1
|
Bulanda S, Szumska M, Nowak A, Janoszka B, Damasiewicz-Bodzek A. Determination of Polar Heterocyclic Aromatic Amines in Meat Thermally Treated in a Roasting Bag with Dried Fruits. Foods 2025; 14:559. [PMID: 40002003 PMCID: PMC11854267 DOI: 10.3390/foods14040559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/03/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
Frequent consumption of processed meat has been classified as carcinogenic to humans by the International Agency for Research on Cancer (Group 1), while red meat has been classified as probably carcinogenic (Group 2A). Mutagenic and carcinogenic compounds formed by heating in protein-rich food include, among others, heterocyclic aromatic amines (HAAs). Modifying the heat treatment of meat and using natural additives with antioxidant properties can lead to a reduction in their formation. The aim of this study was to determine polar HAAs (imidazoquinolines, IQ and MeIQ; imidazoquinoxalines, 8-MeIQx and 4,8-DiMeIQx; and phenylimidazopyridine, PhIP) in pork loin prepared without additives and with three types of dried fruit (apricots, cranberries, and prunes), baked in a roasting bag. HAAs were isolated from meat samples by solid-phase extraction. Quantitative analysis was performed by high-performance liquid chromatography with fluorescence detection (FLD) and a diode array detector (DAD). Only two HAAs, 8-MeIQx and PhIP, were detected in extracts isolated from meat samples. The total content of these compounds in meat roasted without additives was 5.9 ng/g. Using a dried fruit stuffing content of 200 g/kg of meat reduced these concentrations in dishes prepared with prunes, apricots, and cranberries by 42%, 47%, and 77%, respectively.
Collapse
Affiliation(s)
| | | | | | - Beata Janoszka
- Department of Chemistry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Jordana 19, 41-808 Zabrze, Poland; (S.B.); (M.S.); (A.N.); (A.D.-B.)
| | | |
Collapse
|
2
|
Li W, Yu J, Ren N, Huang L, Dang Y, Wu Y, Li G. Exploration of the prediction and generation patterns of heterocyclic aromatic amines in roast beef based on Genetic Algorithm combined with Support Vector Regression. Food Chem 2025; 463:141059. [PMID: 39243618 DOI: 10.1016/j.foodchem.2024.141059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/06/2024] [Accepted: 08/28/2024] [Indexed: 09/09/2024]
Abstract
Heterocyclic aromatic amines (HAAs) are harmful byproducts in food heating. Therefore, exploring the prediction and generation patterns of HAAs is of great significance. In this study, genetic algorithm (GA) and support vector regression (SVR) are used to establish a prediction model of HAAs based on heating conditions, reveal the influence of heating temperature and time on the precursor and formation of HAAs in roast beef, and study the formation rules of HAAs under different processing conditions. Principal component analysis (PCA) showed that the effect on HAAs generation increases with the increase of heating temperature and time. The GA-SVR model exhibited near-zero absolute errors and regression correlation coefficients (R) close to 1 when predicting HAAs contents. The GA-SVR model can be applied for real-time monitoring of HAAs in grilled beef, providing technical support for controlling hazardous substances and intelligent processing of heat-processed meat products.
Collapse
Affiliation(s)
- Wenrui Li
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jiachen Yu
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Nanjiang Ren
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Long Huang
- School of Information and Artificial Intelligence, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Yike Dang
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yongning Wu
- NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Guoliang Li
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| |
Collapse
|
3
|
Xiong K, Li MM, Chen YQ, Hu YM, Jin W. Formation and Reduction of Toxic Compounds Derived from the Maillard Reaction During the Thermal Processing of Different Food Matrices. J Food Prot 2024; 87:100338. [PMID: 39103091 DOI: 10.1016/j.jfp.2024.100338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/24/2024] [Accepted: 07/28/2024] [Indexed: 08/07/2024]
Abstract
Advanced glycation end products (AGEs), heterocyclic aromatic amines (HAAs), acrylamide (AA), 5-hydroxymethylfurfural (5-HMF), and polycyclic aromatic hydrocarbons (PAHs) are toxic substances that are produced in certain foods during thermal processing by using common high-temperature unit operations such as frying, baking, roasting, grill cooking, extrusion, among others. Understanding the formation pathways of these potential risk factors, which can cause cancer or contribute to the development of many chronic diseases in humans, is crucial for reducing their occurrence in thermally processed foods. During thermal processing, food rich in carbohydrates, proteins, and lipids undergoes a crucial Maillard reaction, leading to the production of highly active carbonyl compounds. These compounds then react with other substances to form harmful substances, which ultimately affect negatively the health of the human body. Although these toxic compounds differ in various forms of formation, they all partake in the common Maillard pathway. This review primarily summarizes the occurrence, formation pathways, and reduction measures of common toxic compounds during the thermal processing of food, based on independent studies for each specific contaminant in its corresponding food matrix. Finally, it provides several approaches for the simultaneous reduction of multiple toxic compounds.
