1
|
Sanlier NT, Saçinti KG, Türkoğlu İ, Sanlier N. Some Polyphenolic Compounds as Potential Therapeutic Agents in Cervical Cancer: The Most Recent Advances and Future Prospects. Nutr Rev 2025; 83:880-896. [PMID: 39283708 DOI: 10.1093/nutrit/nuae126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2025] Open
Abstract
The leading causes of cancer include gradual changes in regulatory proteins, dysregulated cell-signaling pathways, dysfunction of apoptosis, and oxidative stress. Consuming polyphenols from food sources has been proven to have strong connections with ameliorating specific physiological biomarkers along with other elements concerning cancer. Recent studies have focused on polyphenols' molecular mechanisms of action and anticancer and chemopreventive properties and effects in the treatment of different types of cancer. Polyphenols participate in the regulation of numerous cellular mechanisms alongside signaling pathways through their effects on inflammation, cellular proliferation, apoptosis, and partially via epigenetic alterations in cervical cancer. A number of animal models and cell and human studies have indicated the use of polyphenols to be safe and tolerable. Thus, it would be fair to state that, with their advantages vis-à-vis lack of toxicity, cost, and access, and with the positive clinical results, polyphenols have a potential to make a difference in cancer treatment. The present review examined the chemical and physical properties, analogs, metabolites, and mechanisms of physiological activities of various polyphenols and how they may affect the incidence rate and management of cervical cancer. Therefore, this review constitutes a starting point to examine the potential applications for cervical cancer.
Collapse
Affiliation(s)
- Nazlı Tunca Sanlier
- Department of Obstetrics and Gynecology, Turkish Ministry of Health, Ankara City Hospital, Ankara 06800, Turkey
| | - Koray Görkem Saçinti
- Department of Obstetrics and Gynecology, Aksaray University Training and Research Hospital, Aksaray 68200, Turkey
- Division of Epidemiology, Department of Public Health, Hacettepe University Faculty of Medicine, Ankara 06100, Turkey
| | - İnci Türkoğlu
- Department of Nutrition and Dietetics, Hacettepe University School of Health Sciences, Ankara 06100, Turkey
| | - Nevin Sanlier
- Department of Nutrition and Dietetics, Ankara Medipol University School of Health Sciences, Ankara 06050, Turkey
| |
Collapse
|
2
|
Bulgari D, Pisoni L, Renzetti S, Gobbi E, Bertoli N, Gargari G, Zengin G, Peron G. Valorization of Prunus cerasus var. Marasca Pomace Derived From Industrial Processing: Recovery, Characterization, and Bioactivity Assessment of Secondary Metabolites. Mol Nutr Food Res 2025:e70087. [PMID: 40270270 DOI: 10.1002/mnfr.70087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/24/2025] [Accepted: 04/08/2025] [Indexed: 04/25/2025]
Abstract
The phytochemical composition of Prunus cerasus var. marasca pomace produced as industrial byproduct was investigated. Its antioxidant and anti-tyrosinase properties were also assessed to evaluate a possible reuse as a bioactive food ingredient. Secondary metabolites were extracted from pomace using an optimized ultrasound-assisted maceration in ethanol/water. Total phenols (26.2 mg GAE/g), flavonoids (2.5 mg RE/g), and anthocyanins (82.5 µg CE/g) in the extract were determined spectrophotometrically. Seventy metabolites were identified by UHPLC-QToF-MS, and several are here reported in marasca cherries for the first time. The extract exerts valuable free-radical scavenging, metal-reducing, and metal-chelating activities that underlie its antioxidant properties. Also, it inhibits tyrosinase with an effect equaling 39 mg kojic acid/g of extract. However, temperatures >4°C during 6-month storage significantly affected the phenolic content and bioactivity of extract. Pomace of P. cerasus var. marasca cherries can be reused as a source of bioactive secondary metabolites, which can be easily recovered by sustainable ultrasound-assisted maceration. The extract can potentially be used as an additive to increase the oxidative stability of food products and control enzymatic browning, and improve their nutraceutical properties. However, storage time and temperature should be carefully evaluated in order to preserve extract's properties. Alternatively, appropriate stabilization strategies need to be developed further.
Collapse
Affiliation(s)
- Daniela Bulgari
- Department of Food Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| | - Luca Pisoni
- Department of Food Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| | - Stefano Renzetti
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Emanuela Gobbi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Noemi Bertoli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Giorgio Gargari
- Department of Food Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Konya, Turkey
| | - Gregorio Peron
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
3
|
Cao DM, Rao Y, Liu T, Yuan WQ. Combination of Metabolomics and Bioinformatics to Reveal the Mechanism of Luteolin in the Treatment of Cervical Cancer. Chem Biol Drug Des 2025; 105:e70059. [PMID: 39887883 DOI: 10.1111/cbdd.70059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/05/2024] [Accepted: 01/22/2025] [Indexed: 02/01/2025]
Abstract
The incidence of cervical cancer is high among women globally. The potential therapeutic efficacy of luteolin in the treatment of cervical cancer has been identified. Therefore, we aim to elucidate the mechanism of action of luteolin in the treatment of cervical cancer through a comprehensive approach that integrates metabolomics with bioinformatics. The first step involved the identification of differential metabolites through UHPLC-Q-Orbitrap-MS, which were then utilized for enrichment analysis of metabolic pathways and to determine the targets associated with these differential metabolites. Subsequently, the differential analysis and WGCNA were employed to identify DEGs and functional module genes respectively. The common targets were obtained by intersecting the results from the aforementioned three analyses, followed by conducting GO and KEGG pathway enrichment analysis on these targets. Subsequently, PPI networks were constructed using these common targets, and key targets were identified utilizing the MCC, EPC, Degree, Closeness Centrality, Betweenness Centrality, and Bottleneck algorithms in the CytoHubba plug-in. The subsequent steps involved the analysis of key genes for constructing a nomogram, conducting a ROC curve, examining content expression and survival analysis, and ultimately employing molecular docking to investigate the interaction between luteolin and crucial targets. The metabolomics analysis revealed the identification of a total of 45 distinct metabolites in this study, primarily associated with amino acid and nucleotide metabolism. The intersection of 773 differential metabolite targets, 3493 cervical cancer differential genes, and 3245 WGCNA-associated module genes yielded a set of 32 target genes associated with luteolin therapy for cervical cancer. The GO and KEGG pathway enrichment analysis also revealed that these targets were primarily associated with amino acid metabolism and nucleotide metabolism. The CytoHubba plug-in was utilized to identify three key genes (DMNT1, EZH2, and GMPS) through the application of multiple algorithms. Additionally, the datasets GSE63514, GSE67522, and GEPIA2 revealed a significant upregulation of all three genes in tumor tissue. ROC analysis demonstrated the good predictive ability of these three hub genes. Finally, the molecular docking results demonstrated the high binding affinity of luteolin towards DMNT1, EZH2, and GMPS. In conclusion, this study has unveiled the potential of luteolin in modulating amino acid and nucleotide metabolism for the treatment of cervical cancer, thereby providing a theoretical foundation for further investigation into the intricate association between luteolin and cervical cancer.
