1
|
Vinagre F, Alegria MJ, Ferreira AS, Nunes C, Nunes MC, Raymundo A. Characterization and Gelling Potential of Macroalgae Extracts Obtained Through Eco-Friendly Technologies for Food-Grade Gelled Matrices. Gels 2025; 11:290. [PMID: 40277726 DOI: 10.3390/gels11040290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/02/2025] [Accepted: 04/07/2025] [Indexed: 04/26/2025] Open
Abstract
The growing demand for sustainable and nutrient-rich food sources has positioned macroalgae as a promising alternative for food product development. This study investigates the extraction and characterization of hydrocolloids from three red macroalgae species (Chondrus crispus, Gracilaria gracilis, and Gelidium corneum) using water bath (WB), ultrasound (US), and hybrid ultrasound-water bath (USWB) treatments for 45 and 60 min. The physicochemical properties of the extracts, including rheological behavior, particle size distribution, antioxidant activity, and texture, were assessed. The results show that C. crispus produced the firmest gels due to its high carrageenan content, with WB and USWB treatments yielding the most stable gel structures. In contrast, G. gracilis and G. corneum exhibited lower gel strength, consistent with their agar composition. WB-treated samples demonstrated superior antioxidant retention, while US treatment was more effective in preserving color stability. The findings highlight macroalgae as a viable and sustainable alternative to conventional hydrocolloids, reinforcing their potential as natural gelling agents, thickeners, and stabilizers for the food and pharmaceutical industries. This study provides a comparative evaluation of WB, US, and USWB extraction methods, offering insights into optimizing hydrocolloid extraction for enhanced functionality and sustainability.
Collapse
Affiliation(s)
- Filipe Vinagre
- LEAF-Linking Landscape, Environment, Agriculture and Food Research Center, Associate Laboratory TERRA, School of Agriculture, University of Lisbon, Tapada da Ajuda, 1349-017 Lisbon, Portugal
| | - Maria João Alegria
- LEAF-Linking Landscape, Environment, Agriculture and Food Research Center, Associate Laboratory TERRA, School of Agriculture, University of Lisbon, Tapada da Ajuda, 1349-017 Lisbon, Portugal
- SUMOL + COMPAL Marcas S.A., 2780-179 Carnaxide, Portugal
| | - Andreia Sousa Ferreira
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Cláudia Nunes
- CICECO-Aveiro Institute of Materials, Department of Materials and Ceramic Engineering, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Maria Cristiana Nunes
- LEAF-Linking Landscape, Environment, Agriculture and Food Research Center, Associate Laboratory TERRA, School of Agriculture, University of Lisbon, Tapada da Ajuda, 1349-017 Lisbon, Portugal
| | - Anabela Raymundo
- LEAF-Linking Landscape, Environment, Agriculture and Food Research Center, Associate Laboratory TERRA, School of Agriculture, University of Lisbon, Tapada da Ajuda, 1349-017 Lisbon, Portugal
| |
Collapse
|
2
|
Álvarez-Viñas M, Domínguez H, Torres MD. Evaluation of carrageenans extracted by an eco-friendly technology as source for gelled matrices with potential food application. Int J Biol Macromol 2024; 279:135288. [PMID: 39233176 DOI: 10.1016/j.ijbiomac.2024.135288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/13/2024] [Accepted: 09/01/2024] [Indexed: 09/06/2024]
Abstract
Red macroalgae are considered an immense source of hydrocolloids (agar and carrageenan) that are gaining momentum in the food industry as an alternative to animal-based ones, like gelatin. This work evaluates carrageenans extracted from four different red macroalgae (Chondrus crispus, Mastocarpus stellatus, Sarcopeltis skottsbergii and Gigartina pistillata) by an eco-friendly process (hydrothermal extraction), for their possible employment as food additives considering purity requirements stated by the European Regulation. In general, carrageenans presented a suitable composition, although some sample presented lower sulfate content than 15 % and higher As content than 3 mg/kg, being only carrageenans from Chondrus crispus and Sarcopeltis skottsbergii appropriate for gelled matrices formulation. Different concentrations of hydrocolloids (1-5 %) and salts (0.1-1 M NaCl, CaCl2 and KCl) were evaluated to reach a desired consistency. Rheological behavior of said gels revealed a gel-like behavior, with G' > G" and practically frequency independency of the parameters. Overall, gels formulated with KCl achieved higher G' with maximum values of 100-1000 Pa, whereas the commercial gelled dessert (used as control) only achieved values of around 10 Pa. After 3 months of cold storage, all gels exhibited a strengthening of the gelled matrix, without water syneresis. The colorimetric parameters were also evaluated, showing higher inclination for red and yellow tones with modest lightness values (around 60 %). In this work, hydrothermally extracted carrageenans from Chondrus crispus and Sarcopeltis skottsbergii were assessed, laying the groundwork for further studies in this area.