Collapse
Affiliation(s)
- Ke Xiong
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing 100048, China; Beijing Laboratory for Food Quality and Safety, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Meng-Meng Li
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing 100048, China; Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Yi-Qiang Chen
- Beijing Laboratory for Food Quality and Safety, Beijing Technology & Business University (BTBU), Beijing 100048, China; Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Yu-Meng Hu
- Beijing Laboratory for Food Quality and Safety, Beijing Technology & Business University (BTBU), Beijing 100048, China; Beijing Innovation Centre of Food Nutrition and Human, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Wen Jin
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing 100048, China; Beijing Laboratory for Food Quality and Safety, Beijing Technology & Business University (BTBU), Beijing 100048, China
| |
Collapse
|
4
|
Zhang H, Lv X, Su W, Chen BH, Lai YW, Xie R, Lin Q, Chen L, Cao H. Exploring the roles of excess amino acids, creatine, creatinine, and glucose in the formation of heterocyclic aromatic amines by UPLC-MS/MS. Food Chem 2024; 446:138760. [PMID: 38402760 DOI: 10.1016/j.foodchem.2024.138760] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 02/13/2024] [Accepted: 02/13/2024] [Indexed: 02/27/2024]
Abstract
The prevention and control of heterocyclic aromatic amines (HAA) formation to mitigate of potential risks to humans, can be achieved by targeting their precursors. In this study, the detailed roles of individual and excess component (20 common α-amino acids, creatine, creatinine, and glucose) on HAA formation in roasted beef patties were examined using UPLC-MS/MS. The results confirmed the reported classical precursors of HAAs. Some components regulated the competitive production of Norharman and Harman. Glycine (Gly) and glucose favored Norharman formation, while cysteine (Cys) and phenylalanine (Phe) for Harman. Serine (Ser) and threonine (Thr) were identified as potential precursors for IQx-type HAAs. Interestingly, methionine (Met), Gly, Thr, Cys, alanine (Ala), and Ser were revealed as more targeted underlying precursors for 1,6-DMIP and 1,5,6-TMIP, and the formation mechanism was inferred. Furthermore, Pro, Leu, His, Ile, Lys and Asp were considered as great inhibitors for HAAs.
Collapse
Affiliation(s)
- Haolin Zhang
- Institute of Chinese Medical Sciences, University of Macau, Macao, China; College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang 524088, China.
| | - Xiaomei Lv
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang 524088, China.
| | - Weiming Su
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang 524088, China.
| | - Bing-Huei Chen
- Department of Food Science, Fu Jen Catholic University, New Taipei City 24205, Taiwan, China.
| | - Yu-Wen Lai
- Department of Food Science, Fu Jen Catholic University, New Taipei City 24205, Taiwan, China.
| | - Ruiwei Xie
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang 524088, China.
| | - Qiuyi Lin
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang 524088, China.
| | - Lei Chen
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang 524088, China.
| | - Hui Cao
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang 524088, China.
| |
Collapse
|
5
|
Chen Q, Xu Y, Dong H, Bai W, Zeng X. Unraveling the relationships between processing conditions and PhIP formation in chemical model system and roast pork patty via principal component analysis. Food Chem X 2024; 22:101404. [PMID: 38707784 PMCID: PMC11068533 DOI: 10.1016/j.fochx.2024.101404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/07/2024] [Accepted: 04/17/2024] [Indexed: 05/07/2024] Open
Abstract
2-amino-1-methyl-6-phenylimidazole [4,5-b] pyridine (PhIP) is one of the higher levels of HAAs produced in protein foods during heating. The effects of heating temperature, time, and concentration of precursors on PhIP and related substances in the chemical model system and roast pork patty were studied using HPLC-Q-Orbitrap-HRMS and GC-MS. Results showed that the heating temperature, time, and concentration of four precursors significantly affected PhIP and its related substances (P < 0.05) in the chemical model system. Among them, PhIP production was greatest when heating at 200 min with 220 °C, and the concentrations of phenylalanine, creatinine, glucose, and creatine added were 10, 20, 20, and 20 mmol/L, respectively. Moreover, as the fat proportion of roast pork patties increased, PhIP and its intermediate-phenylacetaldehyde concentrations increased substantially (P < 0.05). PCA results showed that the samples of PhIP and related substances gradually dispersed as the temperature and time increased, and there were obvious effects among them.
Collapse
Affiliation(s)
- Qi Chen
- College of Light Industry and Food Sciences, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Yan Xu
- College of Light Industry and Food Sciences, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Hao Dong
- College of Light Industry and Food Sciences, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou 510225, China
| | - Weidong Bai
- College of Light Industry and Food Sciences, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou 510225, China
| | - Xiaofang Zeng
- College of Light Industry and Food Sciences, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou 510225, China
| |
Collapse
|
6
|
Aoudeh E, Oz E, Oz F. Understanding the heterocyclic aromatic amines: An overview and recent findings. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 110:1-66. [PMID: 38906585 DOI: 10.1016/bs.afnr.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
Heterocyclic aromatic amines (HAAs) constitute a group of highly toxic organic compounds strongly associated with the onset of various types of cancer. This paper aims to serve as a valuable resource for food scientists working towards a better understanding of these compounds including formation, minimizing strategies, analysis, and toxicity as well as addressing existing gaps in the literature. Despite extensive research conducted on these compounds since their discovery, several aspects remain inadequately understood, necessitating further investigation. These include their formation pathways, toxic mechanisms, effective mitigation strategies, and specific health effects on humans. Nonetheless, recent research has yielded promising results, contributing significantly to our understanding of HAAs by proposing new potential formation pathways and innovative strategies for their reduction.
Collapse
Affiliation(s)
- Eyad Aoudeh
- Department of Food Engineering, Agriculture Faculty, Ataturk University, Erzurum, Türkiye
| | - Emel Oz
- Department of Food Engineering, Agriculture Faculty, Ataturk University, Erzurum, Türkiye
| | - Fatih Oz
- Department of Food Engineering, Agriculture Faculty, Ataturk University, Erzurum, Türkiye.
| |
Collapse
|
7
|
Lai YW, Inbaraj BS, Chen BH. Analysis of Polycyclic Aromatic Hydrocarbons via GC-MS/MS and Heterocyclic Amines via UPLC-MS/MS in Crispy Pork Spareribs for Studying Their Formation during Frying. Foods 2024; 13:185. [PMID: 38254486 PMCID: PMC10814522 DOI: 10.3390/foods13020185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/27/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
This study aims to explore the effects of frying conditions on the formation of HAs and PAHs in crispy pork spareribs, a popular meat commodity sold on Taiwan's market. Raw pork spareribs were marinated, coated with sweet potato powder, and fried in soybean oil and palm oil at 190 °C/6 min or 150 °C/12 min, followed by an analysis of HAs and PAHs via QuEChERS coupled with UPLC-MS/MS and GC-MS/MS, respectively. Both HAs and PAHs in pork spareribs during frying followed a temperature- and time-dependent rise. A total of 7 HAs (20.34-25.97 μg/kg) and 12 PAHs (67.69-85.10 μg/kg) were detected in pork spareribs fried in soybean oil and palm oil at 150 °C/12 min or 190 °C/6 min, with palm oil producing a higher level of total HAs and a lower level of total PAHs than soybean oil. The content changes of amino acid, reducing sugar, and creatinine played a vital role in affecting HA formation, while the degree of oil unsaturation and the contents of precursors including benzaldehyde, 2-cyclohexene-1-one, and trans,trans-2,4-decadienal showed a crucial role in affecting PAH formation. The principal component analysis revealed that HAs and PAHs were formed by different mechanisms, with the latter being more liable to formation in pork spareribs during frying, while the two-factorial analysis indicated that the interaction between oil type and frying condition was insignificant for HAs and PAHs generated in crispy pork spareribs. Both CcdP (22.67-32.78 μg/kg) and Pyr (16.70-22.36 μg/kg) dominated in PAH formation, while Harman (14.46-17.91 μg/kg) and Norharman (3.41-4.55 μg/kg) dominated in HA formation in crispy pork spareribs during frying. The outcome of this study forms a basis for learning both the variety and content of HAs and PAHs generated during the frying of pork spareribs and the optimum frying condition to minimize their formation.
Collapse
Affiliation(s)
- Yu-Wen Lai
- Department of Food Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan; (Y.-W.L.); (B.S.I.)
| | - Baskaran Stephen Inbaraj
- Department of Food Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan; (Y.-W.L.); (B.S.I.)
| | - Bing-Huei Chen
- Department of Nutrition, China Medical University, Taichung 404328, Taiwan
| |
Collapse
|
8
|
Lai YW, Stephen Inbaraj B, Chen BH. Effects of Oil and Processing Conditions on Formation of Heterocyclic Amines and Polycyclic Aromatic Hydrocarbons in Pork Fiber. Foods 2023; 12:3504. [PMID: 37761213 PMCID: PMC10528247 DOI: 10.3390/foods12183504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Toxic compounds such as heterocyclic amines (HAs) and polycyclic aromatic hydrocarbons (PAHs) can be produced during food processing, especially meat products. This study aims to monitor the formation of HAs and PAHs in fried pork fiber, a common meat product in Taiwan, at different processing conditions. A total of six experimental groups, including raw pork tenderloin, dried pork filaments, sesame oil-stir-fried pork at 160 °C for 15 min, sesame oil-stir-fried pork at 200 °C for 6 min, lard-stir-fried pork at 160 °C for 15 min, and lard-stir-fried pork at 200 °C for 6 min, were prepared and analyzed for formation of HAs via UPLC-MS/MS and PAHs via GC-MS/MS in triplicate. Frying in sesame oil or lard showed a greater content of total HAs in fried pork fiber processed at 160 °C for 15 min than at 200 °C for 6 min. However, in the same heating conditions, pork fiber fried in sesame oil produced a higher level of total HAs than that fried in lard. Of the various HAs in fried pork fiber, both Harman and Norharman were generated in the highest amount. The precursors, including reducing sugar, amino acid, and creatine/creatinine, played a vital role in HAs formation in fried pork fiber. For total PAHs, the highest level was shown for pork fiber fried in lard at 200 °C/6 min, followed by frying in sesame oil at 200 °C/6 min and 160 °C/15 min, and in lard at 160 °C/15 min. Like HAs, at the same heating condition, a greater content of total PAHs was produced in pork fiber fried in sesame oil than in lard. Notably, the highly toxic benzo[a]pyrene was undetected in fried pork fiber. The PAH precursor benzaldehyde was shown to generate at a much higher level than 2-cyclohexene-1-one and trans,trans-2,4-decadienal in fried pork fiber, and it should play a more important role in PAH formation. Principal component analysis (PCA) also revealed that the formation mechanism of HAs and PAHs in fried pork fiber was different.
Collapse
Affiliation(s)
- Yu-Wen Lai
- Department of Food Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan; (Y.-W.L.); (B.S.I.)
| | - Baskaran Stephen Inbaraj
- Department of Food Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan; (Y.-W.L.); (B.S.I.)
| | - Bing-Huei Chen
- Department of Food Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan; (Y.-W.L.); (B.S.I.)
- Department of Nutrition, China Medical University, Taichung 40402, Taiwan
| |
Collapse
|
9
|
Lai Y, Lee Y, Cao H, Zhang H, Chen B. Extraction of heterocyclic amines and polycyclic aromatic hydrocarbons from pork jerky and the effect of flavoring on formation and inhibition. Food Chem 2023; 402:134291. [DOI: 10.1016/j.foodchem.2022.134291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 10/14/2022]
|
10
|
Raw to charred: Changes of precursors and intermediates and their correlation with heterocyclic amines formation in grilled lamb. Meat Sci 2023; 195:108999. [DOI: 10.1016/j.meatsci.2022.108999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 06/29/2022] [Accepted: 10/04/2022] [Indexed: 11/09/2022]
|
11
|
Heterocyclic aromatic amines in roasted chicken: formation and prediction based on heating temperature and time. Food Chem 2022; 405:134822. [DOI: 10.1016/j.foodchem.2022.134822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 10/03/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022]
|
12
|
Kang HJ, Lee SY, Lee DY, Kang JH, Kim JH, Kim HW, Jeong JW, Oh DH, Hur SJ. Study on the reduction of heterocyclic amines by marinated natural materials in pork belly. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2022; 64:1245-1258. [PMID: 36812002 PMCID: PMC9890326 DOI: 10.5187/jast.2022.e86] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/28/2022] [Accepted: 10/17/2022] [Indexed: 12/14/2022]
Abstract
This study was conducted to determine the effect of natural ingredient seasoning on the reduction of heterocyclic amine (HCA) production that may occur when pork belly is cooked at a very high temperature for a long time. Pork belly seasoned with natural ingredients, such as natural spices, blackcurrant, and gochujang, was cooked using the most common cooking methods, such as boiling, pan fry, and barbecue. HCAs in pork belly were extracted through solid-phase extraction and analyzed via high-performance liquid chromatography. For short-term toxicity, a mouse model was used to analyze weight, feed intake, organ weight, and length; hematology and serology analysis were also performed. Results revealed that HCAs formed only when heating was performed at a very high temperature for a long time, not under general cooking conditions. Although the toxicity levels were not dangerous, the method showing the relatively highest toxicity among various cooking methods was barbecue, and the natural material with the highest toxicity reduction effect was blackcurrant. Furthermore, seasoning pork belly with natural materials containing a large amount of antioxidants, such as vitamin C, can reduce the production of toxic substances, such as HCAs, even if pork belly is heated to high temperatures.
Collapse
Affiliation(s)
- Hea Jin Kang
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Seung Yun Lee
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Da Young Lee
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Ji Hyeop Kang
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Jae Hyeon Kim
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Hyun Woo Kim
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Jae Won Jeong
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Dong Hoon Oh
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Sun Jin Hur
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea,Corresponding author: Sun Jin Hur,
Department of Animal Science and Technology, Chung-Ang University, Anseong
17546, Korea. Tel: +82-31-670-4673, E-mail:
| |
Collapse
|
13
|
Lai YW, Lee YT, Inbaraj BS, Chen BH. Formation and Inhibition of Heterocyclic Amines and Polycyclic Aromatic Hydrocarbons in Ground Pork during Marinating. Foods 2022; 11:3080. [PMID: 36230156 PMCID: PMC9563804 DOI: 10.3390/foods11193080] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/23/2022] [Accepted: 09/30/2022] [Indexed: 11/29/2022] Open
Abstract
This study aims to simultaneously extract heterocyclic amines (HAs) and polycyclic aromatic hydrocarbons (PAHs) from ground pork for respective analysis by UPLC-MS/MS and GC-MS/MS, and study the effects of different flavorings and marinating time length on their formation and inhibition. Results showed that both HA and PAH contents followed a time-dependent increase during marinating, with HAs being more susceptible to formation than PAHs. The total HA contents in unmarinated pork and juice was, respectively, 61.58 and 139.26 ng/g, and rose to 2986.46 and 1792.07 ng/g after 24-h marinating, which can be attributed to the elevation of reducing sugar and creatinine contents. The total PAH contents in unmarinated pork and juice were, respectively, 34.56 and 26.84 ng/g, and increased to 55.93 and 44.16 ng/g after 24-h marinating, which can be due to the increment of PAH precursors such as benzaldehyde, 2-cyclohexene-1-one and trans,trans-2,4-decadienal. Incorporation of 0.5% (w/v) cinnamon powder or 0.5% (w/v) green tea powder was effective in inhibiting HA formation with the former showing a more pronounced effect for marinated pork, while the latter was for marinated juice. However, their addition was only effective in inhibiting PAH formation in marinated pork. Principle component analysis revealed the relationship between HA and PAH formation in ground pork and juice during marinating.
Collapse
Affiliation(s)
- Yu-Wen Lai
- Department of Food Science, Fu Jen Catholic University, New Taipei City 24205, Taiwan
| | - Yu-Tsung Lee
- Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan
| | | | - Bing-Huei Chen
- Department of Food Science, Fu Jen Catholic University, New Taipei City 24205, Taiwan
- Department of Nutrition, China Medical University, Taichung 40402, Taiwan
| |
Collapse
|
14
|
Inhibitory effect of acylated anthocyanins on heterocyclic amines in grilled chicken breast patty and its mechanism. Curr Res Food Sci 2022; 5:1732-1739. [PMID: 36247332 PMCID: PMC9556857 DOI: 10.1016/j.crfs.2022.09.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/26/2022] [Accepted: 09/10/2022] [Indexed: 11/30/2022] Open
Abstract
Heterocyclic amines (HCAs) are a group of carcinogenic substances produced in protein-rich poultry meat under high-temperature. Enzymatic acylation of anthocyanins (ACNs) is a reliable way to improve their stability, and we recently found the acylated cyaniding-3-O-glucose (cyanidin-3-6-cinnamoyl-glucoside, C3(6C)G) could effective inhibit the HCAs formation, but the underline mechanism was still obscure. Thus, the present study investigated the inhibitory effect ofC3(6C)G on HCAs formation in the food system (chicken breast) and to explore the potential mechanism. The results showed that C3(6C)G with different concentrations (0.1, 0.5 and 1.0 mg/mL) could significantly inhibit lipid oxidation and decrease the total HCAs content (P<0.05) in chicken breast meat patty after roasting. The samples with 0.1 mg/mL C3(6C)G had the best inhibition effect on total HCAs, with an inhibition rate of 28%, and the inhibition rates for IQ, Harman, TRP-P-2, PhIP and AαC were 34%, 46%, 100%, 54% and 41%, respectively. Enzymatic acylation is a reliable way to improve the stability of anthocyanins. Acylated cyaniding-3-O-glucose(C3(6C)G) could significantly decrease heterocyclic amines (HCAs) content. Variations in the precursors indicated the inhibition mechanism of C3(6C)G. C3(6C)G could alleviate lipid peroxidation during the cooking process.
Collapse
|
15
|
Xi J, Chen Y. Effects of tetrahydro-curcumin on the formation of β-carboline heterocyclic amines in dry-heated soy protein isolate in the presence of glucose. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
16
|
Kilic S, Oz E, Oz F. Effect of turmeric on the reduction of heterocyclic aromatic amines and quality of chicken meatballs. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108189] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
17
|
Reduction of the Heterocyclic Amines in Grilled Beef Patties through the Combination of Thermal Food Processing Techniques without Destroying the Grilling Quality Characteristics. Foods 2021; 10:foods10071490. [PMID: 34199037 PMCID: PMC8304586 DOI: 10.3390/foods10071490] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 11/25/2022] Open
Abstract
In order to reduce the formation of heterocyclic amines in grilled beef patties without destroying their unique quality characteristics, the effects of different thermal processes, including charcoal grilling, infrared grilling, superheated steam roasting and microwave heating, on the production of heterocyclic amines in beef patties and grilling quality characteristics were systematically analyzed. The results showed that infrared grilling can significantly (p < 0.05) reduce the content of heterocyclic amines in grilled patties, and the combination of microwave heating or superheated steam roasting with infrared grilling could further reduce the content of heterocyclic amines, with a maximum reduction ratio of 44.48%. While subtle differences may exist in infrared grilled patties with/without superheated steam roasting or microwave heating, a slight change will not affect the overall quality characteristics of grilled patties. The combined thermal processing will not visually affect the color of the grilled patties. Correlation analysis and regression analysis showed that the reduction in heterocyclic amines caused by microwave heating and superheated steam roasting are related to the moisture content and lipid oxidation of grilled patties, respectively. Using combined thermal processes to reduce the formation of heterocyclic amines is advisable.
Collapse
|
18
|
Nadeem HR, Akhtar S, Ismail T, Sestili P, Lorenzo JM, Ranjha MMAN, Jooste L, Hano C, Aadil RM. Heterocyclic Aromatic Amines in Meat: Formation, Isolation, Risk Assessment, and Inhibitory Effect of Plant Extracts. Foods 2021; 10:foods10071466. [PMID: 34202792 PMCID: PMC8307633 DOI: 10.3390/foods10071466] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/20/2021] [Accepted: 06/21/2021] [Indexed: 02/01/2023] Open
Abstract
Heterocyclic aromatic amines (HAAs) are potent carcinogenic compounds induced by the Maillard reaction in well-done cooked meats. Free amino acids, protein, creatinine, reducing sugars and nucleosides are major precursors involved in the production of polar and non-polar HAAs. The variety and yield of HAAs are linked with various factors such as meat type, heating time and temperature, cooking method and equipment, fresh meat storage time, raw material and additives, precursor’s presence, water activity, and pH level. For the isolation and identification of HAAs, advanced chromatography and spectroscopy techniques have been employed. These potent mutagens are the etiology of several types of human cancers at the ng/g level and are 100- to 2000-fold stronger than that of aflatoxins and benzopyrene, respectively. This review summarizes previous studies on the formation and types of potent mutagenic and/or carcinogenic HAAs in cooked meats. Furthermore, occurrence, risk assessment, and factors affecting HAA formation are discussed in detail. Additionally, sample extraction procedure and quantification techniques to determine these compounds are analyzed and described. Finally, an overview is presented on the promising strategy to mitigate the risk of HAAs by natural compounds and the effect of plant extracts containing antioxidants to reduce or inhibit the formation of these carcinogenic substances in cooked meats.