Collapse
Affiliation(s)
- Dong-Min Cao
- Department of Acupuncture, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Zhongshan, China
| | - Yin Rao
- Department of Acupuncture, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Tao Liu
- School of Mathematics and Big Data, Foshan University, Foshan, China
| | - Wei-Qu Yuan
- Department of Acupuncture, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
- School of Mathematics and Big Data, Foshan University, Foshan, China
| |
Collapse
|
4
|
Eryilmaz IE, Colakoglu Bergel C, Arioz B, Huriyet N, Cecener G, Egeli U. Luteolin induces oxidative stress and apoptosis via dysregulating the cytoprotective Nrf2-Keap1-Cul3 redox signaling in metastatic castration-resistant prostate cancer cells. Mol Biol Rep 2024; 52:65. [PMID: 39699825 DOI: 10.1007/s11033-024-10178-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 12/12/2024] [Indexed: 12/20/2024]
Abstract
BACKGROUND The treatment of metastatic castration-resistant prostate cancer (mCRPC) is still challenging clinically. Due to the refractor and highly metastatic phenotype of mCRPC, novel therapy strategies need to be investigated. Luteolin, a promising anticancer agent with various biological targets in many cancer types, also has a pro-oxidant effect that selectively triggers ROS and apoptosis. In recent years, among its ROS-mediated mechanisms, the inhibitory effect of luteolin on the nuclear factor-E2-related factor 2 (Nrf2), the main ROS scavenger protein in cancer cells, has been reported. However, no evidence exists that luteolin potentially regulates the Nrf2 or its regulator signaling pathway, Nrf2-Keap1-Cul3 axis, concerning its pro-oxidant effects associated with ROS-triggered apoptosis in any PCa cells or tumor model. METHODS AND RESULTS In the present study, we investigated for the first time whether the anticancer effect of luteolin is associated with pro-oxidant activity via the regulation of the Nrf2-Keap1-Cul3 redox signaling in PC3 and DU145 mCRPC cells. The results showed that luteolin significantly caused more cytotoxic, apoptotic, and pro-oxidant effects in a dose-dependent manner in mCRPC cells than in WPMY-1 normal prostate fibroblast cells for 72 h. Moreover, significant inhibition of Nrf2-Keap1-Cul3 redox signaling has occurred in response to increasing doses of luteolin in mCRPC cells. CONCLUSIONS The current study put forth the potential pro-oxidant inhibitory effect of luteolin on the Nrf2-Keap1-Cul3 axis in mCRPC cells for the first time. Thus, luteolin might be an attractive therapy strategy with an inhibitory effect on the cytoprotective Nrf2-Keap1-Cul3 redox signaling for treating mCRPC.
Collapse
Affiliation(s)
- Isil Ezgi Eryilmaz
- Medical Biology Department, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey.
| | | | - Bilge Arioz
- Medical Biology Department, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Nuseybe Huriyet
- Medical Biology Department, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Gulsah Cecener
- Medical Biology Department, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Unal Egeli
- Medical Biology Department, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| |
Collapse
|
5
|
Kumar G, Jain P, Virmani T, Sharma A, Akhtar MS, Aldosari SA, Khan MF, Duarte SOD, Fonte P. Enhancing therapy with nano-based delivery systems: exploring the bioactive properties and effects of apigenin. Ther Deliv 2024; 15:717-735. [PMID: 39259258 DOI: 10.1080/20415990.2024.2386928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 07/29/2024] [Indexed: 09/12/2024] Open
Abstract
Apigenin, a potent natural flavonoid, has emerged as a key therapeutic agent due to its multifaceted medicinal properties in combating various diseases. However, apigenin's clinical utility is greatly limited by its poor water solubility, low bioavailability and stability issues. To address these challenges, this review paper explores the innovative field of nanotechnology-based delivery systems, which have shown significant promise in improving the delivery and effectiveness of apigenin. This paper also explores the synergistic potential of co-delivering apigenin with conventional therapeutic agents. Despite the advantageous properties of these nanoformulations, critical challenges such as scalable production, regulatory approvals and comprehensive long-term safety assessments remain key hurdles in their clinical adoption which must be addressed for commercialization of apigenin-based formulations.