Collapse
Affiliation(s)
- Milena Álvarez-Viñas
- CINBIO, Universidade de Vigo, Department of Chemical Engineering, 32004, Ourense, Spain
| | - Herminia Domínguez
- CINBIO, Universidade de Vigo, Department of Chemical Engineering, 32004, Ourense, Spain
| | - María Dolores Torres
- CINBIO, Universidade de Vigo, Department of Chemical Engineering, 32004, Ourense, Spain.
| |
Collapse
|
3
|
Yadav R, Nigam A, Mishra R, Gupta S, Chaudhary AA, Khan SUD, almuqri EA, Ahmed ZH, Rustagi S, Singh DP, Kumar S. Novel Therapeutic Approach for Obesity: Seaweeds as an Alternative Medicine with the Latest Conventional Therapy. Med Sci (Basel) 2024; 12:55. [PMID: 39449411 PMCID: PMC11503287 DOI: 10.3390/medsci12040055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024] Open
Abstract
The prevalence of overweight and obesity is increasing worldwide. Common comorbidities related to obesity, significantly polygenic disorders, cardiovascular disease, and heart conditions affect social and monetary systems. Over the past decade, research in drug discovery and development has opened new paths for alternative and conventional medicine. With a deeper comprehension of its underlying mechanisms, obesity is now recognized more as a chronic condition rather than merely a result of lifestyle choices. Nonetheless, addressing it solely through lifestyle changes is challenging due to the intricate nature of energy regulation dysfunction. The Federal Drug Administration (FDA) has approved six medications for the management of overweight and obesity. Seaweed are plants and algae that grow in oceans, rivers, and lakes. Studies have shown that seaweed has therapeutic potential in the management of body weight and obesity. Seaweed compounds such as carotenoids, xanthophyll, astaxanthin, fucoidans, and fucoxanthin have been demonstrated as potential bioactive components in the treatment of obesity. The abundance of natural seaweed bioactive compounds has been explored for their therapeutic potential for treating obesity worldwide. Keeping this view, this review covered the latest developments in the discovery of varied anti-obese seaweed and its bioactive components for the management of obesity.
Collapse
Affiliation(s)
- Rajesh Yadav
- Department of Dialysis Technology, Sharda School of Allied Health Science, Sharda University, Greater Noida 201310, Uttar Pradesh, India
- Department of Physiology, All India Institute of Medical Science, New Delhi 110029, India
| | - Ankita Nigam
- Department of Physiotherapy, Sharda School of Allied Health Science, Sharda University, Greater Noida 201310, Uttar Pradesh, India
| | - Richa Mishra
- Department of Computer Engineering, Parul Institute of Engineering and Technology (PIET), Parul University, Ta. Waghodia, Vadodara 391760, Gujarat, India
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura 281406, Uttar Pradesh, India
| | - Anis Ahmad Chaudhary
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Salah-Ud-Din Khan
- Department of Biochemistry, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Eman Abdullah almuqri
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Zakir Hassain Ahmed
- Department of Mathematics and Statistics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11632, Saudi Arabia
| | - Sarvesh Rustagi
- Department of Food Technology, School of Applied and Life Science, Uttaranchal University, Dehradun 248007, Uttarakhand, India
| | - Deependra Pratap Singh
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun 248002, Uttarakhand, India
| | - Sanjay Kumar
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida 201310, Uttar Pradesh, India
| |
Collapse
|
4
|
Gorman M, Baxter L, Moss R, McSweeney MB. Atlantic Canadians' Sensory Perception of Couscous Made with Sugar Kelp ( Saccharina latissma). Foods 2024; 13:2912. [PMID: 39335841 PMCID: PMC11431538 DOI: 10.3390/foods13182912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/29/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Sugar kelp (Saccharina latissma) has many nutritional benefits and has been identified as a rich source of fibre, vitamins, and antioxidants. However, it is not regularly consumed in the Western world, and the sensory perception of foods containing sugar kelp must be investigated to increase acceptance in North America. This study evaluated consumers' (n = 99) sensory perception of couscous with increasing amounts of sugar kelp (0% (control), 4%, 6%, 8%, and 10% wt/wt). Furthermore, consumers' purchase intent, liking, and emotional response to couscous with added sugar kelp was evaluated with and without nutritional information. Sugar kelp at 6% incorporation did not impact the consumers' liking scores ("Like Slightly" on the hedonic scale), but at 8% the consumers' liking significantly decreased ("Neither Like nor Dislike"). The 8% and 10% levels of sugar kelp addition led to astringency, bitter, hard, brackish, fishy, and chewy attributes being perceived by the consumers. The consumers identified they preferred samples that had soft, savoury, salty, and bland flavours and disliked samples that were brackish and gritty. The nutritional information did not increase overall liking scores, purchase intent, or emotional response. However, the inclusion of sugar kelp in the couscous did lead to an increased selection of positive emotions like happy, joyful, pleasant, and enthusiastic. Overall, the consumers were interested in foods containing seaweed and believed they were nutritious. The results indicated that sugar kelp could be added to couscous up to 6% wt/wt without impacting overall liking.
Collapse
Affiliation(s)
| | | | | | - Matthew B. McSweeney
- School of Nutrition and Dietetics, Acadia University, Wolfville, NS B4P 2K5, Canada; (M.G.); (L.B.); (R.M.)
| |
Collapse
|
5
|
Karabulut G, Purkiewicz A, Goksen G. Recent developments and challenges in algal protein and peptide extraction strategies, functional and technological properties, bioaccessibility, and commercial applications. Compr Rev Food Sci Food Saf 2024; 23:e13372. [PMID: 38795380 DOI: 10.1111/1541-4337.13372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/06/2024] [Accepted: 05/06/2024] [Indexed: 05/27/2024]
Abstract
The burgeoning demand for protein, exacerbated by population growth and recent disruptions in the food supply chain, has prompted a rapid exploration of sustainable protein alternatives. Among these alternatives, algae stand out for their environmental benefits, rapid growth, and rich protein content. However, the widespread adoption of algae-derived proteins faces significant challenges. These include issues related to harvesting, safety, scalability, high cost, standardization, commercialization, and regulatory hurdles. Particularly daunting is the efficient extraction of algal proteins, as their resilient cell walls contain approximately 70% of the protein content, with conventional methods accessing only a fraction of this. Overcoming this challenge necessitates the development of cost-effective, scalable, and environmentally friendly cell disruption techniques capable of breaking down these rigid cell walls, often laden with viscous polysaccharides. Various approaches, including physical, chemical, and enzymatic methods, offer potential solutions, albeit with varying efficacy depending on the specific algal strain and energy transfer efficiency. Moreover, there remains a pressing need for further research to elucidate the functional, technological, and bioaccessible properties of algal proteins and peptides, along with exploring their diverse commercial applications. Despite these obstacles, algae hold considerable promise as a sustainable protein source, offering a pathway to meet the escalating nutritional demands of a growing global population. This review highlights the nutritional, technological, and functional aspects of algal proteins and peptides while underscoring the challenges hindering their widespread adoption. It emphasizes the critical importance of establishing a sustainable trajectory for food production, with algae playing a pivotal role in this endeavor.
Collapse
Affiliation(s)
- Gulsah Karabulut
- Department of Food Engineering, Faculty of Engineering, Sakarya University, Sakarya, Türkiye
| | - Aleksandra Purkiewicz
- Department of Commodity Science and Food Analysis, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, Mersin, Türkiye
| |
Collapse
|
6
|
Filipčev B, Kojić J, Miljanić J, Šimurina O, Stupar A, Škrobot D, Travičić V, Pojić M. Wild Garlic ( Allium ursinum) Preparations in the Design of Novel Functional Pasta. Foods 2023; 12:4376. [PMID: 38137181 PMCID: PMC10742902 DOI: 10.3390/foods12244376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
This study investigated the design of novel pasta enriched with different forms of wild garlic (WG): a powder, an extract and an encapsulated extract applied at three enrichment levels (low/middle/high). The effect of cooking on changes in the content of bioactive compounds, antioxidative activity, cooking behaviour, texture, colour and sensory properties of the cooked pasta was evaluated. WG preparations significantly increased the antioxidant potential (by 185-600%) as well as the content of phenolics (by 26-146%), flavonoids (by 40-360%) and potassium (up to three-fold) in the cooked pasta, depending on WG type and enrichment level. Flavonoids were dominantly present in the free form. Cooking resulted in a significant loss of flavonoids (39-75%) whereas phenolics were liberated from the matrix. The highest increase in total phenolics and antioxidant activity was exerted by the WG powder and extract. Pasta hardness and adhesiveness were increased, but encapsulated WG deteriorated cooking behaviour. The best-scored enriched pasta regarding sensory quality and texture was that enriched with WG powder at the low/moderate level.
Collapse
Affiliation(s)
- Bojana Filipčev
- Institute of Food Technology, University of Novi Sad, Blvd. Cara Lazara 1, 21000 Novi Sad, Serbia; (B.F.); (J.M.); (O.Š.); (A.S.); (D.Š.); (M.P.)
| | - Jovana Kojić
- Institute of Food Technology, University of Novi Sad, Blvd. Cara Lazara 1, 21000 Novi Sad, Serbia; (B.F.); (J.M.); (O.Š.); (A.S.); (D.Š.); (M.P.)
| | - Jelena Miljanić
- Institute of Food Technology, University of Novi Sad, Blvd. Cara Lazara 1, 21000 Novi Sad, Serbia; (B.F.); (J.M.); (O.Š.); (A.S.); (D.Š.); (M.P.)
| | - Olivera Šimurina
- Institute of Food Technology, University of Novi Sad, Blvd. Cara Lazara 1, 21000 Novi Sad, Serbia; (B.F.); (J.M.); (O.Š.); (A.S.); (D.Š.); (M.P.)
| | - Alena Stupar
- Institute of Food Technology, University of Novi Sad, Blvd. Cara Lazara 1, 21000 Novi Sad, Serbia; (B.F.); (J.M.); (O.Š.); (A.S.); (D.Š.); (M.P.)
| | - Dubravka Škrobot
- Institute of Food Technology, University of Novi Sad, Blvd. Cara Lazara 1, 21000 Novi Sad, Serbia; (B.F.); (J.M.); (O.Š.); (A.S.); (D.Š.); (M.P.)
| | - Vanja Travičić
- Faculty of Technology, University of Novi Sad, Blvd. Cara Lazara 1, 21000 Novi Sad, Serbia;
| | - Milica Pojić
- Institute of Food Technology, University of Novi Sad, Blvd. Cara Lazara 1, 21000 Novi Sad, Serbia; (B.F.); (J.M.); (O.Š.); (A.S.); (D.Š.); (M.P.)
| |
Collapse
|
7
|
Tavares JO, Cotas J, Valado A, Pereira L. Algae Food Products as a Healthcare Solution. Mar Drugs 2023; 21:578. [PMID: 37999402 PMCID: PMC10672234 DOI: 10.3390/md21110578] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/16/2023] [Accepted: 11/03/2023] [Indexed: 11/25/2023] Open
Abstract
Diseases such as obesity; cardiovascular diseases such as high blood pressure, myocardial infarction and stroke; digestive diseases such as celiac disease; certain types of cancer and osteoporosis are related to food. On the other hand, as the world's population increases, the ability of the current food production system to produce food consistently is at risk. As a result, intensive agriculture has contributed to climate change and a major environmental impact. Research is, therefore, needed to find new sustainable food sources. One of the most promising sources of sustainable food raw materials is macroalgae. Algae are crucial to solving this nutritional deficiency because they are abundant in bioactive substances that have been shown to combat diseases such as hyperglycemia, diabetes, obesity, metabolic disorders, neurodegenerative diseases and cardiovascular diseases. Examples of these substances include polysaccharides such as alginate, fucoidan, agar and carrageenan; proteins such as phycobiliproteins; carotenoids such as β-carotene and fucoxanthin; phenolic compounds; vitamins and minerals. Seaweed is already considered a nutraceutical food since it has higher protein values than legumes and soy and is, therefore, becoming increasingly common. On the other hand, compounds such as polysaccharides extracted from seaweed are already used in the food industry as thickening agents and stabilizers to improve the quality of the final product and to extend its shelf life; they have also demonstrated antidiabetic effects. Among the other bioactive compounds present in macroalgae, phenolic compounds, pigments, carotenoids and fatty acids stand out due to their different bioactive properties, such as antidiabetics, antimicrobials and antioxidants, which are important in the treatment or control of diseases such as diabetes, cholesterol, hyperglycemia and cardiovascular diseases. That said, there have already been some studies in which macroalgae (red, green and brown) have been incorporated into certain foods, but studies on gluten-free products are still scarce, as only the potential use of macroalgae for this type of product is considered. Considering the aforementioned issues, this review aims to analyze how macroalgae can be incorporated into foods or used as a food supplement, as well as to describe the bioactive compounds they contain, which have beneficial properties for human health. In this way, the potential of macroalgae-based products in eminent diseases, such as celiac disease, or in more common diseases, such as diabetes and cholesterol complications, can be seen.
Collapse
Affiliation(s)
- Joana O Tavares
- Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
| | - João Cotas
- Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
- MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Ana Valado
- MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, University of Coimbra, 3000-456 Coimbra, Portugal
- Biomedical Laboratory Sciences, Coimbra Health School, Polytechnic Institute of Coimbra, Rua 5 de Outubro-SM Bispo, Apartado 7006, 3045-043 Coimbra, Portugal
| | - Leonel Pereira
- Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
- MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, University of Coimbra, 3000-456 Coimbra, Portugal
- Instituto do Ambiente Tecnologia e Vida, Faculdade de Ciências e Tecnologia, Rua Sílvio Lima, 3030-790 Coimbra, Portugal
| |
Collapse
|
8
|
Noh CH, Chun SH, Lim J, Kim MH, Choi S, Joo YS, Lee KW. Monitoring arsenic species concentration in rice-based processed products distributed in South Korean markets and related risk assessment. Food Sci Biotechnol 2023; 32:1361-1372. [PMID: 37457401 PMCID: PMC10348953 DOI: 10.1007/s10068-023-01270-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/10/2023] [Accepted: 01/27/2023] [Indexed: 03/09/2023] Open
Abstract
Rice is an important grain as a major source of carbohydrates in Asia but contains more arsenic (As) than other grains. A total of 239 rice-based processed foods (rice, n = 30; rice cake, n = 30; porridge, n = 39; noodles, n = 33; bread, n = 20; snack, n = 59; powder, n = 28) were purchased in 2019 from domestic markets to measure total As (tAs) and As species. The average tAs and inorganic As (iAs) in each sample group ranged from 20 to 180 μg/kg (porridge for baby to noodle) and 4.4-85 μg/kg (porridge for baby to powder), respectively. The correlation between the iAs and tAs was affected by the variety of ingredients, such as the presence of seaweed (tAs) and the milling type of rice (iAs). Although rice cakes and baby rice-based powders are a source of concern for both adults and children, respectively, risk assessments indicate that most rice-based foods are generally safe to consume in South Korea. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s10068-023-01270-9.
