1
|
Wang L, Han Y, Zhang X, Gao X, Xu Y, Wu Q, Tang K. Characterization of Key Aroma Compounds of Zhuyeqing by Aroma Extract Dilution Analysis, Quantitative Measurements, Aroma Recombination, and Omission Studies. Foods 2025; 14:344. [PMID: 39941938 PMCID: PMC11817035 DOI: 10.3390/foods14030344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/14/2025] [Accepted: 01/17/2025] [Indexed: 02/16/2025] Open
Abstract
Zhuyeqing is a flavored liquor with a unique flavor blended with Qingxiangxing Baijiu (Fenjiu) and botanical extracts. The aroma characteristics of Zhuyeqing were investigated using a sensomics approach. Ninety-three odorants, among them 64 odorants with flavor dilution (FD) ≥ 32, were confirmed in Zhuyeqing by gas chromatography-mass spectrometry/olfactometry (GC-MS/O) analysis. Quantitative analysis revealed that 22 odorants with odor activity values (OAVs) ≥ 1. Aroma recombination tests showed that 22 odorants with OAV ≥ 1 can recombine the aroma characteristics of Zhuyeqing; omission tests revealed that ethyl cinnamate, ethyl octanoate, ethyl acetate, β-damascenone, and eugenol with OAV ≥ 10 had significant effects on Zhuyeqing.
Collapse
Affiliation(s)
- Lihua Wang
- Laboratory of Brewing Microbiology and Applied Enzymology, State Key Laboratory of Food Science & Technology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Ave, Wuxi 214122, China; (L.W.); (Y.X.)
- Laboratory of Analytical, Quality Inspection Center, Key Laboratory of Plant Extraction and Health of Chinese Lujiu (Shanxi), Shanxi Xinghuacun Fenjiu Distillery Co., Ltd., Fenyang 032205, China (X.G.)
| | - Ying Han
- Laboratory of Analytical, Quality Inspection Center, Key Laboratory of Plant Extraction and Health of Chinese Lujiu (Shanxi), Shanxi Xinghuacun Fenjiu Distillery Co., Ltd., Fenyang 032205, China (X.G.)
| | - Xing Zhang
- Laboratory of Analytical, Quality Inspection Center, Key Laboratory of Plant Extraction and Health of Chinese Lujiu (Shanxi), Shanxi Xinghuacun Fenjiu Distillery Co., Ltd., Fenyang 032205, China (X.G.)
| | - Xiaojuan Gao
- Laboratory of Analytical, Quality Inspection Center, Key Laboratory of Plant Extraction and Health of Chinese Lujiu (Shanxi), Shanxi Xinghuacun Fenjiu Distillery Co., Ltd., Fenyang 032205, China (X.G.)
| | - Yan Xu
- Laboratory of Brewing Microbiology and Applied Enzymology, State Key Laboratory of Food Science & Technology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Ave, Wuxi 214122, China; (L.W.); (Y.X.)
| | - Qun Wu
- Laboratory of Brewing Microbiology and Applied Enzymology, State Key Laboratory of Food Science & Technology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Ave, Wuxi 214122, China; (L.W.); (Y.X.)
| | - Ke Tang
- Laboratory of Brewing Microbiology and Applied Enzymology, State Key Laboratory of Food Science & Technology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Ave, Wuxi 214122, China; (L.W.); (Y.X.)
| |
Collapse
|
2
|
Welke JE, Hernandes KC, Lago LO, Silveira RD, Marques ATB, Zini CA. Flavoromic analysis of wines using gas chromatography, mass spectrometry and sensory techniques. J Chromatogr A 2024; 1734:465264. [PMID: 39181094 DOI: 10.1016/j.chroma.2024.465264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/11/2024] [Accepted: 08/13/2024] [Indexed: 08/27/2024]
Abstract
Various sensory perceptions drive the quality and typicality of wines, with the volatile profile playing a fundamental role in the characteristics of odor, aroma and consequently flavor, which combines the smell (odor and aroma), taste, and trigeminal sensations. Efforts have been made in both the field of instrumental and sensory analysis to understand the relationship of volatile compounds with sensory attributes in omics approaches. Gas chromatography (monodimensional and two-dimensional (heartcutting and comprehensive)) associated with mass spectrometry (GC/MS, GC-GC/MS and GCxGC/MS) and chemometric tools have contributed to foodomics analyses, specifically those linked to metabolomics/volatilomics. These tools, along with the elucidation of sensory properties (sensomics), lead to advanced results in the field of flavoromics. They also help to define the best practices in both vineyard management and winemaking that enable the production of high-quality wines. The objective of this review is to report the challenges of determining the volatile profile of wines, pointing out the ways that can be followed in successful identification and quantification of volatile compounds. The state of the art of sensory evaluation methods is also addressed, providing information that helps in choosing the most appropriate sensory method to be conducted with chromatographic analysis to achieve more in-depth results in the field of flavoromics.
Collapse
Affiliation(s)
- Juliane Elisa Welke
- Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, Porto Alegre, Rio Grande do Sul, Brazil.
| | - Karolina Cardoso Hernandes
- Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, Porto Alegre, Rio Grande do Sul, Brazil
| | - Laura Oliveira Lago
- Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, Porto Alegre, Rio Grande do Sul, Brazil
| | - Rafaela Diogo Silveira
- Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, Porto Alegre, Rio Grande do Sul, Brazil
| | | | - Claudia Alcaraz Zini
- Instituto de Química, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
3
|
Sharif Swallah M, Bondzie-Quaye P, Wang H, Shao CS, Hua P, Alrasheed Bashir M, Benjamin Holman J, Sossah FL, Huang Q. Potentialities of Ganoderma lucidum extracts as functional ingredients in food formulation. Food Res Int 2023; 172:113161. [PMID: 37689913 DOI: 10.1016/j.foodres.2023.113161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/13/2023] [Accepted: 06/16/2023] [Indexed: 09/11/2023]
Abstract
Owing to the recognized therapeutic characteristics of G. lucidum, it is one of the most extensively researched mushrooms as a chemopreventive agent and as a functional food. It is a known wood-degrading basidiomycete possessing numerous pharmacological functions and is termed a natural pharmacy store due to its rich number of active compounds which have proved to portray numerous therapeutic properties. This current review highlights studies on the potentialities of G. lucidum extracts as functional ingredients on organoleptic and nutritional properties of food products (e.g., dairy, wine, beverage, bakery, meat, and other products). In addition, the study delved into various aspects of encapsulated G. lucidum extracts, their morphological and rheological characteristics, prebiotic and immunomodulatory importance, the effects on apoptosis, autophagy, cancer therapy, inflammatory responses, oxidative stress, antioxidant activities, and safety concerns. These findings have significant implications for the development of new products in the food and pharmaceutical industries. On the other hand, the various active compounds extracted from G. lucidum exhibited no toxic or adverse effects, and the appeal for it as a dietary food, natural remedy, and health-fortifying food is drastically increasing as well as attracting the interest of both the industrial and scientific communities. Furthermore, the formation of functional foods based on G. lucidum appears to have actual promise and exciting prospects in nutrition, food, and pharmaceutical sciences.
