1
|
Li D, Zhang W. Exploring the role of bacterial communities on the quality formation and biogenic amines accumulation during ripening and storage of dry-cured Chinese bacon (Larou). Food Sci Biotechnol 2024; 33:2289-2299. [PMID: 39145128 PMCID: PMC11319552 DOI: 10.1007/s10068-023-01472-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/08/2023] [Accepted: 10/16/2023] [Indexed: 08/16/2024] Open
Abstract
This study aimed to reveal the impact of bacterial dynamics on the quality and biogenic amine (BA) accumulation of dry-cured Chinese bacon (Larou). Physicochemical parameters, free amino acids, BAs, amino acid decarboxylase, and microbial profiles were determined, and their relationships were explored during Larou ripening and storage. The results showed that moisture and sodium nitrite decreased significantly during the Larou ripening stage (p < 0.05), while pH, NaCl, TBARS, and total volatile basic nitrogen considerably increased (p < 0.05). BAs were mainly formed during the stages of dry-ripening and storage of Larou and may present a risk of tyramine and phenylethylamine poisoning. Firmicutes and Actinobacteriota were the predominant phyla, and the dominant genera were Staphylococcus, Corynebacterium and Lactococcus. Correlation analysis showed Corynebacterium, Brevibacterium, Lactobacillus, Tetragenococcus and Staphylococci spp. played a crucial role in determining the quality and safety of Larou. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-023-01472-1.
Collapse
Affiliation(s)
- Dawei Li
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Key Laboratory of Meat Processing, Ministry of Agriculture, and Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095 Jiangsu China
| | - Wangang Zhang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Key Laboratory of Meat Processing, Ministry of Agriculture, and Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095 Jiangsu China
| |
Collapse
|
2
|
Sarquis A, Ladero V, Díaz M, Sánchez-Llana E, Fernández M, Alvarez MA. The gene cluster associated with strong biofilm-formation capacity by histamine-producing Lentilactobacillus parabuchneri encodes a sortase-mediated pilus and is located on a plasmid. Food Res Int 2024; 175:113777. [PMID: 38129064 DOI: 10.1016/j.foodres.2023.113777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023]
Abstract
Histamine is a biogenic amine synthesized through the enzymatic decarboxylation of the amino acid histidine. It can accumulate at high concentrations in foods through the metabolism of certain bacteria, sometimes leading to adverse reactions in consumers. In cheese, histamine can accumulate at toxic levels; Lentilactobacillus parabuchneri has been identified the major cause of this problem. Previous studies have shown some L. parabuchneri strains to form biofilms on different surfaces, posing a contamination risk during cheese production, particularly for cheeses that are processed post-ripening (e.g., grating or slicing). The food contamination they cause can result in economic losses and even foodborne illness if histamine accumulates in the final product. The aim of the present work was to identify the genes of L. parabuchneri involved in biofilm formation, and to determine their function. The genomes of six strains with different biofilm-production capacities (strong, moderate and weak) were sequenced and analysed. A cluster of four genes, similar to those involved in sortase-mediated pilus formation, was identified in the strong biofilm-producers, suggesting it to have a role in surface adhesion. Cloning and heterologous expression in Lactococcus cremoris NZ9000 confirmed its functionality and involvement in adhesion and, therefore, in biofilm formation. PacBio sequencing showed this cluster to be located on a 33.4 kb plasmid, which might increase its chances of horizontal transmission. These findings provide insight into the genetic factors associated with biofilm formation in histamine-producing L. parabuchneri, and into the risks associated with this bacterium in cheese production.
Collapse
Affiliation(s)
- Agustina Sarquis
- Dairy Research Institute, IPLA, CSIC, Paseo Rio Linares s/n, 33300 Villaviciosa, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Av. del Hospital Universitario s/n, 33011 Oviedo, Asturias, Spain
| | - Víctor Ladero
- Dairy Research Institute, IPLA, CSIC, Paseo Rio Linares s/n, 33300 Villaviciosa, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Av. del Hospital Universitario s/n, 33011 Oviedo, Asturias, Spain.
| | - María Díaz
- Dairy Research Institute, IPLA, CSIC, Paseo Rio Linares s/n, 33300 Villaviciosa, Spain
| | - Esther Sánchez-Llana
- Dairy Research Institute, IPLA, CSIC, Paseo Rio Linares s/n, 33300 Villaviciosa, Spain
| | - María Fernández
- Dairy Research Institute, IPLA, CSIC, Paseo Rio Linares s/n, 33300 Villaviciosa, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Av. del Hospital Universitario s/n, 33011 Oviedo, Asturias, Spain
| | - Miguel A Alvarez
- Dairy Research Institute, IPLA, CSIC, Paseo Rio Linares s/n, 33300 Villaviciosa, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Av. del Hospital Universitario s/n, 33011 Oviedo, Asturias, Spain
| |
Collapse
|
3
|
Ferrante MC, Mercogliano R. Focus on Histamine Production During Cheese Manufacture and Processing: A Review. Food Chem 2023; 419:136046. [PMID: 37058863 DOI: 10.1016/j.foodchem.2023.136046] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023]
Abstract
Histamine (HIS) intoxication is a poisoning caused by histamine in food. Cheese is one of the most common dairy products associated with histamine levels which vary depending on the processing methods. The final content of histamine in cheese is influenced by intrinsic and extrinsic factors, their interactions, and contamination stemming from food processing. The application of control measures may be useful to inhibit/reduce production during cheese manufacture and processing but have a limited effect. To reduce histamine intoxication outbreaks from cheese consumption the introduction of quality control programs and appropriate risk mitigation options should be applied along the dairy chain from an overall perspective of food safety based on individual susceptibility and consumer sensitivity. As key food safety, this topic should be considered in future regulations in dairy products because the lack of a clear law on HIS limits in cheese may result in a significant potential deviation from the EU food safety strategy.
Collapse
|
4
|
Abarquero D, Bodelón R, Flórez AB, Fresno JM, Renes E, Mayo B, Tornadijo ME. Technological and safety assessment of selected lactic acid bacteria for cheese starter cultures design: Enzymatic and antimicrobial activity, antibiotic resistance and biogenic amine production. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
5
|
Apostolakos I, Paramithiotis S, Mataragas M. Comparative Genomic Analysis Reveals the Functional Traits and Safety Status of Lactic Acid Bacteria Retrieved from Artisanal Cheeses and Raw Sheep Milk. Foods 2023; 12:foods12030599. [PMID: 36766127 PMCID: PMC9914385 DOI: 10.3390/foods12030599] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/21/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
Lactic acid bacteria (LAB) are valuable for the production of fermented dairy products. We investigated the functional traits of LAB isolated from artisanal cheeses and raw sheep milk, assessed their safety status, and explored the genetic processes underlying the fermentation of carbohydrates. Lactiplantibacillus plantarum had the largest and more functional genome compared to all other LAB, while most of its protein-encoding genes had unknown functions. A key finding of our analysis was the overall absence of acquired resistance genes (RGs), virulence genes (VGs), and prophages, denoting that all LAB isolates fulfill safety criteria and can be used as starter or adjunct cultures. In this regard, the identified mobile genetic elements found in LAB, rather than enabling the integration of RGs or VGs, they likely facilitate the uptake of genes involved in beneficial functions and in the adaptation of LAB in dairy matrices. Another important finding of our study was that bacteriocins and CAZymes were abundant in LAB though each species was associated with specific genes, which in turn had different activity spectrums and identified applications. Additionally, all isolates were able to metabolize glucose, lactose, maltose, and sucrose, but Lactiplantibacillus plantarum was strongly associated with the fermentation of rhamnose, mannose, cellobiose, and trehalose whereas Levilactobacillus brevis with the utilization of arabinose and xylose. Altogether these results suggest that to fully exploit the beneficial properties of LAB, a combination of strains as food additives may be necessary. Interestingly, biological processes involved in the metabolism of carbohydrates that are not of direct interest for the dairy industry may yield valuable metabolites or activate pathways associated with beneficial health effects. Our results provide useful information for the development of new probiotic artisanal cheeses and probiotic starter cultures.
Collapse
Affiliation(s)
- Ilias Apostolakos
- Department of Dairy Research, Institution of Technology of Agricultural Products, Hellenic Agricultural Organization “DIMITRA”, 3 Ethnikis Antistaseos St., 45221 Ioannina, Greece
| | - Spiros Paramithiotis
- Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos St., 11855 Athens, Greece
| | - Marios Mataragas
- Department of Dairy Research, Institution of Technology of Agricultural Products, Hellenic Agricultural Organization “DIMITRA”, 3 Ethnikis Antistaseos St., 45221 Ioannina, Greece
- Correspondence:
| |
Collapse
|
6
|
Santamarina-García G, Amores G, López de Armentia E, Hernández I, Virto M. Relationship between the Dynamics of Gross Composition, Free Fatty Acids and Biogenic Amines, and Microbial Shifts during the Ripening of Raw Ewe Milk-Derived Idiazabal Cheese. Animals (Basel) 2022; 12:3224. [PMID: 36428451 PMCID: PMC9686631 DOI: 10.3390/ani12223224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/09/2022] [Accepted: 11/14/2022] [Indexed: 11/24/2022] Open
Abstract
This study reports for the first time the relationship between bacterial succession, characterized by high-throughput sequencing (sequencing of V3-V4 16S rRNA regions), and the evolution of gross composition, free fatty acids (FFAs) and biogenic amines (BAs) during cheese ripening. Specifically, Idiazabal PDO cheese, a raw ewe milk-derived semi-hard o hard cheese, was analysed. Altogether, 8 gross parameters were monitored (pH, dry matter, protein, fat, Ca, Mg, P and NaCl) and 21 FFAs and 8 BAs were detected. The ripening time influenced the concentration of most physico-chemical parameters, whereas the producer mainly affected the gross composition and FFAs. Through an O2PLS approach, the non-starter lactic acid bacteria Lactobacillus, Enterococcus and Streptococcus were reported as positively related to the evolution of gross composition and FFAs release, while only Lactobacillus was positively related to BAs production. Several environmental or non-desirable bacteria showed negative correlations, which could indicate the negative impact of gross composition on their growth, the antimicrobial effect of FFAs and/or the metabolic use of FFAs by these genera, and their ability to degrade BAs. Nonetheless, Obesumbacterium and Chromohalobacter were positively associated with the synthesis of FFAs and BAs, respectively. This research work provides novel information that may contribute to the understanding of possible functional relationships between bacterial communities and the evolution of several cheese quality and safety parameters.
Collapse
Affiliation(s)
- Gorka Santamarina-García
- Lactiker Research Group, Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Unibertsitate Ibilbidea 7, 01006 Vitoria-Gasteiz, Basque Country, Spain
| | - Gustavo Amores
- Lactiker Research Group, Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Unibertsitate Ibilbidea 7, 01006 Vitoria-Gasteiz, Basque Country, Spain
| | | | | | | |
Collapse
|
7
|
Manca G, Ru A, Siddi G, Murittu G, Luigi De Santis EP. The effect of seasonality on the biogenic amines, free amino acids, and physico-chemical composition of raw milk Fiore Sardo cheese produced in Sardinia (Italy). Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
8
|
Liu X, Liang J, Ma Y, Sun J, Liu Y, Gu X, Wang Y. The impact of protein hydrolysis on biogenic amines production during sufu fermentation. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Mohsin AZ, Marzlan AA, Muhialdin BJ, Wai LK, Mohammed NK, Meor Hussin AS. Physicochemical characteristics, GABA content, antimicrobial and antioxidant capacities of yogurt from Murrah buffalo milk with different fat contents. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Berthoud H, Wechsler D, Irmler S. Production of Putrescine and Cadaverine by Paucilactobacillus wasatchensis. Front Microbiol 2022; 13:842403. [PMID: 35308356 PMCID: PMC8928434 DOI: 10.3389/fmicb.2022.842403] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/14/2022] [Indexed: 11/28/2022] Open
Abstract