Collapse
Affiliation(s)
- Chang-Hyun Noh
- Department of Biotechnology, College of Life Science & Biotechnology, Korea University, 145, Anam-Ro, Seongbuk-Gu, Seoul, 02841 Republic of Korea
| | - Su-Hyun Chun
- Institute of Biomedical Science and Food Safety, Korea University, 145, Anam-Ro, Seongbuk-Gu, Seoul, 02841 Republic of Korea
- Pro_B Co., Ltd, 145, Anam-Ro, Seongbuk-Gu, Seoul, 02841 Republic of Korea
| | - JoonKi Lim
- Department of Statistics, College of Natural Science, Dongguk University, 30, Pildong-Ro 1-Gil, Jung-Gu, Seoul, 04620 Republic of Korea
| | - Min-hyuk Kim
- Department of Biotechnology, College of Life Science & Biotechnology, Korea University, 145, Anam-Ro, Seongbuk-Gu, Seoul, 02841 Republic of Korea
| | - Seogyeong Choi
- Department of Biotechnology, College of Life Science & Biotechnology, Korea University, 145, Anam-Ro, Seongbuk-Gu, Seoul, 02841 Republic of Korea
| | - Yong-Sung Joo
- Department of Statistics, College of Natural Science, Dongguk University, 30, Pildong-Ro 1-Gil, Jung-Gu, Seoul, 04620 Republic of Korea
| | - Kwang-Won Lee
- Department of Biotechnology, College of Life Science & Biotechnology, Korea University, 145, Anam-Ro, Seongbuk-Gu, Seoul, 02841 Republic of Korea
- Department of Food Bioscience and Technology, College of Life Sciences and Biotechnology, Korea University, 145, Anam-Ro, Seongbuk-Gu, Seoul, 02841 Republic of Korea
| |
Collapse
|
9
|
Healy LE, Zhu X, Pojić M, Sullivan C, Tiwari U, Curtin J, Tiwari BK. Biomolecules from Macroalgae-Nutritional Profile and Bioactives for Novel Food Product Development. Biomolecules 2023; 13:386. [PMID: 36830755 PMCID: PMC9953460 DOI: 10.3390/biom13020386] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/15/2022] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Seaweed is in the spotlight as a promising source of nutrition for humans as the search for sustainable food production systems continues. Seaweed has a well-documented rich nutritional profile containing compounds such as polyphenols, carotenoids and polysaccharides as well as proteins, fatty acids and minerals. Seaweed processing for the extraction of functional ingredients such as alginate, agar, and carrageenan is well-established. Novel pretreatments such as ultrasound assisted extraction or high-pressure processing can be incorporated to more efficiently extract these targeted ingredients. The scope of products that can be created using seaweed are wide ranging: from bread and noodles to yoghurt and milk and even as an ingredient to enhance the nutritional profile and stability of meat products. There are opportunities for food producers in this area to develop novel food products using seaweed. This review paper discusses the unique properties of seaweed as a food, the processes involved in seaweed aquaculture, and the products that can be developed from this marine biomass. Challenges facing the industry such as consumer hesitation around seaweed products, the safety of seaweed, and processing hurdles will also be discussed.
Collapse
Affiliation(s)
- Laura E. Healy
- Teagasc Food Research Centre, Ashtown, D15 DY05 Dublin, Ireland
- School of Food Science and Environmental Health, Technological University Dublin, D07 EWV4 Dublin, Ireland
| | - Xianglu Zhu
- Teagasc Food Research Centre, Ashtown, D15 DY05 Dublin, Ireland
- School of Biosystems and Food Engineering, University College Dublin, National University of Ireland, Belfield, D02 V583 Dublin, Ireland
| | - Milica Pojić
- Institute of Food Technology, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
| | - Carl Sullivan
- Faculty of Computing, Digital and Data, School of Mathematics and Statistics, Technological University Dublin, D07 EWV4 Dublin, Ireland
| | - Uma Tiwari
- School of Food Science and Environmental Health, Technological University Dublin, D07 EWV4 Dublin, Ireland
| | - James Curtin
- Faculty of Engineering & Built Environment, Technological University Dublin, D07 EWV4 Dublin, Ireland
| | | |
Collapse
|
10
|
Dujardin B, Ferreira de Sousa R, Gómez Ruiz JÁ. Dietary exposure to heavy metals and iodine intake via consumption of seaweeds and halophytes in the European population. EFSA J 2023; 21:e07798. [PMID: 36742462 PMCID: PMC9887633 DOI: 10.2903/j.efsa.2023.7798] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
EFSA assessed the relevance of seaweed and halophyte consumption to the dietary exposure to heavy metals (arsenic, cadmium, lead and mercury) and the iodine intake in the European population. Based on sampling years 2011-2021, there were 2,093 analytical data available on cadmium, 1,988 on lead, 1,934 on total arsenic, 920 on inorganic arsenic (iAs), 1,499 on total mercury and 1,002 on iodine. A total of 697 eating occasions on halophytes, seaweeds and seaweed-related products were identified in the EFSA Comprehensive European Food Consumption Database (468 subjects, 19 European countries). From seaweed consumption, exposure estimates for cadmium in adult 'consumers only' are within the range of previous exposure estimates considering the whole diet, while for iAs and lead the exposure estimates represent between 10% and 30% of previous exposures from the whole diet for the adult population. Seaweeds were also identified as important sources of total arsenic that mainly refers, with some exceptions, to organic arsenic. As regards iodine, from seaweed consumption, mean intakes above 20 μg/kg body weight per day were identified among 'consumers only' of Kombu and Laver algae. The impact of a future increase in seaweed consumption ('per capita') on the dietary exposure to heavy metals and on iodine intake will strongly depend on the seaweeds consumed. The exposure estimates of heavy metals and iodine intakes in 'consumers only' of seaweeds were similar to those estimated in a replacement scenario with selected seaweed-based foods in the whole population. These results underline the relevance of the current consumption of seaweeds in the overall exposure to different heavy metals and in the intake of iodine. Recommendations are provided for further work needed on different areas to better understand the relationship between seaweed consumption and exposure to heavy metals and iodine intake.
