1
|
Martins F, Ramalhosa E, Rodrigues N, Pereira JA, Baptista P, Barreiro MFF, Crugeira PJL. Effect of photostimulation through red LED light radiation on natural fermentation of table olives: An innovative case study with Negrinha the Freixo variety. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 256:112945. [PMID: 38795655 DOI: 10.1016/j.jphotobiol.2024.112945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/12/2024] [Accepted: 05/20/2024] [Indexed: 05/28/2024]
Abstract
In this study, for the first time, red LED light radiation was applied to the fermentation process of table olives using the Negrinha de Freixo variety. Photostimulation using LED light emission (630 ± 10 nm) is proposed to shorten and speed up this stage and reduce time to market. Several physical-chemical characteristics and microorganisms (total microbial count of mesophilic aerobic, molds, yeasts, and lactic acid bacteria) and their sequence during fermentation were monitored. The fermentation occurred for 122 days, with two irradiation periods for red LED light. The nutritional composition and sensory analysis were performed at the end of the process. Fermentation under red LED light increased the viable yeast and lactic acid bacteria (LAB) cell counts and decreased the total phenolics in olives. Even though significant differences were observed in some color parameters, the hue values were of the same order of magnitude and similar for both samples. Furthermore, the red LED light did not play a relevant change in the texture profile, preventing the softening of the fruit pulp. Similarly, LED light did not modify the existing type of microflora but increased species abundance, resulting in desirable properties and activities. The species identified were yeasts - Candida boidinii, Pichia membranifaciens, and Saccharomyces cerevisiae, and bacteria - Lactobacillus plantarum and Leuconostoc mesenteroides, being the fermentative process dominated by S. cerevisiae and L. plantarum. At the end of fermentation (122 days), the irradiated olives showed less bitterness and acidity, higher hardness, and lower negative sensory attributes than non-irradiated. Thus, the results of this study indicate that red LED light application can be an innovative technology for table olives production.
Collapse
Affiliation(s)
- Fátima Martins
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança, Portugal; Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança, Portugal
| | - Elsa Ramalhosa
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança, Portugal; Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança, Portugal.
| | - Nuno Rodrigues
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança, Portugal; Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança, Portugal
| | - José Alberto Pereira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança, Portugal; Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança, Portugal
| | - Paula Baptista
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança, Portugal; Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança, Portugal
| | - Maria Filomena F Barreiro
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança, Portugal; Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança, Portugal
| | - Pedro J L Crugeira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança, Portugal; Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança, Portugal.
| |
Collapse
|
2
|
Rodríguez-Gómez F, Valero A, Vives Lara E, Marín A, Ramírez EM. LP309 a new strain of Lactiplantibacillus pentosus that improves the lactic fermentation of Spanish-style table olives. J Food Sci 2023; 88:5191-5202. [PMID: 37872810 DOI: 10.1111/1750-3841.16802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/11/2023] [Accepted: 09/29/2023] [Indexed: 10/25/2023]
Abstract
Different varieties of table olives have suitable morphological characteristics that allow them to be processed as Spanish-style green table olives. However, the Campiñesa cultivar presents difficulties when submitted to a lactic fermentation, in spite of being inoculated with dedicated starter cultures such as OleicaStarter. The strategy followed in this study to facilitate the start of lactic fermentation was to reinforce the OleicaStarter culture with the use of the Lactoplantibacillus pentosus Lp309 a strain that enhanced the survival of lactic acid bacteria (LAB) at the beginning of fermentation, reaching final pH values (4.08 ± 0.01), free acidity (1.00 ± 0.01 g/100 mL of brine), LAB population (6.17 ± 0.09 log CFU/mL), nutrient depletion (0.80 ± 0.09 g/kg of pulp), and lactic acid production (11.85 ± 0.72 g/L). These values allowed stabilization of the final product, thus complying with the quality and food safety standards established by the Codex Alimentarius for table olives.