Collapse
Affiliation(s)
- Girish Kumar
- Amity Institute of Pharmacy, Amity University, Greater Noida, Uttar Pradesh, 201313, India
| | - Pushpika Jain
- School of Pharmaceutical Sciences, MVN University, Haryana, 121105, India
| | - Tarun Virmani
- Amity Institute of Pharmacy, Amity University, Greater Noida, Uttar Pradesh, 201313, India
| | - Ashwani Sharma
- Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi, 110017, India
| | - Md Sayeed Akhtar
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, AlFara, Abha, 62223, Saudi Arabia
| | - Saad A Aldosari
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Mohd Faiyaz Khan
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Sofia O D Duarte
- iBB - Institute for Bioengineering & Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, Lisboa, 1049-001, Portugal
- Associate Laboratory i4HB-Institute for Health & Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa, 1049-001, Portugal
| | - Pedro Fonte
- iBB - Institute for Bioengineering & Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, Lisboa, 1049-001, Portugal
- Associate Laboratory i4HB-Institute for Health & Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa, 1049-001, Portugal
- Department of Chemistry & Pharmacy, Faculty of Sciences & Technology, University of Algarve, Gambelas Campus, Faro, 8005-139, Portugal
- Center for Marine Sciences (CCMAR), University of Algarve, Gambelas Campus, Faro, 8005-139, Portugal
| |
Collapse
|
6
|
Wang L, Xie Y, Myrzagali S, Pu W, Liu E. Metal ions as effectual tools for cancer with traditional Chinese medicine. ACUPUNCTURE AND HERBAL MEDICINE 2023; 3:296-308. [DOI: 10.1097/hm9.0000000000000083] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Malignant tumor has become a major threat affecting human health, and is one of the main causes of human death. Recent studies have shown that many traditional Chinese medicines (TCM) have good anti-tumor activity, which may improve the therapeutic effect of routine treatment and quality of life with lower toxicity. However, the efficacy of TCM alone for the treatment of tumors is limited. Metal ions are essential substances for maintaining normal physiological activities. This article summarized the multiple mechanisms in which metal ions are involved in the prevention and treatment of tumors in TCM.
Collapse
Affiliation(s)
- Lei Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yingqiu Xie
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Astana, Kazakhstan
| | - Sandugash Myrzagali
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Astana, Kazakhstan
| | - Weiling Pu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Erwei Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
7
|
Rakoczy K, Kaczor J, Sołtyk A, Szymańska N, Stecko J, Sleziak J, Kulbacka J, Baczyńska D. Application of Luteolin in Neoplasms and Nonneoplastic Diseases. Int J Mol Sci 2023; 24:15995. [PMID: 37958980 PMCID: PMC10650338 DOI: 10.3390/ijms242115995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/31/2023] [Accepted: 11/04/2023] [Indexed: 11/15/2023] Open
Abstract
Researchers are amazed at the multitude of biological effects of 3',4',5,7-tetrahydroxyflavone, more commonly known as luteolin, as it simultaneously has antioxidant and pro-oxidant, as well as antimicrobial, anti-inflammatory, and cancer-preventive, properties. The anticancer properties of luteolin constitute a mosaic of pathways due to which this flavonoid influences cancer cells. Not only is it able to induce apoptosis and inhibit cancer cell proliferation, but it also suppresses angiogenesis and metastasis. Moreover, luteolin succeeds in cancer cell sensitization to therapeutically induced cytotoxicity. Nevertheless, apart from its promising role in chemoprevention, luteolin exhibits numerous potential utilizations in patients with conditions other than neoplasms, which include inflammatory skin diseases, diabetes mellitus, and COVID-19. This review aims to present the multidimensionality of the luteolin's impact on both neoplastic and nonneoplastic diseases. When it comes to neoplasms, we intend to describe the complexity of the molecular mechanisms that underlay luteolin's anticancer effectiveness, as well as to prove the usefulness of integrating this flavonoid in cancer therapy via the analysis of recent research on breast, colon, and lung cancer. Regarding nonneoplastic diseases, this review aims to emphasize the importance of researching the potential of luteolin in areas such as diabetology, virology, and dermatology as it summarizes the most important discoveries in those fields regarding its application.
Collapse
Affiliation(s)
- Katarzyna Rakoczy
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (K.R.); (J.K.); (A.S.); (N.S.); (J.S.); (J.S.)
| | - Justyna Kaczor
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (K.R.); (J.K.); (A.S.); (N.S.); (J.S.); (J.S.)
| | - Adam Sołtyk
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (K.R.); (J.K.); (A.S.); (N.S.); (J.S.); (J.S.)
| | - Natalia Szymańska
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (K.R.); (J.K.); (A.S.); (N.S.); (J.S.); (J.S.)
| | - Jakub Stecko
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (K.R.); (J.K.); (A.S.); (N.S.); (J.S.); (J.S.)
| | - Jakub Sleziak
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (K.R.); (J.K.); (A.S.); (N.S.); (J.S.); (J.S.)
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland
- Department of Immunology, State Research Institute Centre for Innovative Medicine, Santariškių 5, 08410 Vilnius, Lithuania
| | - Dagmara Baczyńska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland
| |
Collapse
|
8
|
Kim S, Lee HJ, Ju J. Antioxidant activities of thermally treated Sesamum indicum L. leaf extracts and their inhibitory effects against growth and metastatic properties of human colon cancer cells. Food Sci Biotechnol 2023; 32:1935-1947. [PMID: 37781062 PMCID: PMC10541370 DOI: 10.1007/s10068-023-01408-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 10/03/2023] Open
Abstract
The study aimed to investigate antioxidant activities of two different thermally treated sesame (Sesamum indicum L.) leaf ethanol extract, steamed sesame leaf extract (SSLE) and roasted sesame leaf extract (RSLE), and their inhibitory effects on uncontrolled growth and increased metastatic properties in human colon cancer cell lines. Both SSLE and RSLE contained pedaliin as the major polyphenol and its aglycon, pedalitin, as a minor component and exhibited radical scavenging activities and ferric reducing antioxidant power. SSLE and RSLE decreased growth of HT29 and HCT116 colon cancer cells, which was attributed to the induction of apoptosis and cell cycle arrest at either G2/M (by SSLE in HCT116) or S phase (by RSLE in HCT116). Furthermore, SSLE and RSLE inhibited migration and adhesion in both cell lines. These results indicate that thermally treated sesame leaves retained pedaliin content and exhibited antioxidant activities and inhibitory activities against the growth and metastatic properties of colon cancer cells.