Collapse
|
11
|
Koh WY, Matanjun P, Lim XX, Kobun R. Sensory, Physicochemical, and Cooking Qualities of Instant Noodles Incorporated with Red Seaweed ( Eucheuma denticulatum). Foods 2022; 11:foods11172669. [PMID: 36076854 PMCID: PMC9455614 DOI: 10.3390/foods11172669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 11/24/2022] Open
Abstract
Instant noodles are consumed worldwide, but instant noodles are often unhealthy. Therefore, in the current study, instant noodles were produced with composite flour (a blend of wheat flour and potato starch at weight ratios of 9:1, 8:2, and 7:3) incorporated with red seaweed powder (Eucheuma denticulatum) in proportions of 0, 5, 7.5, 10, 12.5, and 15%. The noodles’ sensory, physicochemical, and cooking properties were then determined. The incorporation of 7.5−15% of seaweed powder significantly (p < 0.05) increased the cooking yield, reduced the cooking loss, lengthened the cooking time, and decreased the pH values and water activity. The addition of seaweed powder weakened the tensile strength and softened the noodles. Seaweed noodles were denser and greener than control noodles. Among the three seaweed noodles (F2, F5, and F12) selected through the ranking test, panelists preferred F2 and F5 (both scoring 4.63 on a 7-point hedonic scale for overall acceptability) more than F12. Overall, F5 (at a wheat flour: potato starch ratio of 9:1; 15% seaweed powder) is the best-formulated seaweed noodle in this study, owing to its highest cooking yield and lowest cooking loss even with prolonged cooking, lowest water activity, and acceptable sensory qualities.
Collapse
Affiliation(s)
- Wee Yin Koh
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Malaysia
| | - Patricia Matanjun
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Malaysia
- Seaweed Research Unit, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Malaysia
- Correspondence: ; Tel.: +60-88-320259
| | - Xiao Xian Lim
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Minden 11800, Malaysia
| | - Rovina Kobun
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Malaysia
| |
Collapse
|
12
|
Pérez-Alva A, Baigts-Allende DK, Ramírez-Rodrigues MA, Ramírez-Rodrigues MM. Effect of Brown Seaweed (Macrocystis pyrifera) Addition on Nutritional and Quality Characteristics of Yellow, Blue, and Red Maize Tortillas. Foods 2022; 11:foods11172627. [PMID: 36076812 PMCID: PMC9455798 DOI: 10.3390/foods11172627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/12/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
The objective of this study was to analyze the effect of incorporating Macrocystis pyrifera into yellow, blue, and red maize masa and tortillas. The nutritional composition and mineral content of tortillas was determined, and the color, texture, total phenolic compounds (TPC), and antioxidant capacity of masas and tortillas were measured. The addition of seaweed led to a significant decrease in moisture and a significant increase in ash, protein, and fiber, while no differences were observed in the lipid and carbohydrate content. There was a significant increase in all analyzed minerals (Na, Ca, P, K, and Mg). Tortillas weighed 24.54 ± 1.02 g, had a diameter of 11.00 ± 0.79 cm, and a thickness of 0.32 ± 0.09 cm. All color parameters were significantly affected by seaweed concentration. The hardness of the masas was 2.18–22.32 N, and the values of the perforation test of the tortillas were 1.40–4.55 N. The TPC of the masas and tortillas was measured in water and methanol:water extracts. Results were higher in the water extracts (1141.59–23,323.48 mg GAE/100 g masa and 838.06–2142.34 mg GAE/100 g tortilla). Antioxidant capacity (ORAC) was higher for methanol:water extracts (14,051.96–44,928.75 µmol TE/100 g masa and 14,631.47–47,327.69 µmol TE/100 g tortilla).
Collapse
Affiliation(s)
- Alexa Pérez-Alva
- Department of Chemical, Food and Environmental Engineering, Universidad de las Américas Puebla, Ex Hacienda Sta. Catarina Mártir, Cholula 72810, Puebla, Mexico
| | - Diana K. Baigts-Allende
- Faculty of Agrobiology, Czech University of Life Sciences Prague, Food and Natural Resources, Kamýcká 129, 16500 Prague, Czech Republic
| | - Melissa A. Ramírez-Rodrigues
- Food Analysis Laboratory, Intema S.A. de C.V., 31 Sur 2901, Col. Santa Cruz Los Ángeles, Puebla 72400, Puebla, Mexico
| | - Milena M. Ramírez-Rodrigues
- Tecnologico de Monterrey, Department of Bioengineering, Vía Atlixcáyotl 5718, Reserva Territorial Atlixcáyotl, Puebla 72453, Puebla, Mexico
- Correspondence:
| |
Collapse
|
13
|
Duarte CM, Mota J, Assunção R, Martins C, Ribeiro AC, Lima A, Raymundo A, Nunes MC, Ferreira RB, Sousa I. New Alternatives to Milk From Pulses: Chickpea and Lupin Beverages With Improved Digestibility and Potential Bioactivities for Human Health. Front Nutr 2022; 9:852907. [PMID: 35911116 PMCID: PMC9333060 DOI: 10.3389/fnut.2022.852907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 06/08/2022] [Indexed: 11/13/2022] Open
Abstract
There is a strong demand for plant-based milk substitutes, often low in protein content (<1.5% w/v). Protein-rich pulse seeds and the right processing technologies make it possible to make relevant choices. The major objective of this study was to assess the impact of processing on the nutritional characteristics of beverages with a high impact on health, in particular on digestibility and specific bioactivities. The results suggest that pulse beverages are as high in protein content (3.24% w/v for chickpea and 4.05% w/v for lupin) as cow’s milk. The anti-nutrient level characteristics of pulses have been considerably reduced by strategic processing. However, when present in small quantities, some of these anti-nutritional factors may have health benefits. Controlling processing conditions play a crucial role in this fine balance as a tool to take advantage of their health benefits. There is evidence of protein hydrolysis by in vitro digestion and limited bioaccessibility of minerals. In addition to being highly digestible, lupin and chickpea beverages have anti-inflammatory and anti-carcinogenic potential evaluated through the inhibition of metalloproteinase MMP-9.
Collapse
Affiliation(s)
- Carla Margarida Duarte
- LEAF-Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, University of Lisbon, Lisbon, Portugal
| | - Joana Mota
- LEAF-Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, University of Lisbon, Lisbon, Portugal
| | - Ricardo Assunção
- IUEM, Instituto Universitário Egas Moniz, Egas Moniz-Cooperativa de Ensino Superior, CRL, Costa da Caparica, Portugal
- Department of Food and Nutrition, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal
- CESAM, Centre for Environmental and Marine Studies, University of Aveiro, Aveiro, Portugal
| | - Carla Martins
- Department of Food and Nutrition, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal
- NOVA National School of Public Health, Public Health Research Center, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Ana Cristina Ribeiro
- LEAF-Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, University of Lisbon, Lisbon, Portugal
- Faculdade de Farmácia de Lisboa, University of Lisbon, Lisbon, Portugal
| | - Ana Lima
- LEAF-Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, University of Lisbon, Lisbon, Portugal
- Faculty of Veterinary Medicine, Lusófona University, Lisbon, Portugal
| | - Anabela Raymundo
- LEAF-Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, University of Lisbon, Lisbon, Portugal
| | - Maria Cristiana Nunes
- LEAF-Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, University of Lisbon, Lisbon, Portugal
| | - Ricardo Boavida Ferreira
- LEAF-Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, University of Lisbon, Lisbon, Portugal
| | - Isabel Sousa
- LEAF-Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, University of Lisbon, Lisbon, Portugal
- *Correspondence: Isabel Sousa,
| |
Collapse
|
14
|
Demarco M, Oliveira de Moraes J, Matos ÂP, Derner RB, de Farias Neves F, Tribuzi G. Digestibility, bioaccessibility and bioactivity of compounds from algae. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
15
|
Physicochemical, Sensory Properties and Lipid Oxidation of Chicken Sausages Supplemented with Three Types of Seaweed. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112311347] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The effect of the addition of three types of tropical edible seaweeds, Kappaphycus alvarezii (KA), Sargassum polycystum (SP), and Caulerpa lentilifira (CL), on sausages were studied. Nine sausage formulations with three levels of inclusion (2%, 4%, and 6%) of each seaweed were prepared, analysed, and compared with the control sample (without seaweed) in terms of their physicochemical properties, total phenolic content, and lipid oxidation. The modified sausages had low moisture and fat content (p < 0.05) but high ash and dietary fiber content (p < 0.05) compared to the control sausage. The addition of seaweed powder changed the texture of the sausages, mainly its hardness and chewiness (p < 0.05), but no significant difference in cohesiveness and springiness was found (p < 0.05). The modified sausages were shown to have high water holding capacities and cooking yields. The different types of seaweed modified the colour of the chicken sausages differently. In general, the L* (brightness) and b* (yellowness) values was low for all sausage samples containing seaweed powder (p < 0.05), while the a* (redness) value increased with the addition of the KA and SP seaweed powder but decreased for the sausage sample with added CL seaweed powder (p < 0.05). Moreover, the modified sausages have higher total phenolic contents and high antioxidant capacities, which contributed to slowing the oxidation of lipid in sausages during storage (p < 0.05). Sensory evaluation showed that the panellists found up to 4% of KA and 2% of SP to be acceptable. Overall, the seaweeds, especially KA and SP, could potentially be developed as excellent additives for the manufacture of highly technological high-quality meat products.
Collapse
|
16
|
Seaweeds as a “Palatable” Challenge between Innovation and Sustainability: A Systematic Review of Food Safety. SUSTAINABILITY 2021. [DOI: 10.3390/su13147652] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Moderate or severe food insecurity affect 2 billion people worldwide. The four pillars of food security (availability, access, use and stability) are in danger due to the impact of climatic and anthropogenic factors which impact on the food system. Novel foods, like seaweeds, have the potential to increase food yields so that to contribute in preventing or avoiding future global food shortages. The purpose of this systematic review was to assess microbiological, chemical, physical, and allergenic risks associated with seaweed consumption. Four research strings have been used to search for these risks. Preferred Reporting Item for Systematic Reviews and Meta-analysis (PRISMA) guidelines were applied. Finally, 39 articles met the selected criteria. No significant hazards for microbiological, allergenic, and physical risks were detected. Regarding chemical risk, algae can accumulate various heavy metals, especially when harvested in polluted sites. Cultivating seaweeds in a controlled environment allows to avoid this risk. Periodic checks will be necessary on the finished products to monitor heavy metals levels. Since the consumption of algae seems to be on the rise everywhere, it seems to be urgent that food control authorities establish the safety levels to which eating algae does not represent any risk for human health.