Collapse
Affiliation(s)
| | - Antonio Valero
- Department of Food Science and Technology, UIC Zoonosis y Enfermedades Emergentes (ENZOEM), CeiA3, Universidad de Córdoba, Campus Rabanales, Córdoba, Spain
| | - Elena Vives Lara
- Technological Applications for Improvement of Quality and Safety in Foods. R&D Division, Avda, Diego Martínez Barrio 10 2ª Planta, Seville, Spain
| | - Ana Marín
- Technological Applications for Improvement of Quality and Safety in Foods. R&D Division, Avda, Diego Martínez Barrio 10 2ª Planta, Seville, Spain
| | - Eva María Ramírez
- Food Biotechnology Department, Instituto de la Grasa (IG), CSIC, Seville, Spain
| |
Collapse
|
3
|
Ardic Z, Aktas AB. Enrichment of green table olives by natural anthocyanins during fermentation. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:2244-2254. [PMID: 37273560 PMCID: PMC10232377 DOI: 10.1007/s13197-023-05751-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 03/23/2023] [Accepted: 04/12/2023] [Indexed: 06/06/2023]
Abstract
The aim of this study is the enrichment of green table olives with anthocyanins by using beetroot and black carrot in the fermentation media and to improve functional properties of fermented olives. For this purpose, a full factorial design was constructed by considering the fermentation time, vegetable type and vegetable concentration as processing factors. The changes in the chemical and microbiological properties of both olive and brine samples were monitored. During fermentation, while phenolic components of olives were transferred to the brine, the anthocyanins originating from the black carrot and beetroot diffused into both olive and brine samples. The total monomeric anthocyanin content of fermented olives containing 20% percent of black carrot and beetroot was 149.87 and 154.05 mg/kg respectively. Moreover, the color of olives turned as fermentation progressed. Both ANOVA results (p < 0.05) and PCA model (R2 = 0.99; Q2 = 0.93) confirmed that reaction time is most important factor for the fermentation process. The sensorial analysis results indicated that the olives fermented with 20% vegetable for 10 days had been highly scored by panelists. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-023-05751-x.
Collapse
Affiliation(s)
- Zelal Ardic
- Food Engineering Department, Faculty of Engineering, Sivas Cumhuriyet University, Sivas, Turkey
| | - A. Burcu Aktas
- Biochemistry Department, Faculty of Science, Sivas Cumhuriyet University, Sivas, Turkey
| |
Collapse
|
4
|
Kamilari E, Anagnostopoulos DA, Tsaltas D. Fermented table olives from Cyprus: Microbiota profile of three varieties from different regions through metabarcoding sequencing. Front Microbiol 2023; 13:1101515. [PMID: 36733778 PMCID: PMC9886855 DOI: 10.3389/fmicb.2022.1101515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 12/29/2022] [Indexed: 01/18/2023] Open
Abstract
The knowledge about the microbial diversity of different olives varieties from diverse regions in the Mediterranean basin is limited. This work aimed to determine the microbial diversity of three different fermented olive varieties, collected from different regions in Cyprus, via Next Generation Sequencing (NGS) analysis. Olives were spontaneously fermented for 120 days, microbial DNA was extracted from the final products, and subjected to 16S rRNA gene and ITS1 loci metabarcoding analysis for the determination of bacterial and fungal communities, respectively. Results revealed that the bacterial profile of the studied varieties was similar, while no noteworthy differences were observed in olives from different regions. The bacterial profile was dominated by the co-existence of Lactobacillus and Streptococcus, while the genera Lactococcus and Salinivibrio and the family Leuconostocaceae were also present in increased relative abundances. Regarding fungal communities, the analysis indicated discrimination among the different varieties, especially in Kalamata ones. The most abundant fungi were mainly the genera Aspergillus, Botryosphaeria, Meyerozyma, and Zygosaccharomyces for Cypriot olives, the genera Botryosphaeria, Saccharomyces, Geosmithia, and Wickeromyces for Kalamata variety, while the dominant fungi in the Picual variety were mainly members of the genera Candida, Penicillium, Saccharomyces, Hanseniospora and Botryosphaeria. Potential microbial biomarkers that distinguish the three varieties are also proposed. Moreover, interaction networks analysis identified interactions among the key taxa of the communities. Overall, the present work provides useful information and sheds light on an understudied field, such as the comparison of microbiota profiles of different varieties from several regions in Cyprus. The study enriches our knowledge and highlights the similarities and the main differences between those aspects, booming in parallel the need for further works on this frontier, in the attempt to determine potentially olives' microbial terroir in Cyprus. Our work should be used as a benchmark for future works in this direction.
Collapse
|
5
|
Cobrançosa Table Olive Fermentation as per the Portuguese Traditional Method, Using Potentially Probiotic Lactiplantibacillus pentosus i106 upon Alternative Inoculation Strategies. FERMENTATION 2022. [DOI: 10.3390/fermentation9010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Spontaneous fermentation of table olives, as per a traditional Mediterranean process, is still performed empirically; hence, final product quality is somewhat unpredictable. Our main goal was to validate an endogenous (potentially probiotic) lactic acid bacterium strain in Cobrançosa table olives as a vector for a more standardized process, further adding commercial value to the olives themselves. The traditional Portuguese fermentation process typically consists of two stages: sweetening, when olives are periodically washed with spring water to different proportions, and salting, when water is no longer changed, but salt is gradually added to the brine, up to 7–10% (w/w). Lactiplantibacillus pentosus i106 was inoculated as follows: (plan A) 2020/21 harvest, with 0, 3, 5, and 7% (w/v) NaCl, without sweetening; (plan B) 2020/21 harvest, with 5 and 7% (w/v) NaCl, during salting and sweetening; and (plan C) 2019/20 harvest, with 5% (w/v) salt, and sweetening and salting. Microbiological, physical, and biochemical evolutions were monitored for 8 months, and final nutritional and sensory features were duly assessed. Compared to the control, lactic acid bacteria (LAB) predominated over yeasts only if deliberately inoculated; however strain viability was hindered above 5% (w/w) NaCl, and LAB inhibited enterobacteria. Degradation of (bitter) oleuropein to hydroxytyrosol and verbascoside was faster upon inoculation. Color-changing olives from the 2020/21 harvest exhibited higher fat content and lower water content compared to green ones (2019/20 harvest), and different salt levels and inoculation moments produced distinct sensory properties. The best protocol was plan C, in terms of overall eating quality; hence, the addition of Lpb. pentosus i106 provides benefits as a supplementary additive (or adjunct culture), rather than a starter culture.