Lactic acid bacteria (LAB) play a key role in many food fermentations. However, some LAB species can also cause food spoilage, e.g., through the formation of biogenic amines. Paucilactobacillus wasatchensis is a LAB that causes late gas production in Cheddar cheese, the molecular causes of which are not fully understood. This study reports on the ability of P. wasatchensis WDC04 to produce cadaverine and putrescine in broth supplemented with lysine and ornithine, as well as in a model cheese. The raclette-type semi-hard cheese produced with P. wasatchensis as an adjunct culture contained 1,085 mg kg−1 of cadaverine and 304 mg kg−1 of putrescine after 120 days of ripening. We identified two ornithine decarboxylase genes (odc) and a putrescine-ornithine antiporter gene (potE) in the genome sequence of P. wasatchensis. We could show that the two odc genes, which are located on two contigs, are contiguous and form the genetic cluster odc2-odc1-potE. Alignment searches showed that similar gene clusters exist in the genomes of Levilactobacillus paucivorans DSMZ22467, Lentilactobacillus kribbianus YH-lac9, Levilactobacillus hunanensis 151-2B, and Levilactobacillus lindianensis 220-4. More amino acid sequence comparisons showed that Odc1 and Odc2 shared 72 and 69% identity with a lysine and ornithine decarboxylase from Ligilactobacillus saerimneri 30a, respectively. To clarify the catalytic activities of both enzymes, the odc-coding genes were cloned and heterologously expressed as His-tagged fusion protein. The purified Odc1 protein decarboxylated lysine into cadaverine, while the recombinant Odc2 protein preferentially produced putrescine from ornithine but also exhibited low lysine decarboxylating activity. Both enzymes were active at pH of 5.5, a value often found in cheese. To our knowledge, this is only the second lysine decarboxylase in LAB whose function has been verified. The tandem arrangement of the genes in a single cluster suggests a gene duplication, evolving the ability to metabolize more amino. Divergent substrate preferences highlight the necessity of verifying the functions of genes, in addition to automatic annotation based on sequence similarity. Acquiring new biochemical data allows better predictive models and, in this case, more accurate biogenic amine production potential for LAB strains and microbiomes.
Collapse
|
11
|
Sheep’s milk cheeses as a source of bioactive compounds. ACTA UNIVERSITATIS CIBINIENSIS. SERIES E: FOOD TECHNOLOGY 2021. [DOI: 10.2478/aucft-2021-0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Since ancient times, sheep`s milk cheeses have been a part of a human diet. Currently, their consumption is of great interest due to its nutritional and health values. The aim of the article was to review the chemical composition of sheep’s milk cheeses and its main bioactive ingredients in the context of nutritional and health values. Sheep’s milk cheeses are rich in functionally and physiologically active compounds such as: vitamins, minerals, fatty acids, terpenes, sialic acid, orotic acid and L-carnitine, which are largely originate from milk. Fermentation and maturation process additionally enrich them in other bioactive substances as: bioactive peptides, γ-aminobutyric acid (GABA) or biogenic amines. Studies show that sheep’s milk cheese consumption may be helpful in the prevention of civilization diseases, i.e. hypertension, obesity or cancer. However, due to the presence of biogenic amines, people with metabolic disorders should be careful of their intake.
Collapse
|
12
|
Reduction of biogenic amine content in Dutch-type cheese as affected by the applied adjunct culture. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Abstract
Worldwide consumers increasingly demand traditional/local products, to which those made from ewe’s milk belong. In Slovakia, dairy products made from ewe’s milk have a long tradition. A total of seventeen farmhouse fresh ewe’s milk lump cheeses from various local farm producers in central Slovakia were sampled at farms and then analyzed. Based on the sequencing data analysis, the phylum Firmicutes dominated (60.92%) in ewe’s lump cheeses, followed with the phylum Proteobacteria (38.23%), Actinobacteria (0.38%) and Bacteroidetes (0.35%). The phylum Firmicutes was represented by six genera, among which the highest amount possessed the genus Streptococcus (41.13%) followed with the genus Lactococcus (8.54%), Fructobacillus (3.91%), Enterococcus (3.18%), Staphylococcus (1.80%) and the genus Brochotrix (0.08%). The phylum Proteobacteria in ewe’s lump cheeses involved eight Gram-negative genera: Pseudomonas, Acinetobacter, Enterobacter, Ewingella, Escherichia-Shigella, Pantoea and Moraxella. The phylum Bacteroidetes involved three genera: Bacteroides, Sphingobacterium and Chrysobacterium. Results presented are original; the microbiome of Slovak ewe’s milk lump cheese has been not analyzed at those taxonomic levels up to now.
Collapse
|
14
|
Vasconcelos H, de Almeida JMM, Matias A, Saraiva C, Jorge PA, Coelho LC. Detection of biogenic amines in several foods with different sample treatments: An overview. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.04.043] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
15
|
Wechsler D, Irmler S, Berthoud H, Portmann R, Badertscher R, Bisig W, Schafroth K, Fröhlich-Wyder MT. Influence of the inoculum level of Lactobacillus parabuchneri in vat milk and of the cheese-making conditions on histamine formation during ripening. Int Dairy J 2021. [DOI: 10.1016/j.idairyj.2020.104883] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
16
|
Moniente M, García‐Gonzalo D, Ontañón I, Pagán R, Botello‐Morte L. Histamine accumulation in dairy products: Microbial causes, techniques for the detection of histamine‐producing microbiota, and potential solutions. Compr Rev Food Sci Food Saf 2021; 20:1481-1523. [DOI: 10.1111/1541-4337.12704] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 12/01/2020] [Accepted: 12/04/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Marta Moniente
- Departamento de Producción Animal y Ciencia de los Alimentos Facultad de Veterinaria, Instituto Agroalimentario de Aragón‐IA2 (Universidad de Zaragoza‐CITA) Zaragoza Spain
| | - Diego García‐Gonzalo
- Departamento de Producción Animal y Ciencia de los Alimentos Facultad de Veterinaria, Instituto Agroalimentario de Aragón‐IA2 (Universidad de Zaragoza‐CITA) Zaragoza Spain
| | - Ignacio Ontañón
- Laboratorio de Análisis del Aroma y Enología, Química Analítica Facultad de Ciencias, Instituto Agroalimentario de Aragón‐IA2 (Universidad de Zaragoza‐CITA) Zaragoza Spain
| | - Rafael Pagán
- Departamento de Producción Animal y Ciencia de los Alimentos Facultad de Veterinaria, Instituto Agroalimentario de Aragón‐IA2 (Universidad de Zaragoza‐CITA) Zaragoza Spain
| | - Laura Botello‐Morte
- Departamento de Producción Animal y Ciencia de los Alimentos Facultad de Veterinaria, Instituto Agroalimentario de Aragón‐IA2 (Universidad de Zaragoza‐CITA) Zaragoza Spain
| |
Collapse
|
17
|
Renes E, Fernández D, Abarquero D, Ladero V, Álvarez MA, Tornadijo ME, Fresno JM. Effect of forage type, season, and ripening time on selected quality properties of sheep milk cheese. J Dairy Sci 2021; 104:2539-2552. [PMID: 33455752 DOI: 10.3168/jds.2020-19036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 10/19/2020] [Indexed: 01/16/2023]
Abstract
The aim of this research was to study changes in the microbial populations, free AA profile, biogenic amine content, and sensory characteristics of ripened cheeses (100 and 180 d) produced in different seasons (summer, autumn, winter, and spring) from pasteurized sheep milk from 8 commercial flocks fed hay or silage diets. Twenty-one individual AA and 6 biogenic amines were determined by ultra-high performance liquid chromatography. Type of conserved forage for sheep feeding did not affect the variables studied, which is of great interest because hay and silage are low-cost ingredients for sheep feeding. Proteolysis led total free AA concentrations ranging between 35,179.26 and 138,063.71 mg/kg of cheese at 180 d of ripening. γ-Aminobutyric acid, which has been associated with beneficial effects on human health, was the second most abundant AA in all cheese samples, accounting for 15% of total free AA. Spring cheeses showed 2-fold higher concentrations of γ-aminobutyric acid than summer and autumn cheeses at the end of ripening. Overall, spring, winter, and autumn cheeses had lower average concentration of biogenic amines (431.99 mg/kg of cheese) than summer cheeses (825.70 mg/kg of cheese) as well as better sensory characteristics. Therefore, this study could provide the dairy industry with useful information for producing cheeses with valuable nutritional and sensory quality for consumers.