Collapse
Affiliation(s)
- Seoyun Kim
- Department of Food and Nutrition, Chungbuk National University, 1 Chungdae-Ro, Seowon-gu, Cheongju, 28644 Republic of Korea
| | - Hwa Jin Lee
- School of Industrial Bio-Pharmaceutical Science, Semyung University, 65 Semyung-Ro, Jecheon, Chungbuk 27136 Republic of Korea
| | - Jihyeung Ju
- Department of Food and Nutrition, Chungbuk National University, 1 Chungdae-Ro, Seowon-gu, Cheongju, 28644 Republic of Korea
| |
Collapse
|
9
|
Chen P, Chen F, Guo Z, Lei J, Zhou B. Recent advancement in bioeffect, metabolism, stability, and delivery systems of apigenin, a natural flavonoid compound: challenges and perspectives. Front Nutr 2023; 10:1221227. [PMID: 37565039 PMCID: PMC10410563 DOI: 10.3389/fnut.2023.1221227] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/13/2023] [Indexed: 08/12/2023] Open
Abstract
Apigenin is a bioflavonoid compound that is widely present in dietary plant foods and possesses biological activities that protect against immune, cardiovascular, and neurodegenerative diseases and cancer. Therefore, apigenin is widely used in food and medicine, and increasing attention has been drawn to developing new delivery systems for apigenin. This review highlights the biological effects, metabolism, stability, and bioactivity of apigenin. In addition, we summarized advancements in the delivery of apigenin, which provides some references for its widespread use in food and medicine. Better stability of apigenin may enhance digestion and absorption and provide health benefits. Constructing delivery systems (such as emulsions, nanostructured lipid carriers, hydrogels, and liposomes) for apigenin is an effective strategy to improve its bioavailability, but more animal and cell experiments are needed to verify these findings. Developing apigenin delivery systems for food commercialization is still challenging, and further research is needed to promote their in-depth development and utilization.
Collapse
Affiliation(s)
- Peng Chen
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Fuchao Chen
- Department of Pharmacy, Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - ZhiLei Guo
- Department of Pharmacy, Wuhan Fourth Hospital, Wuhan, Hubei, China
| | - Jiexin Lei
- Department of Endocrinology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Benhong Zhou
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
10
|
Efthimiou I, Vlastos D, Triantafyllidis V, Eleftherianos A, Antonopoulou M. Investigation of the Genotoxicological Profile of Aqueous Betula pendula Extracts. PLANTS (BASEL, SWITZERLAND) 2022; 11:2673. [PMID: 36297697 PMCID: PMC9611029 DOI: 10.3390/plants11202673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 09/29/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Betula pendula belongs to the Betulaceae family and is most common in the northern hemisphere. Various birch species have exhibited antimicrobial, antioxidant and anticancer properties. In the present study, we investigated the genotoxic and cytotoxic activity as well as the antigenotoxic potential against the mutagenic agent mitomycin-C (MMC) of two commercial products, i.e., a Betula pendula aqueous leaf extract product (BE) and a Betula pendula product containing aqueous extract of birch leaves at a percentage of 94% and lemon juice at a percentage of 6% (BP) using the cytokinesis block micronucleus (CBMN) assay. The most prevalent compounds and elements of BE and BP were identified using UHPLC-MS and ICP-MS/MS, respectively. All mixtures of BE with MMC demonstrated a decrease in the MN frequencies, with the lowest and highest concentrations inducing a statistically significant antigenotoxic activity. BP lacked genotoxic potential, while it was cytotoxic in all concentrations. Its mixtures with MMC demonstrated statistically significant antigenotoxic activity only at the lowest concentration. UHPLC-MS and ICP-MS/MS showed the presence of various elements and phytochemicals. Our results reveal antigenotoxic and cytotoxic potential of both BE and BP, while the variations observed could indicate the importance of the interactions among different natural products and/or their compounds.
Collapse
Affiliation(s)
- Ioanna Efthimiou
- Department of Sustainable Agriculture, University of Patras, GR-30100 Agrinio, Greece
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research (HCMR), GR-19013 Anavyssos, Greece
| | - Dimitris Vlastos
- Department of Biology, Section of Genetics Cell Biology and Development, University of Patras, GR-26500 Patras, Greece
| | | | - Antonios Eleftherianos
- Akrokeramos Sewerage Laboratory, Athens Water Supply and Sewerage Company (EYDAP SA), GR-18755 Keratsini, Greece
| | - Maria Antonopoulou
- Department of Sustainable Agriculture, University of Patras, GR-30100 Agrinio, Greece
| |
Collapse
|
11
|
Slika H, Mansour H, Wehbe N, Nasser SA, Iratni R, Nasrallah G, Shaito A, Ghaddar T, Kobeissy F, Eid AH. Therapeutic potential of flavonoids in cancer: ROS-mediated mechanisms. Biomed Pharmacother 2022; 146:112442. [PMID: 35062053 DOI: 10.1016/j.biopha.2021.112442] [Citation(s) in RCA: 201] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/14/2021] [Accepted: 11/16/2021] [Indexed: 12/14/2022] Open
Abstract
Cancer is a leading cause of morbidity and mortality around the globe. Reactive oxygen species (ROS) play contradicting roles in cancer incidence and progression. Antioxidants have attracted attention as emerging therapeutic agents. Among these are flavonoids, which are natural polyphenols with established anticancer and antioxidant capacities. Increasing evidence shows that flavonoids can inhibit carcinogenesis via suppressing ROS levels. Surprisingly, flavonoids can also trigger excessive oxidative stress, but this can also induce death of malignant cells. In this review, we explore the inherent characteristics that contribute to the antioxidant capacity of flavonoids, and we dissect the scenarios in which they play the contrasting role as pro-oxidants. Furthermore, we elaborate on the pathways that link flavonoid-mediated modulation of ROS to the prevention and treatment of cancer. Special attention is given to the ROS-mediated anticancer functions that (-)-epigallocatechin gallate (EGCG), hesperetin, naringenin, quercetin, luteolin, and apigenin evoke in various cancers. We also delve into the structure-function relations that make flavonoids potent antioxidants. This review provides a detailed perspective that can be utilized in future experiments or trials that aim at utilizing flavonoids or verifying their efficacy for developing new pharmacologic agents. We support the argument that flavonoids are attractive candidates for cancer therapy.
Collapse
Affiliation(s)
- Hasan Slika
- Department of Pharmacology and Toxicology, American University of Beirut, P.O. Box 11-0236, Beirut, Lebanon.
| | - Hadi Mansour
- Department of Pharmacology and Toxicology, American University of Beirut, P.O. Box 11-0236, Beirut, Lebanon.
| | - Nadine Wehbe
- Department of Biology, American University of Beirut, P.O. Box 11-0236, Beirut, Lebanon.
| | - Suzanne A Nasser
- Department of Pharmacology and Therapeutics, Beirut Arab University, P.O. Box 11-5020, Beirut, Lebanon.
| | - Rabah Iratni
- Department of Biology, College of Science, United Arab Emirates University, P.O. Box 15551, Al-Ain, United Arab Emirates.
| | - Gheyath Nasrallah
- Department of Biomedical Sciences, College of Health Sciences, Qatar University, P.O. Box: 2713, Doha, Qatar.
| | - Abdullah Shaito
- Biomedical Research Center, Qatar University, P.O. Box: 2713, Doha, Qatar.
| | - Tarek Ghaddar
- Department of Chemistry, American University of Beirut, P.O. Box 11-0236, Beirut, Lebanon.
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, American University of Beirut, P.O. Box: 11-0236, Beirut, Lebanon.
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar; Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar.
| |
Collapse
|
12
|
Wani TA, Bhat IA, Guleria K, Fayaz M, Anju T, Haritha K, Kumar A, Kaloo ZA. Phytochemicals: Diversity, Sources and Their Roles. PHYTOCHEMICAL GENOMICS 2022:3-33. [DOI: 10.1007/978-981-19-5779-6_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
13
|
Álvarez-Ortiz P, Ascacio-Valdés J, Vera-Reyes I, Esparza-González C, Rodríguez-Herrera R, Salinas-Santander M, del Ángel-Martínez M, Morlett-Chávez A. Purshia plicata Triggers and Regulates Proteins Related to Apoptosis in HeLa Cancer Cells. PLANTS (BASEL, SWITZERLAND) 2021; 10:2559. [PMID: 34961030 PMCID: PMC8707402 DOI: 10.3390/plants10122559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/04/2021] [Accepted: 06/09/2021] [Indexed: 05/12/2023]
Abstract
Cervical cancer represents a public health problem, develops resistance to traditional therapies and cost-of-treatment is high. These disadvantages have led to the search for alternative bioactive-compound-based therapies. Said bioactive compounds include phenolic compounds, flavonoids, and tannins. The present study aimed to evaluate the therapeutic effect of a P. plicata extract on the HeLa cell line. Viability and apoptosis assays were run on the two cell lines treated with the extract. The peptides, up- and down-expressed in both cell lines, were identified by PDQuest analysis software and high-performance liquid chromatography/mass spectrometry/mass spectrometry (HPLC/MS/MS). Our results show that a 500 mg/L treatment deregulated cell viability, with different apoptotic morphologies observed which are associated with the presence of bio-compounds, which up- and down-regulated the peptides. In conclusion, P. plicata regulates proteins associated with apoptosis in HeLa cancer cells.
Collapse
Affiliation(s)
- Patricia Álvarez-Ortiz
- Laboratory of Molecular Biology, Chemistry School, Autonomous University of Coahuila, Saltillo 25280, Mexico;
| | - Juan Ascacio-Valdés
- Bioprocesses and Bioproducts Research Group and Laboratory of Molecular Biology, Food Research Department, Chemistry School, Autonomous University of Coahuila, Saltillo 25280, Mexico; (J.A.-V.); (R.R.-H.)
| | - Ileana Vera-Reyes
- Proteomics Laboratory, Agricultural Plant Science and Biotechnology, Research Center for Applied Chemistry, Blvd. Enrique Reyna 140, Saltillo 25294, Mexico;
| | - Cecilia Esparza-González
- Laboratory of Histology, Dentistry School, Autonomous University of Coahuila, Saltillo 25125, Mexico;
| | - Raúl Rodríguez-Herrera
- Bioprocesses and Bioproducts Research Group and Laboratory of Molecular Biology, Food Research Department, Chemistry School, Autonomous University of Coahuila, Saltillo 25280, Mexico; (J.A.-V.); (R.R.-H.)
| | - Mauricio Salinas-Santander
- Laboratory of Molecular Biology, Health Research Department, Medicine School, Autonomous University of Coahuila, Saltillo 25000, Mexico; (M.S.-S.); (M.d.Á.-M.)
| | - Mayela del Ángel-Martínez
- Laboratory of Molecular Biology, Health Research Department, Medicine School, Autonomous University of Coahuila, Saltillo 25000, Mexico; (M.S.-S.); (M.d.Á.-M.)
| | - Antonio Morlett-Chávez
- Laboratory of Molecular Biology, Chemistry School, Autonomous University of Coahuila, Saltillo 25280, Mexico;
- Laboratory of Molecular Biology, Health Research Department, Medicine School, Autonomous University of Coahuila, Saltillo 25000, Mexico; (M.S.-S.); (M.d.Á.-M.)