Collapse
|
17
|
Figueroa V, Farfán M, Aguilera J. Seaweeds as Novel Foods and Source of Culinary Flavors. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1892749] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- V. Figueroa
- Department of Chemical and Bioprocess Engineering, Pontificia Universidad Católica De Chile, Santiago, Chile
| | - M. Farfán
- Department of Chemical and Bioprocess Engineering, Pontificia Universidad Católica De Chile, Santiago, Chile
| | - J.M. Aguilera
- Department of Chemical and Bioprocess Engineering, Pontificia Universidad Católica De Chile, Santiago, Chile
| |
Collapse
|
18
|
Cascaded valorization of seaweed using microbial cell factories. Curr Opin Biotechnol 2020; 65:102-113. [DOI: 10.1016/j.copbio.2020.02.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/14/2020] [Accepted: 02/17/2020] [Indexed: 11/17/2022]
|
19
|
Fradinho P, Soares R, Niccolai A, Sousa I, Raymundo A. Psyllium husk gel to reinforce structure of gluten-free pasta? Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109787] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
20
|
Improving the nutritional performance of gluten-free pasta with potato peel autohydrolysis extract. INNOV FOOD SCI EMERG 2020. [DOI: 10.1016/j.ifset.2020.102374] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
21
|
Peñalver R, Lorenzo JM, Ros G, Amarowicz R, Pateiro M, Nieto G. Seaweeds as a Functional Ingredient for a Healthy Diet. Mar Drugs 2020; 18:E301. [PMID: 32517092 PMCID: PMC7345263 DOI: 10.3390/md18060301] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/02/2020] [Accepted: 06/02/2020] [Indexed: 12/22/2022] Open
Abstract
Seaweeds have been used since ancient times as food, mainly by Asian countries, while in Western countries, their main application has been as gelling agents and colloids for the food, pharmaceuticals, and the cosmetic industry. Seaweeds are a good source of nutrients such as proteins, vitamins, minerals, and dietary fiber. Polyphenols, polysaccharides, and sterols, as well as other bioactive molecules, are mainly responsible for the healthy properties associated with seaweed. Antioxidant, anti-inflammatory, anti-cancer, and anti-diabetic properties are attributed to these compounds. If seaweeds are compared to terrestrial plants, they have a higher proportion of essential fatty acids as eicosapentaenoic (EPA) and docosahexaenoic (DHA) fatty acids. In addition, there are several secondary metabolites that are synthesized by algae such as terpenoids, oxylipins, phlorotannins, volatile hydrocarbons, and products of mixed biogenetic origin. Therefore, algae can be considered as a natural source of great interest, since they contain compounds with numerous biological activities and can be used as a functional ingredient in many technological applications to obtain functional foods.
Collapse
Affiliation(s)
- Rocío Peñalver
- Department of Food Technology, Nutrition and Food Science, Veterinary Faculty University of Murcia, Campus Mare Nostrum, 30100 Espinardo, Spain; (R.P.); (G.R.); (G.N.)
| | - José M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, 32900 San Cibrao das Viñas, Spain;
| | - Gaspar Ros
- Department of Food Technology, Nutrition and Food Science, Veterinary Faculty University of Murcia, Campus Mare Nostrum, 30100 Espinardo, Spain; (R.P.); (G.R.); (G.N.)
| | - Ryszard Amarowicz
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland;
| | - Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, 32900 San Cibrao das Viñas, Spain;
| | - Gema Nieto
- Department of Food Technology, Nutrition and Food Science, Veterinary Faculty University of Murcia, Campus Mare Nostrum, 30100 Espinardo, Spain; (R.P.); (G.R.); (G.N.)
| |
Collapse
|
22
|
Nunes MC, Fernandes I, Vasco I, Sousa I, Raymundo A. Tetraselmis chuii as a Sustainable and Healthy Ingredient to Produce Gluten-Free Bread: Impact on Structure, Colour and Bioactivity. Foods 2020; 9:E579. [PMID: 32375425 PMCID: PMC7278787 DOI: 10.3390/foods9050579] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/22/2020] [Accepted: 05/01/2020] [Indexed: 12/17/2022] Open
Abstract
The objective of this work is to increase the nutritional quality of gluten-free (GF) bread by addition of Tetraselmis chuii microalgal biomass, a sustainable source of protein and bioactive compounds. The impact of different levels of T. chuii (0%-Control, 1%, 2% and 4% w/w) on the GF doughs and breads' structure was studied. Microdough-Lab mixing tests and oscillatory rheology were conducted to evaluate the dough´s structure. Physical properties of the loaves, total phenolic content (Folin-Ciocalteu) and antioxidant capacity (DPPH and FRAP) of the bread extracts were assessed. For the low additions of T. chuii (1% and 2%), a destabilising effect is noticed, expressed by lower dough viscoelastic functions (G' and G'') and poor baking results. At the higher level (4%) of microalgal addition, there was a structure recovery with bread volume increase and a decrease in crumb firmness. Moreover, 4% T. chuii bread presented higher total phenolic content and antioxidant capacity when compared to control. Bread with 4% T. chuii seems particularly interesting since a significant increase in the bioactivity and an innovative green appearance was achieved, with a low impact on technological performance, but with lower sensory scores.
Collapse
Affiliation(s)
- Maria Cristiana Nunes
- LEAF—Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa; Tapada da Ajuda, 1349-017 Lisbon, Portugal; (I.F.); (I.V.); (I.S.); (A.R.)
| | | | | | | | | |
Collapse
|