Collapse
Affiliation(s)
- E Renes
- Department of Food Hygiene and Technology, Faculty of Veterinary Science, University of León, 24071, León, Spain
| | - D Fernández
- Department of Food Hygiene and Technology, Faculty of Veterinary Science, University of León, 24071, León, Spain
| | - D Abarquero
- Department of Food Hygiene and Technology, Faculty of Veterinary Science, University of León, 24071, León, Spain
| | - V Ladero
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), 33300, Villaviciosa, Asturias, Spain
| | - M A Álvarez
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), 33300, Villaviciosa, Asturias, Spain
| | - M E Tornadijo
- Department of Food Hygiene and Technology, Faculty of Veterinary Science, University of León, 24071, León, Spain
| | - J M Fresno
- Department of Food Hygiene and Technology, Faculty of Veterinary Science, University of León, 24071, León, Spain.
| |
Collapse
|
18
|
Wu SJ, Chang CY, Lai YT, Shyu YT. Increasing γ-Aminobutyric Acid Content in Vegetable Soybeans via High-Pressure Processing and Efficacy of Their Antidepressant-Like Activity in Mice. Foods 2020; 9:E1673. [PMID: 33207592 PMCID: PMC7696959 DOI: 10.3390/foods9111673] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/10/2020] [Accepted: 11/13/2020] [Indexed: 01/06/2023] Open
Abstract
This study applied high-pressure processing (HPP) technology to enrich the gamma aminobutyric acid (GABA) content in vegetable soybeans and evaluated its antidepressant efficacy on mice, with depression induced by the unpredictable chronic mild stress (UCMS) model. The optimal conditions for HPP, storage time, and storage temperature, as well as antidepressant-like effects of vegetable soybeans, were evaluated and discussed. HPP could effectively and significantly increase GABA content in soybean, with optimum conditions at 200 MPa. The GABA content in the whole vegetable soybean was 436.05 mg/100 g. In mice animal tests, the tail suspension test (TST) showed that the immobility time of the GABA group was significantly shorter than that of the control group. The total travel distance in the open field test (OFT) showed that depressed mice fed with the GABA feed exhibited exploratory behavior. The GABA group showed a significantly higher degree of sucrose preference than the control group. Both results indicate that the GABA feed could effectively alleviate depressive symptomatology. Regarding biochemical parameters, the fecal and serum corticosterone (CORT) levels in the control group increased to 104.86 pg/mg after the onset of depression. In contrast, the fecal CORT level in the GABA group was significantly reduced to 23.98 pg/mg and was comparable to that in the control group (33.38 pg/mg). Reduced serum CORT level in the GABA group suggests an improvement in depressive symptomatology. The serotonin concentration was maintained in the GABA group after the induction of depression, suggesting its preventive activity. The HPP GABA-enriched soybeans exerted modulatory effects on the behaviors of depressed mice and displayed a potential for commercialization.
Collapse
Affiliation(s)
| | | | | | - Yuan-Tay Shyu
- Department of Horticulture and Landscape Architecture, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan; (S.-J.W.); (C.-Y.C.); (Y.-T.L.)
| |
Collapse
|
19
|
Sahab NR, Subroto E, Balia RL, Utama GL. γ-Aminobutyric acid found in fermented foods and beverages: current trends. Heliyon 2020; 6:e05526. [PMID: 33251370 PMCID: PMC7680766 DOI: 10.1016/j.heliyon.2020.e05526] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/13/2020] [Accepted: 11/12/2020] [Indexed: 01/13/2023] Open
Abstract
γ-aminobutyric acid (GABA) is synthesised by glutamic acid decarboxylase which catalyses the decarboxylation of L-glutamic acid. L-glutamic acid is formed by α-ketoglutarate in the TCA cycle by glutamic acid dehydrogenase (GDH). GABA is found in the human brain, plants, animals and microorganisms. GABA functions as an antidepressant, antihypertensive, antidiabetic and immune system enhancer and has a good effect on neural disease. As GABA have pharmaceutical properties, conditions for GABA production need to be established. Microbiological GABA production is more safe and eco-friendly rather than chemical methods. Moreover, it is easier to control conditions of production using microorganisms compared to production in plants and animals. GABA production in fermented foods and beverages has the potential to be optimised to increase the functional effect of fermented foods and beverages.