Collapse
Affiliation(s)
- Mohammed Sharif Swallah
- CAS Key Laboratory of High Magnetic Field and Iron Beam Physical Biology, Institute of Intelligent Agriculture, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China; Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
| | - Precious Bondzie-Quaye
- CAS Key Laboratory of High Magnetic Field and Iron Beam Physical Biology, Institute of Intelligent Agriculture, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China; Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
| | - Han Wang
- CAS Key Laboratory of High Magnetic Field and Iron Beam Physical Biology, Institute of Intelligent Agriculture, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China; Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
| | - Chang-Sheng Shao
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Pei Hua
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Mona Alrasheed Bashir
- CAS Key Laboratory of High Magnetic Field and Iron Beam Physical Biology, Institute of Intelligent Agriculture, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China; Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
| | - Joseph Benjamin Holman
- School of Information Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Frederick Leo Sossah
- Council for Scientific and Industrial Research (CSIR), Oil Palm Research Institute, Coconut Research Programme, P.O. Box 245, Sekondi, Ghana
| | - Qing Huang
- CAS Key Laboratory of High Magnetic Field and Iron Beam Physical Biology, Institute of Intelligent Agriculture, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China; Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
4
|
Goulioti E, Jeffery DW, Kanapitsas A, Lola D, Papadopoulos G, Bauer A, Kotseridis Y. Chemical and Sensory Characterization of Xinomavro Red Wine Using Grapes from Protected Designations of Northern Greece. Molecules 2023; 28:5016. [PMID: 37446678 DOI: 10.3390/molecules28135016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/08/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Despite Xinomavro (Vitis vinifera L.) being a well-known noble red grape variety of northern Greece, little is known about its ''bouquet'' typicity. Volatile compounds of Xinomavro wines produced using a common vinification protocol were analyzed by gas chromatography-mass spectrometry and sensory descriptive analysis was carried out with a trained panel. Wines were characterized by the presence of fatty acids, ethyl and acetate esters, and alcohols, with contributions from terpenes and a volatile phenol. The most active aroma compounds were determined to be 3-methylbutyl acetate, β-damascenone, ethyl esters of octanoic and hexanoic acids, and eugenol. Those compounds positively correlated with fruity and spicy odor descriptors, with the wines being mostly characterized by five typical aroma terms: strawberry, berry fruit, spices, tomato, and green bell pepper. Partial least squares regression (PLSR) analysis was used to visualize relationship between the orthonasal sensory attributes and the volatile aroma compounds with calculated OAVs > 1. Key aroma-active volatiles in the wines were identified using GC-MS/olfactometry, providing a list of 40 compounds, among which 13 presented a modified detection frequency > 70%. This study is the first of its kind and provided strong indications regarding the aroma compounds defining the sensory characteristics of Xinomavro wines.
Collapse
Affiliation(s)
- Elli Goulioti
- Laboratory of Enology and Alcoholic Drinks (LEAD), Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
| | - David W Jeffery
- School of Agriculture, Food and Wine, and Waite Research Institute, The University of Adelaide, PMB 1, Glen Osmond, SA 5064, Australia
| | - Alexandros Kanapitsas
- Laboratory of Enology and Alcoholic Drinks (LEAD), Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
| | - Despina Lola
- Laboratory of Enology and Alcoholic Drinks (LEAD), Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
| | - Georgios Papadopoulos
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
| | - Andrea Bauer
- Department of Food Science and Nutrition, Faculty Life Sciences, Hamburg University of Applied Sciences, Ulmenliet 20, 21033 Hamburg, Germany
| | - Yorgos Kotseridis
- Laboratory of Enology and Alcoholic Drinks (LEAD), Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
| |
Collapse
|
5
|