- Clinical Laboratory Department, General Hospital No. 2, Mexican Institute of Social Security, Saltillo 25017, Mexico
| |
Collapse
|
14
|
Guan QY, Lin YR, Li LY, Tang ZM, Zhao XH, Shi J. In Vitro Immunomodulation of the Polysaccharides from Yam ( Dioscorea opposita Thunb.) in Response to a Selenylation of Lower Extent. Foods 2021; 10:foods10112788. [PMID: 34829068 PMCID: PMC8624157 DOI: 10.3390/foods10112788] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 10/28/2021] [Accepted: 11/11/2021] [Indexed: 01/02/2023] Open
Abstract
The immunomodulation of chemically selenylated polysaccharides has been attracting more attention recently, but the corresponding performance of the yam polysaccharides (YPS) with lower selenylation extent remains, thus far, unsolved. In this study, the YPS was selenylated with Na2SeO3 under acidic conditions generated by HNO3 to reach two lower selenylation extents, yielding two selenylated YPSs, namely SeYPS-1 and SeYPS-2 with selenium contents of 715 and 1545 mg/kg, respectively. The results indicated that YPS, SeYPS-1, and SeYPS-2 all had in vitro immuno-modulation when using RAW 264.7 macrophages and murine splenocytes as cell models. In detail, the three polysaccharide samples at dose levels of 5–160 μg/mL showed insignificant cytotoxicity to the macrophages and splenocytes with cell exposure times of 12–24 h, because of the measured values of cell viability larger than 100%. However, Na2SeO3 at dose levels of 1.3–3.25 μg/mL mostly caused obvious cytotoxic effects on the cells, resulting in reduced cell viability values or cell death, efficiently. The results demonstrated that, compared with YPS, both SeYPS-1 and SeYPS-2 at a lower dose level (5 μg/mL) were more active at promoting phagocytosis activity, increasing the CD4+/CD8+ ratio of the T-lymphocyte sub-population in the murine splenocyte, improving cytokine secretion, including interleukin-6 (IL-6), IL-1β, and tumor necrosis factor-α in the macrophages, or increasing interferon-γ secretion, but suppressing IL-4 production in the splenocytes. Consistently, SeYPS-2 has more potential than SeYPS-1 at exerting these assessed bioactivities in the cells. Thus, we conclude that a chemical modification of YPS using trace element Se at a lower selenylation extent could bring about higher immunomodulatory activity towards macrophages and splenocytes, while selenylation extent of YPS is a critical factor used to govern the assessed activity changes of YPS.
Collapse
Affiliation(s)
- Qing-Yun Guan
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; (Q.-Y.G.); (Y.-R.L.); (L.-Y.L.)
| | - Ya-Ru Lin
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; (Q.-Y.G.); (Y.-R.L.); (L.-Y.L.)
| | - Ling-Yu Li
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; (Q.-Y.G.); (Y.-R.L.); (L.-Y.L.)
| | - Zhi-Mei Tang
- School of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China;
- Research Centre of Food Nutrition and Human Healthcare, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Xin-Huai Zhao
- School of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China;
- Research Centre of Food Nutrition and Human Healthcare, Guangdong University of Petrochemical Technology, Maoming 525000, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong University of Petrochemical Technology, Maoming 525000, China
- Correspondence: (X.-H.Z.); (J.S.)
| | - Jia Shi
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; (Q.-Y.G.); (Y.-R.L.); (L.-Y.L.)
- Correspondence: (X.-H.Z.); (J.S.)
| |
Collapse
|
15
|
Fu Y, Liu W, Soladoye OP. Towards innovative food processing of flavonoid compounds: Insights into stability and bioactivity. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111968] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
16
|
Kashyap P, Shikha D, Thakur M, Aneja A. Functionality of apigenin as a potent antioxidant with emphasis on bioavailability, metabolism, action mechanism and in vitro and in vivo studies: A review. J Food Biochem 2021; 46:e13950. [PMID: 34569073 DOI: 10.1111/jfbc.13950] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/06/2021] [Accepted: 09/12/2021] [Indexed: 01/18/2023]
Abstract
Numerous diseases such as cancer, diabetes, cardiovascular, neurodegenerative diseases, etc. are linked with overproduction of reactive oxygen species (ROS) and oxidative stress. Apigenin (5,7,4'-trihydroxyflavone) is a widely distributed flavonoid, responsible for antioxidant potential and chelating redox active metals. Being present as glycosides or polymers, the apigenin degrades to variable amount in the digestive tract; during processing, its activity is also reduced due to high temperature or Fe/Cu addition. Although its metabolism remains elusive, enteric absorption occurs sufficiently to reduce plasma indices of oxidant status. Delayed clearance in plasma and slow liver decomposition enhance its systematic bioavailability. Antioxidant mechanism of apigenin includes: oxidant enzymes inhibition, modulation of redox signaling pathways (NF-kB, Nrf2, MAPK, and P13/Akt), reinforcing enzymatic and nonenzymatic antioxidant, metal chelation, and free radical scavenging. DPPH, ORAC, ABTS, and FRAP are the major in vitro methods for determining the antioxidant potential of apigenin, whereas its protective effects in whole and living cells of animals are examined using in vivo studies. Due to limited information on antioxidant potential of apigenin, its in vitro and in vivo antioxidant effects are, therefore, discussed with action mechanism and interaction with the signaling pathways. This paper concludes that apigenin is a potent antioxidant compound to overcome the difficulties related to oxidative stress and other chronic diseases.
