and Food Chemistry, University of Vigo, Lagoas–Marcosende, 36310 Vigo, Spain; (A.G.-M.); (J.M.L.-M.)
| | - José Manuel Leão-Martins
- Department of Analytical and Food Chemistry, University of Vigo, Lagoas–Marcosende, 36310 Vigo, Spain; (A.G.-M.); (J.M.L.-M.)
| | - Carmen Sieiro
- Department of Functional Biology and Health Sciences, Microbiology Area, University of Vigo, Lagoas–Marcosende, 36310 Vigo, Spain; (J.L.-S.); (B.G.-F.); (A.F.d.S.)
- Correspondence:
| |
Collapse
|
19
|
Climate Changes and Food Quality: The Potential of Microbial Activities as Mitigating Strategies in the Wine Sector. FERMENTATION-BASEL 2019. [DOI: 10.3390/fermentation5040085] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Climate change threatens food systems, with huge repercussions on food security and on the safety and quality of final products. We reviewed the potential of food microbiology as a source of biotechnological solutions to design climate-smart food systems, using wine as a model productive sector. Climate change entails considerable problems for the sustainability of oenology in several geographical regions, also placing at risk the wine typicity. The main weaknesses identified are: (i) The increased undesired microbial proliferation; (ii) the improved sugars and, consequently, ethanol content; (iii) the reduced acidity and increased pH; (iv) the imbalanced perceived sensory properties (e.g., colour, flavour); and (v) the intensified safety issues (e.g., mycotoxins, biogenic amines). In this paper, we offer an overview of the potential microbial-based strategies suitable to cope with the five challenges listed above. In terms of microbial diversity, our principal focus was on microorganisms isolated from grapes/musts/wines and on microbes belonging to the main categories with a recognized positive role in oenological processes, namely Saccharomyces spp. (e.g., Saccharomyces cerevisiae), non-Saccharomyces yeasts (e.g., Metschnikowia pulcherrima, Torulaspora delbrueckii, Lachancea thermotolerans, and Starmerella bacillaris), and malolactic bacteria (e.g., Oenococcus oeni, Lactobacillus plantarum).
Collapse
|