Sam FE, Ma T, Wang J, Liang Y, Sheng W, Li J, Jiang Y, Zhang B. Aroma improvement of dealcoholized Merlot red wine using edible flowers. Food Chem 2023; 404:134711. [DOI: 10.1016/j.foodchem.2022.134711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 11/29/2022]
|
6
|
Swallah MS, Bondzie-Quaye P, Wu Y, Acheampong A, Sossah FL, Elsherbiny SM, Huang Q. Therapeutic potential and nutritional significance of Ganoderma lucidum - a comprehensive review from 2010 to 2022. Food Funct 2023; 14:1812-1838. [PMID: 36734035 DOI: 10.1039/d2fo01683d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
With a long history in traditional Asian medicine, Ganoderma lucidum (G. lucidum) is a mushroom species suggested to improve health and extend life. Its medicinal reputation has merited it with numerous attributes and titles, and it is evidenced to be effective in the prevention and treatment of various metabolic disorders owing to its unique source of bioactive metabolites, primarily polysaccharides, triterpenoids, and polyphenols, attributed with antioxidant, anti-inflammatory, anticancer, hepatoprotective, antidiabetic activities, etc. These unique potential pharmaceutical properties have led to its demand as an important resource of nutrient supplements in the food industry. It is reported that the variety of therapeutic/pharmacological properties was mainly due to its extensive prebiotic and immunomodulatory functions. All literature summarized in this study was collated based on a systematic review of electronic libraries (PubMed, Scopus databases, Web of Science Core Collection, and Google Scholar) from 2010-2022. This review presents an updated and comprehensive summary of the studies on the immunomodulatory therapies and nutritional significance of G. lucidum, with the focus on recent advances in defining its immunobiological mechanisms and the possible applications in the food and pharmaceutical industries for the prevention and management of chronic diseases. In addition, toxicological evidence and the adoption of standard pharmaceutical methods for the safety assessment, quality assurance, and efficacy testing of G. lucidum-derived compounds will be the gateway to bringing them into health establishments.
Collapse
Affiliation(s)
- Mohammed Sharif Swallah
- CAS Key Laboratory of High Magnetic Field and Iron Beam Physical Biology, Institute of Intelligent Agriculture, Institute of Intelligent Machines, Hefei Institute of Physical Sciences, Chinese Academy of Sciences, Hefei, 230031, China. .,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, 230026, China
| | - Precious Bondzie-Quaye
- CAS Key Laboratory of High Magnetic Field and Iron Beam Physical Biology, Institute of Intelligent Agriculture, Institute of Intelligent Machines, Hefei Institute of Physical Sciences, Chinese Academy of Sciences, Hefei, 230031, China. .,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, 230026, China
| | - Yahui Wu
- CAS Key Laboratory of High Magnetic Field and Iron Beam Physical Biology, Institute of Intelligent Agriculture, Institute of Intelligent Machines, Hefei Institute of Physical Sciences, Chinese Academy of Sciences, Hefei, 230031, China. .,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, 230026, China
| | - Adolf Acheampong
- CAS Key Laboratory of High Magnetic Field and Iron Beam Physical Biology, Institute of Intelligent Agriculture, Institute of Intelligent Machines, Hefei Institute of Physical Sciences, Chinese Academy of Sciences, Hefei, 230031, China. .,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, 230026, China
| | - Frederick Leo Sossah
- Council For Scientific And Industrial Research (CSIR), Oil Palm Research Institute, Coconut Research Programme, P.O.Box 245, Sekondi, Ghana.,Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China
| | - Shereen M Elsherbiny
- CAS Key Laboratory of High Magnetic Field and Iron Beam Physical Biology, Institute of Intelligent Agriculture, Institute of Intelligent Machines, Hefei Institute of Physical Sciences, Chinese Academy of Sciences, Hefei, 230031, China. .,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, 230026, China.,Department of Physics, Faculty of Science, Mansoura University, Mansoura 33516, Egypt
| | - Qing Huang
- CAS Key Laboratory of High Magnetic Field and Iron Beam Physical Biology, Institute of Intelligent Agriculture, Institute of Intelligent Machines, Hefei Institute of Physical Sciences, Chinese Academy of Sciences, Hefei, 230031, China. .,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