Collapse
Affiliation(s)
- Novia R.M. Sahab
- Magister of Agro-Industrial Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km.21 Jatinangor 45363, Indonesia
| | - Edy Subroto
- Magister of Agro-Industrial Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km.21 Jatinangor 45363, Indonesia
| | - Roostita L. Balia
- Faculty of Animal Husbandry, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km.21 Jatinangor 45363, Indonesia
| | - Gemilang L. Utama
- Magister of Agro-Industrial Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km.21 Jatinangor 45363, Indonesia
- Center for Environment and Sustainability Science, Universitas Padjadjaran, Jl. Sekeloa Selatan No. 1 Bandung 40134, Indonesia
| |
Collapse
|
20
|
Das G, Paramithiotis S, Sundaram Sivamaruthi B, Wijaya CH, Suharta S, Sanlier N, Shin HS, Patra JK. Traditional fermented foods with anti-aging effect: A concentric review. Food Res Int 2020; 134:109269. [PMID: 32517898 DOI: 10.1016/j.foodres.2020.109269] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 04/08/2020] [Accepted: 04/20/2020] [Indexed: 12/22/2022]
Abstract
Fermentation has been applied since antiquity as a way to preserve foodstuff or as a necessary step in the production of a variety of products. The research was initially focused on accurate description of production procedure and identification of parameters that may affect the composition and dynamics of the developing micro-communities, since the major aim was standardization and commercial exploitation of the products. Soon it was realized that consumption of these products was associated with an array of health benefits, such as anti-hypertensive, anti-inflammatory, anti-diabetic, anti-carcinogenic and anti-allergenic activities. These were credited to the microorganisms present in the fermented products as well as their metabolic activities and the bio-transformations that took place during the fermentation process. Aging has been defined as a gradual decline in the physiological function and concomitantly homeostasis, which is experienced by all living beings over time, leading inevitably to age-associated injuries, diseases, and finally death. Research has focused on effective strategies to delay this process and thus increase both lifespan and well-being. Fermented food products seem to be a promising alternative due to the immunomodulatory effect of microorganisms and elevated amounts of bioactive compounds. Indeed, a series of anti-aging related benefits have been reported, some of which have been attributed to specific compounds such as genistein and daidzein in soybeans, while others are yet to be discovered. The present article aims to collect and critically discuss all available literature regarding the anti-aging properties of fermented food products.
Collapse
Affiliation(s)
- Gitishree Das
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Goyangsi, South Korea
| | - Spiros Paramithiotis
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - Bhagavathi Sundaram Sivamaruthi
- Innovation Center for Holistic Health, Nutraceuticals and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
| | - Christofora Hanny Wijaya
- Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology, Bogor Agricultural University, Bogor, Indonesia
| | - Sigit Suharta
- Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology, Bogor Agricultural University, Bogor, Indonesia
| | - Nevin Sanlier
- Ankara Medipol University, School of Health Science, Department of Nutrition and Dietetics, Ankara, Turkey
| | - Han-Seung Shin
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Goyang, South Korea
| | - Jayanta Kumar Patra
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Goyangsi, South Korea.
| |
Collapse
|
21
|
Verardo V, Gómez-Caravaca AM, Tabanelli G. Bioactive Components in Fermented Foods and Food By-Products. Foods 2020; 9:foods9020153. [PMID: 32033315 PMCID: PMC7074085 DOI: 10.3390/foods9020153] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 01/23/2020] [Indexed: 02/06/2023] Open
Affiliation(s)
- Vito Verardo
- Department of Nutrition and Food Science, University of Granada, Campus of Cartuja, 18071 Granada, Spain
- Institute of Nutrition and Food Technology ‘José Mataix’, Biomedical Research Center, University of Granada, Avda del Conocimiento sn., 18100 Armilla, Granada, Spain
- Correspondence: (V.V.); (A.M.G.-C.); (G.T.)
| | - Ana Maria Gómez-Caravaca
- Department of Analytical Chemistry, University of Granada. Campus of Fuentenueva, Avda Fuentenueva s/n, 18071 Granada, Spain
- Correspondence: (V.V.); (A.M.G.-C.); (G.T.)
| | - Giulia Tabanelli
- Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin 42, 40127 Bologna, Italy
- Correspondence: (V.V.); (A.M.G.-C.); (G.T.)
| |
Collapse
|
22
|
|