Collapse
Affiliation(s)
- Hafiz Rehan Nadeem
- Institute of Food Science and Nutrition, Bahauddin Zakariya University, Multan 60800, Pakistan; (H.R.N.); (T.I.)
| | - Saeed Akhtar
- Institute of Food Science and Nutrition, Bahauddin Zakariya University, Multan 60800, Pakistan; (H.R.N.); (T.I.)
- Correspondence: (S.A.); (J.M.L.); (M.M.A.N.R.); (R.M.A.)
| | - Tariq Ismail
- Institute of Food Science and Nutrition, Bahauddin Zakariya University, Multan 60800, Pakistan; (H.R.N.); (T.I.)
| | - Piero Sestili
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, PU, Italy;
| | - Jose Manuel Lorenzo
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia Nº 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain
- Correspondence: (S.A.); (J.M.L.); (M.M.A.N.R.); (R.M.A.)
| | - Muhammad Modassar Ali Nawaz Ranjha
- Institute of Food Science and Nutrition, University of Sargodha, Sargodha 40100, Pakistan
- Correspondence: (S.A.); (J.M.L.); (M.M.A.N.R.); (R.M.A.)
| | - Leonie Jooste
- Environmental Health Sciences, Faculty of Communication, Arts and Sciences, Canadian University Dubai, Dubai 117781, United Arab Emirates;
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRA USC1328 Université ď Orléans, CEDEX 2, 45067 Orléans, France;
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
- Correspondence: (S.A.); (J.M.L.); (M.M.A.N.R.); (R.M.A.)
| |
Collapse
|
19
|
Savinova O, Yerzhanova M. Heterocyclic aromatic amines in food as mutagenesis factors. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Olga Savinova
- Department of Pharmacy I.M. Sechenov First Moscow State Medical University Moscow Russian Federation
| | - Mira Yerzhanova
- Department of Automation and Telecommunications M.Kh. Dulaty Taraz State University Taraz Kazakhstan
| |
Collapse
|
20
|
Predictive Correlation between Apparent Sensory Properties and the Formation of Heterocyclic Amines in Chicken Breast as a Function of Grilling Temperature and Time. Foods 2020; 9:foods9040412. [PMID: 32252238 PMCID: PMC7230315 DOI: 10.3390/foods9040412] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/20/2020] [Accepted: 03/23/2020] [Indexed: 02/06/2023] Open
Abstract
In the present set of experiments, we studied the correlation between the heterocyclic amine (HCA) concentration and the color changes of the chicken breast with or without skin during grilling under open or closed conditions as a function of the applied temperature and time. The concentration of the HCAs formed during grilling was measured by a validated LC–MS/MS method, whereas the color changes were determined either instrumentally or by visual observation. In general, higher temperatures and longer heat treatment times resulted in a more substantial HCA formation, especially on the surface of the samples and in the skin, where the total levels reached 746 ng/g. Results of regression analysis demonstrate a strong correlation (r > 0.7) between the HCA content of the grilled chicken breast and the L* and a* values indicating the significance of brightness and the red parameter of the color scale, respectively. In the case of open grilling, the skinless breast samples showed correlation (r > 0.7) between the HCA content and the color analysis results in both the full sample and the crust, respectively. Breast samples with skin exhibited the same level of correlation when they were grilled closed. In the case of open grilling the breast with skin, and closed-grilling the skinless breast, the linear regression analysis yielded a weaker correlation (0.7 > r > 0.4 or less) between the HCA concentrations and the color. Our results demonstrate that there is a predictive correlation between the color changes perceptible for the consumers and the HCA formation during grilling of chicken breast as a function of time and temperature depending on the type of grilling and the presence of skin.
Collapse
|