Collapse
Affiliation(s)
- Piyush Kashyap
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal, Punjab, India
| | - Deep Shikha
- Department of Food Technology, Bhai Gurdas Institute of Engineering and Technology, Sangrur, Punjab, India
| | - Mamta Thakur
- Department of Food Technology, School of Sciences, ITM University, Gwalior, India
| | - Ashwin Aneja
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
17
|
The Involvement of Natural Polyphenols in the Chemoprevention of Cervical Cancer. Int J Mol Sci 2021; 22:ijms22168812. [PMID: 34445518 PMCID: PMC8396230 DOI: 10.3390/ijms22168812] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/12/2021] [Accepted: 08/12/2021] [Indexed: 12/25/2022] Open
Abstract
From all types of cancer, cervical cancer manages to be in top four most frequent types, with a 6.5% rate of occurrence. The infectious vector that induces the disease, the high-risk Human papillomavirus (HPV), which is a sexually transmitted virus, is capable of transforming the host cell by modulating some of the principal signaling pathways responsible for cell cycle arrest, proliferation, and survival. Fortunately, like other cancer types, cervical cancer can be treated by chirurgical interventions or chemoradiotherapy, but these methods are not exactly the lucky clover of modern medicine because of the adverse effects they have. That is the reason why in the last years the emphasis has been on alternative medicine, more specifically on phytochemicals, as a substantial number of studies showed that diet contributes to cancer prevention and treatment. All these studies are trying to find new chemopreventive agents with less toxicity but high effectiveness both in vitro and in vivo. The aim of this review is to evaluate the literature in order to underline the advantages and disadvantages of polyphenols, a class of dietary compounds, as chemopreventive and chemotherapeutic agents. This review also aims to present polyphenols from different perspectives, starting with mechanisms of action and ending with their toxicity. The bigger picture illustrates that polyphenols have great potential in cervical cancer prevention, with strong effects on gene modulation.
Collapse
|
18
|
Jang D, Jung YS, Seong H, Kim MS, Rha CS, Nam TG, Han NS, Kim DO. Stability of Enzyme-Modified Flavonoid C- and O-Glycosides from Common Buckwheat Sprout Extracts during In Vitro Digestion and Colonic Fermentation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:5764-5773. [PMID: 33973775 DOI: 10.1021/acs.jafc.1c00542] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Common buckwheat sprout (CBS) contains more flavone C-glycosides (FCGs) and flavonol O-glycosides (FOGs) than does common buckwheat seed. Both flavonoids in CBS are well known for providing benefits to human health. However, they are relatively less bioaccessible and more directly degradable to aglycone during digestion than are multiglycosylated flavonoids. To overcome such limitations, the water solubility and digestion stability of FCGs and FOGs were enhanced by transglycosylation using cyclodextrin glycosyltransferase. Gastric conditions had little effect on the stability of FCGs and FOGs and their enzyme-modified compounds. In contrast, under intestinal conditions, transglycosylated FCGs lost a glucose moiety and reverted to their parent compounds before transglycosylation. Under colonic fermentation using human fecal samples, the different profiles and concentrations of short-chain fatty acids were suggested to be mainly due to the presence of transglycosylated FCGs and FOGs. These findings indicate that the process of transglycosylation changes the bioaccessibility of flavonoids in CBS.
Collapse
Affiliation(s)
- Davin Jang
- Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Young Sung Jung
- Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Hyunbin Seong
- Brain Korea 21 Center for Bio-Resource Development, Division of Animal, Horticultural, and Food Sciences, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Mi-Seon Kim
- Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Chan-Su Rha
- Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Tae Gyu Nam
- Major of Food Science and Biotechnology, Division of Bio-convergence, Kyonggi University, Suwon 16227, Republic of Korea
| | - Nam Soo Han
- Brain Korea 21 Center for Bio-Resource Development, Division of Animal, Horticultural, and Food Sciences, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Dae-Ok Kim
- Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
- Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| |
Collapse
|
19
|
Khalaf AT, Wei Y, Alneamah SJA, Al-Shawi SG, Kadir SYA, Zainol J, Liu X. What Is New in the Preventive and Therapeutic Role of Dairy Products as Nutraceuticals and Functional Foods? BIOMED RESEARCH INTERNATIONAL 2021; 2021:8823222. [PMID: 33681381 PMCID: PMC7925044 DOI: 10.1155/2021/8823222] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 01/07/2021] [Accepted: 02/10/2021] [Indexed: 12/16/2022]
Abstract
Nutraceuticals have taken on considerable significance due to their supposed safety and possible nutritional and medicinal effects. Pharmaceutical and dietary companies are conscious of monetary success, which benefits healthier consumers and the altering trends that result in these heart-oriented value-added products being proliferated. Numerous nutraceuticals are claimed to have multiple therapeutic benefits despite advantages, and unwanted effects encompass a lack of substantial evidence. Several common nutraceuticals involve glucosamine, omega-3, Echinacea, cod liver oil, folic acid, ginseng, orange juice supplemented with calcium, and green tea. This review is dedicated to improving the understanding of nutrients based on specific illness indications. It was reported that functional foods contain physiologically active components that confer various health benefits. Studies have shown that some foods and dietary patterns play a major role in the primary prevention of many ailment conditions that lead to putative functional foods being identified. Research and studies are needed to support the possible health benefits of different functional foods that have not yet been clinically validated for the relationships between diet and health. The term "functional foods" may additionally involve health/functional health foods, foods enriched with vitamins/minerals, nutritional improvements, or even conventional medicines.
Collapse
Affiliation(s)
- Ahmad Taha Khalaf
- Basic Medicine College, Chengdu University, Chengdu, Sichuan 610106, China
| | - Yuanyuan Wei
- Basic Medicine College, Chengdu University, Chengdu, Sichuan 610106, China
| | | | | | | | | | - Xiaoming Liu
- Department of Dermatology, The Third Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China 518055
| |
Collapse
|
20
|
Coordination self-assembly of natural flavonoids into robust nanoparticles for enhanced in vitro chemo and photothermal cancer therapy. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124805] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
21
|
Montané X, Kowalczyk O, Reig-Vano B, Bajek A, Roszkowski K, Tomczyk R, Pawliszak W, Giamberini M, Mocek-Płóciniak A, Tylkowski B. Current Perspectives of the Applications of Polyphenols and Flavonoids in Cancer Therapy. Molecules 2020; 25:E3342. [PMID: 32717865 PMCID: PMC7435624 DOI: 10.3390/molecules25153342] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/17/2020] [Accepted: 07/21/2020] [Indexed: 12/13/2022] Open
Abstract
The development of anticancer therapies that involve natural drugs has undergone exponential growth in recent years. Among the natural compounds that produce beneficial effects on human health, polyphenols have shown potential therapeutic applications in cancer due to their protective functions in plants, their use as food additives, and their excellent antioxidant properties. The possibility of combining conventional drugs-which are usually more aggressive than natural compounds-with polyphenols offers very valuable advantages such as the building of more efficient anticancer therapies with less side effects on human health. This review shows a wide range of trials in which polyphenolic compounds play a crucial role as anticancer medicines alone or in combination with other drugs at different stages of cancer: cancer initiation, promotion, and growth or progression. Moreover, the future directions in applications of various polyphenols in cancer therapy are emphasized.
Collapse
Affiliation(s)
- Xavier Montané
- Department of Chemical Engineering, University Rovira i Virgili, Av. Països Catalans 26, Campus Sescelades, 43007 Tarragona, Spain; (B.R.-V.); (M.G.)
| | - Oliwia Kowalczyk
- Research and Education Unit for Communication in Healthcare Department of Cardiac Surgery, Ludwik Rydygier Collegium Medicum in Bydgoszcz Nicolaus Copernicus University in Torun, M. Curie Sklodowskiej St. 9, 85-094 Bydgoszcz, Poland;
- Kazimierz Wielki University, Jagiellonska St. 11, 95-067 Bydgoszcz, Poland
| | - Belen Reig-Vano
- Department of Chemical Engineering, University Rovira i Virgili, Av. Països Catalans 26, Campus Sescelades, 43007 Tarragona, Spain; (B.R.-V.); (M.G.)
| | - Anna Bajek
- Department of Tissue Engineering Chair of Urology, Ludwik Rydygier Collegium Medicum in Bydgoszcz Nicolaus Copernicus University in Torun, Karlowicza St. 24, 85-092 Bydgoszcz, Poland;
| | - Krzysztof Roszkowski
- Department of Oncology, Nicolaus Copernicus University in Torun, Romanowskiej St. 2, 85-796 Bydgoszcz, Poland;
| | - Remigiusz Tomczyk
- Department of Cardiac Surgery, Ludwik Rydygier Collegium Medicum in Bydgoszcz Nicolaus Copernicus University in Torun, M. Curie Sklodowskiej St. 9, 85-094 Bydgoszcz, Poland; (R.T.); (W.P.)
| | - Wojciech Pawliszak
- Department of Cardiac Surgery, Ludwik Rydygier Collegium Medicum in Bydgoszcz Nicolaus Copernicus University in Torun, M. Curie Sklodowskiej St. 9, 85-094 Bydgoszcz, Poland; (R.T.); (W.P.)
| | - Marta Giamberini
- Department of Chemical Engineering, University Rovira i Virgili, Av. Països Catalans 26, Campus Sescelades, 43007 Tarragona, Spain; (B.R.-V.); (M.G.)
| | - Agnieszka Mocek-Płóciniak
- Department of General and Environmental Microbiology, University of Life Sciences Poznan, ul. Szydłowska 50, 60-656 Poznań, Poland;
| | - Bartosz Tylkowski
- Eurecat, Centre Tecnològic de Catalunya. Chemical Technologies Unit, Marcel·lí Domingo s/n, 43007 Tarragona, Spain
| |
Collapse
|
22
|
Durazzo A, Lucarini M, Santini A. Nutraceuticals in Human Health. Foods 2020; 9:foods9030370. [PMID: 32209968 PMCID: PMC7143208 DOI: 10.3390/foods9030370] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 03/17/2020] [Indexed: 12/14/2022] Open
Abstract
The combined and concerted action of nutrient and biologically active compounds is flagged as an indicator of a “possible beneficial role” for health. The use and applications of bioactive components cover a wide range of fields, in particular the nutraceuticals. In this context, the Special Issue entitled “Nutraceuticals in Human Health” is focused on the all aspects around the nutraceuticals, ranging from analytical aspects to clinical trials, from efficacy studies to beneficial effects on health status.
Collapse
Affiliation(s)
- Alessandra Durazzo
- CREA-Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy
- Correspondence: (A.D.); (M.L.); (A.S.); Tel.: +39-(0)6-51494430 (A.D.); +39-(0)6-51494446 (M.L.); +39-(0)81-253-9317 (A.S.)
| | - Massimo Lucarini
- CREA-Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy
- Correspondence: (A.D.); (M.L.); (A.S.); Tel.: +39-(0)6-51494430 (A.D.); +39-(0)6-51494446 (M.L.); +39-(0)81-253-9317 (A.S.)
| | - Antonello Santini
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
- Correspondence: (A.D.); (M.L.); (A.S.); Tel.: +39-(0)6-51494430 (A.D.); +39-(0)6-51494446 (M.L.); +39-(0)81-253-9317 (A.S.)
| |
Collapse
|