Collapse
|
6
|
Anagnostopoulos DA, Tsaltas D. Current Status, Recent Advances, and Main Challenges on Table Olive Fermentation: The Present Meets the Future. Front Microbiol 2022; 12:797295. [PMID: 35095807 PMCID: PMC8793684 DOI: 10.3389/fmicb.2021.797295] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/01/2021] [Indexed: 01/18/2023] Open
Abstract
Table olives are among the most well-known fermented foods, being a vital part of the Mediterranean pyramid diet. They constitute a noteworthy economic factor for the producing countries since both their production and consumption are exponentially increasing year by year, worldwide. Despite its significance, olive’s processing is still craft based, not changed since antiquity, leading to the production of an unstable final product with potential risk concerns, especially related to deterioration. However, based on industrial needs and market demands for reproducible, safe, and healthy products, the modernization of olive fermentation processing is the most important challenge of the current decade. In this sense, the reduction of sodium content and more importantly the use of suitable starter cultures, exhibiting both technological and potential probiotic features, to drive the process may extremely contribute to this need. Prior, to achieve in this effort, the full understanding of table olive microbial ecology during fermentation, including an in-depth determination of microbiota presence and/or dominance and its functionality (genes responsible for metabolite production) that shape the sensorial characteristics of the final product, is a pre-requisite. The advent of meta-omics technology could provide a thorough study of this complex ecosystem, opening in parallel new insights in the field, such as the concept of microbial terroir. Herein, we provide an updated overview in the field of olive fermentation, pointing out some important challenges/perspectives that could be the key to the olive sector’s advancement and modernization.
Collapse
Affiliation(s)
- Dimitrios A Anagnostopoulos
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol, Cyprus
| | - Dimitrios Tsaltas
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol, Cyprus
| |
Collapse
|
7
|
Ramírez E, Vives Lara E, A V, Rodríguez-Gómez F. Proposal for technological adaptation of small-sized green olives to Spanish-STYLE processing. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
8
|
Exploitation of sea fennel (Crithmum maritimum L.) for manufacturing of novel high-value fermented preserves. FOOD AND BIOPRODUCTS PROCESSING 2021. [DOI: 10.1016/j.fbp.2021.03.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Fernández-Prior Á, Bermúdez-Oria A, Millán-Linares MDC, Fernández-Bolaños J, Espejo-Calvo JA, Rodríguez-Gutiérrez G. Anti-Inflammatory and Antioxidant Activity of Hydroxytyrosol and 3,4-Dihydroxyphenyglycol Purified from Table Olive Effluents. Foods 2021; 10:227. [PMID: 33499393 PMCID: PMC7912675 DOI: 10.3390/foods10020227] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/14/2021] [Accepted: 01/21/2021] [Indexed: 12/04/2022] Open
Abstract
New liquid effluents based on the use of acetic acid in the table olive industry make it easier to extract bioactive compounds to be used for food, cosmetic, and pharmaceutical purposes. The use of water acidified with acetic acid or in brine with or without acetic acid for storing the table olive enhances the extraction of two more active phenolic compounds: hydroxytyrosol (HT) and 3,4-dihydroxyphenylglycol (DHPG). This work has two aims: (1) measure the solubilization of phenolics controlled for two years using more than thirty olive varieties with different ripeness index as a potential source of HT and DHPG, and (2) evaluate the anti-inflammatory activity of the purified phenolics. The effluents with a higher concentration of phenolics were used for the extraction of HT and DHPG in order to evaluate its antioxidant and anti-inflammatory activity in vitro by the determination of pro-inflammatory cytokines such as Human Tumor Necrosis Factor-α (TNF), Interleukin-6 (IL-6), and Interleukin-1β (Il-1β). The anti-inflammatory activity of these phenolic extracts was demonstrated by studying the expression of cytokines by qPCR and the levels of these proteins by enzyme-linked immunosorbent assay (ELISA).
Collapse
Affiliation(s)
- África Fernández-Prior
- Instituto de la Grasa, