1
|
Mateo-Fernández M, Alves-Martínez P, Del Río-Celestino M, Font R, Merinas-Amo T, Alonso-Moraga Á. Nutraceutical Potential and Food Safety of Fructose in Soda and Diet Beverages. Foods 2025; 14:648. [PMID: 40002094 PMCID: PMC11854732 DOI: 10.3390/foods14040648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/04/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025] Open
Abstract
Fructose has been considered as an additive from soda beverages. For the approval of new additives or to extend the usage of an approved one, it is necessary to conduct toxicological studies in order to evaluate the DNA damage induced by these compounds. Our study is based on evaluating the safety and the nutraceutical potential of Fructose (FRU), a soda cola beverage (Pepsi-cola, PEP), and a diet soda cola (Diet Coke, DCC), characterizing the DNA changes induced in the Drosophila melanogaster organism model and in the human leukemia HL-60 cells performing different assays. Our results showed neither the toxicity nor mutagenic activity of FRU, PEP, and DCC in Drosophila melanogaster, while only PEP exhibited protective effects in the antitoxity assay, showing an 80% survival rate in combined treatments. FRU, but not PEP, enhanced lifespan parameters by up to 23 more days at the 5 mg/mL concentration. All three substances exhibited chemopreventive properties in some of the checkpoints carried out related to clastogenicity and methylation patterns in HL-60 cells. In conclusion, the tested compounds were safe at tested concentrations in Drosophila and showed moderate chemopreventive activity.
Collapse
Affiliation(s)
- Marcos Mateo-Fernández
- Department of Genetics, University of Córdoba, 14071 Córdoba, Spain; (M.M.-F.); (P.A.-M.); (T.M.-A.); (Á.A.-M.)
| | - Pilar Alves-Martínez
- Department of Genetics, University of Córdoba, 14071 Córdoba, Spain; (M.M.-F.); (P.A.-M.); (T.M.-A.); (Á.A.-M.)
| | | | - Rafael Font
- Agri-Food Laboratory, CAGPDS, Avd. Menéndez Pidal, s/n, 14080 Córdoba, Spain;
| | - Tania Merinas-Amo
- Department of Genetics, University of Córdoba, 14071 Córdoba, Spain; (M.M.-F.); (P.A.-M.); (T.M.-A.); (Á.A.-M.)
| | - Ángeles Alonso-Moraga
- Department of Genetics, University of Córdoba, 14071 Córdoba, Spain; (M.M.-F.); (P.A.-M.); (T.M.-A.); (Á.A.-M.)
| |
Collapse
|
2
|
Sugar reduction in beverages: Current trends and new perspectives from sensory and health viewpoints. Food Res Int 2022; 162:112076. [DOI: 10.1016/j.foodres.2022.112076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 10/08/2022] [Accepted: 10/22/2022] [Indexed: 11/22/2022]
|
3
|
Yang Y, Xia Y, Song X, Mu Z, Qiu H, Tao L, Ai L. The Potential of Flos sophorae immaturus as a Pigment-Stabilizer to Improve the Monascus Pigments Preservation, Flavor Profiles, and Sensory Characteristic of Hong Qu Huangjiu. Front Microbiol 2021; 12:678903. [PMID: 34093500 PMCID: PMC8174305 DOI: 10.3389/fmicb.2021.678903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 04/12/2021] [Indexed: 11/24/2022] Open
Abstract
Hong Qu Huangjiu (HQW) is distinguished by its inclusion of Monascus pigments, meaning that photosensitivity strongly affects the sensory quality of the wine. In this study, the effects of Flos sophorae immaturus (FSI) on the stability of Monascus pigments, the flavor profiles, and the sensory characteristics of HQW were investigated. After sterilization, the addition of FSI increased the preservation rate of Monascus pigments in HQW by up to 93.20%, which could be accounted for by the synergy of rutin and quercetin in FSI. The total content of the volatile flavor compounds in HQW increased significantly as the added amounts of FSI were increased, especially 3-methyl-1-butanol, 2-methyl-1-propanol, and short-chain fatty acid ethyl esters (SCFAEE). Sensory evaluation and partial least-squares regression revealed that the concentration of FSI significantly affected the aroma characteristics of HQW but had little effect on the mouthfeel. The addition of 0.9 mg/mL FSI yielded a satisfactory HQW with high scores in terms of mouthfeel and aroma. The strong correlation between fruit-aroma, full-body, and SCFAEE suggests that FSI might alter the aroma of HQW by enhancing the synthesis of SCFAEE. Summarily, treatment with FSI represents a new strategy for improving the stability of photosensitive pigments and thus adjusting the aroma of HQW or similar beverages.
Collapse
Affiliation(s)
- Yijin Yang
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China.,School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Yongjun Xia
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Xin Song
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Zhiyong Mu
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Huazhen Qiu
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Leren Tao
- School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Lianzhong Ai
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
4
|
Buczkowska M, Paciorek K, Kapcińska A, Górski M. Caramel colors in terms of scientific research, with particular
consideration of their toxicity. POSTEP HIG MED DOSW 2021. [DOI: 10.5604/01.3001.0014.8497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Caramel colors, the most common food additives in the world, are divided into four classes (IIV),
marked with the symbols E150 a-d, respectively. Individual classes of caramel colors differ
from each other in physico-chemical properties and the method of preparation, which affects
the formation of various compounds that are important for the assessment of food safety A number of studies on all caramel classes of have been performed, including toxicokinetic,
genotoxic, carcinogenic and reproductive and developmental toxicity studies, which have
not shown harmful effects of these additives at doses not exceeding ADI. However, there is
an increasing number of scientific reports of the possible toxic effects present in caramels of
low-molecular compounds. Currently, three compounds are considered to be toxicologically
important and resulting from the possible concentration in the final product: 5-HMF (present
in all classes), 4(5)-MeI (present in caramel classes III and IV) or THI (present in caramel
class III). 4(5)-MeI has a neurotoxic effect and was considered in 2011 as a possible human
carcinogen (class 2B, according to IARC). In the case of THI, studies have confirmed its lymphopenic
activity, probably secondary to its immunosuppressive effect. Consequently, in the
1980s, JECFA set acceptable levels 4(5)-MeI and THI, for the caramel classes in which these
compounds may be present. The toxicity of 5-HMF has not been confirmed unequivocally,
but studies have shown that this compound is not neutral to living organisms.
Currently, most international organizations and scientific institutes recognize these additives
as safe for consumers, but at the same time scientists emphasize the need for further
research.
Collapse
Affiliation(s)
- Marta Buczkowska
- Zakład Toksykologii i Ochrony Zdrowia w Środowisku Pracy, Katedra Toksykologii i Uzależnień, Wydział Nauk o Zdrowiu w Bytomiu, Śląski Uniwersytet Medyczny w Katowicach
| | - Kamila Paciorek
- Drugie Koło Naukowe przy Zakładzie Toksykologii i Ochrony Zdrowia w Środowisku Pracy, Katedra Toksykologii i Uzależnień
| | - Anna Kapcińska
- Drugie Koło Naukowe przy Zakładzie Toksykologii i Ochrony Zdrowia w Środowisku Pracy, Katedra Toksykologii i Uzależnień
| | - Michał Górski
- Szkoła Doktorska Śląskiego Uniwersytetu Medycznego w Katowicach, Wydział Nauk o Zdrowiu w Bytomiu Śląski Uniwersytet Medyczny
| |
Collapse
|
5
|
Mateo-Fernández M, Valenzuela-Gómez F, Font R, Del Río-Celestino M, Merinas-Amo T, Alonso-Moraga Á. In Vivo and In Vitro Assays Evaluating the Biological Activity of Taurine, Glucose and Energetic Beverages. Molecules 2021; 26:2198. [PMID: 33920365 PMCID: PMC8069289 DOI: 10.3390/molecules26082198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/05/2021] [Accepted: 04/09/2021] [Indexed: 02/05/2023] Open
Abstract
Taurine is one of the main ingredients used in energy drinks which are highly consumed in adolescents for their sugary taste and stimulating effect. With energy drinks becoming a worldwide phenomenon, the biological effects of these beverages must be evaluated in order to fully comprehend the potential impact of these products on the health due to the fact nutrition is closely related to science since the population consumes food to prevent certain diseases. Therefore, the aim of this study was to evaluate the biological effects of taurine, glucose, classic Red Bull® and sugar-free Red Bull® in order to check the food safety and the nutraceutical potential of these compounds, characterising different endpoints: (i) Toxicology, antitoxicology, genotoxicology and life expectancy assays were performed in the Drosophila melanogaster model organism; (ii) The in vitro chemopreventive activity of testing compounds was determined by assessing their cytotoxicity, the proapoptotic DNA-damage capability to induce internucleosomal fragmentation, the strand breaks activity and the modulator role on the methylation status of genomic repetitive sequences of HL-60 promyelocytic cells. Whereas none tested compounds showed toxic or genotoxic effect, all tested compounds exerted antitoxic and antigenotoxic activity in Drosophila. Glucose, classic Red Bull® and sugar-free Red Bull® were cytotoxic in HL-60 cell line. Classic Red Bull® induced DNA internucleosomal fragmentation although none of them exhibited DNA damage on human leukaemia cells. In conclusion, the tested compounds are safe on Drosophila melanogaster and classic Red Bull® could overall possess nutraceutical potential in the in vivo and in vitro model used in this study. Besides, taurine could holistically be one of the bioactive compounds responsible for the biological activity of classic Red Bull®.
Collapse
Affiliation(s)
- Marcos Mateo-Fernández
- Department of Genetics, University of Córdoba, 14071 Córdoba, Spain; (T.M.-A.); (Á.A.-M.)
| | | | - Rafael Font
- Agri-Food Laboratory, Avda. Menéndez Pidal, s/n, 14080 Córdoba, Spain; (R.F.); (M.D.R.-C.)
| | | | - Tania Merinas-Amo
- Department of Genetics, University of Córdoba, 14071 Córdoba, Spain; (T.M.-A.); (Á.A.-M.)
| | - Ángeles Alonso-Moraga
- Department of Genetics, University of Córdoba, 14071 Córdoba, Spain; (T.M.-A.); (Á.A.-M.)
| |
Collapse
|
6
|
del Río-Celestino M, Font R. The Health Benefits of Fruits and Vegetables. Foods 2020; 9:foods9030369. [PMID: 32209967 PMCID: PMC7143647 DOI: 10.3390/foods9030369] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 12/18/2022] Open
Abstract
We edited this Special Issue with the objective of bringing forth new data on the phytochemicals from vegetables and fruits, which are recommended for their health-promoting properties. Epidemiological, toxicological and nutritional studies suggested an association between fruit and vegetable consumption and lower incidence of chronic diseases, such as coronary heart problems, cancer, diabetes, and Alzheimer’s disease. In this Special Issue, the protective roles (antioxidant and others bioactivities), new sustainable approaches to determine the quality, and the processing techniques that can modify the initial nutritional and antioxidant content of fruits, vegetables and additives have been addressed.
Collapse
|