7
|
Ma T, Sam FE, Didi DA, Atuna RA, Amagloh FK, Zhang B. Contribution of edible flowers on the aroma profile of dealcoholized pinot noir rose wine. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
Liang Z, Zhang P, Zeng XA, Fang Z. The art of flavored wine: Tradition and future. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.07.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
9
|
Nguyen AN, Johnson TE, Jeffery DW, Capone DL, Danner L, Bastian SE. Sensory and Chemical Drivers of Wine Consumers' Preference for a New Shiraz Wine Product Containing Ganoderma lucidum Extract as a Novel Ingredient. Foods 2020; 9:foods9020224. [PMID: 32093250 PMCID: PMC7074515 DOI: 10.3390/foods9020224] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 02/11/2020] [Accepted: 02/13/2020] [Indexed: 11/16/2022] Open
Abstract
This study explored wine consumers’ preferences towards a novel Australian Shiraz wine product containing Ganoderma lucidum (GL). Wine consumers (n = 124) were asked to complete a questionnaire and participate in a blind tasting of six GL wine products (differing in the amount and timing of GL extract additions). Based on individual liking scores for each GL wine product that was tasted, four hedonic clusters C1 (n = 44, preferred control and low levels of GL additions), C2 (n = 28, preferred control only), C3 (n = 26, generally preferred all GL additions) and C4 (n = 26, preferred 1 g/L additions and 4 g/L post-fermentation) were identified. Sensory attributes of the GL wine products were also profiled with rate-all-that-apply (n = 65) and the 31 sensory attributes that significantly differentiated the wines underwent principal component analysis with the hedonic clusters overlaid to explain consumers’ preferences. There was a clear separation between hedonic clusters. Sensory attributes and volatile flavor compounds that significantly differentiated the wines were subjected to partial least squares regression, which indicated the important positive drivers of liking among the hedonic clusters. Pepper and jammy aroma, 3-methylbutanoic acid (linked to fruity notes) and non-fruit aftertaste positively drove C2′s preference, whereas spice flavor and hexanoic acid (known for leafy and woody descriptors) drove C3′s liking. There were no positive drivers for C1′s liking but bitter taste, cooked vegetable, and toasty aromas drove this cluster’ dislike. C4 preferred brown appearance, tobacco aroma, and jammy and cooked vegetable flavors. These findings provide the wine industry with deeper insights into consumers’ liking towards new GL wine products targeted at the Australasian market.
Collapse
Affiliation(s)
- Anh N.H. Nguyen
- Department of Wine and Food Science, School of Agriculture, Food and Wine, The University of Adelaide, 5064 Glen Osmond, Australia (T.E.J.); (D.W.J.); (D.L.C.); (L.D.)
| | - Trent E. Johnson
- Department of Wine and Food Science, School of Agriculture, Food and Wine, The University of Adelaide, 5064 Glen Osmond, Australia (T.E.J.); (D.W.J.); (D.L.C.); (L.D.)
| | - David W. Jeffery
- Department of Wine and Food Science, School of Agriculture, Food and Wine, The University of Adelaide, 5064 Glen Osmond, Australia (T.E.J.); (D.W.J.); (D.L.C.); (L.D.)
- Australian Research Council Training Centre for Innovative Wine Production, The University of Adelaide, 5064 Glen Osmond, Australia
| | - Dimitra L. Capone
- Department of Wine and Food Science, School of Agriculture, Food and Wine, The University of Adelaide, 5064 Glen Osmond, Australia (T.E.J.); (D.W.J.); (D.L.C.); (L.D.)
- Australian Research Council Training Centre for Innovative Wine Production, The University of Adelaide, 5064 Glen Osmond, Australia
| | - Lukas Danner
- Department of Wine and Food Science, School of Agriculture, Food and Wine, The University of Adelaide, 5064 Glen Osmond, Australia (T.E.J.); (D.W.J.); (D.L.C.); (L.D.)
| | - Susan E.P. Bastian
- Department of Wine and Food Science, School of Agriculture, Food and Wine, The University of Adelaide, 5064 Glen Osmond, Australia (T.E.J.); (D.W.J.); (D.L.C.); (L.D.)
- Australian Research Council Training Centre for Innovative Wine Production, The University of Adelaide, 5064 Glen Osmond, Australia
- Correspondence: ; Tel.: +61-8-8313-6647
| |
Collapse
|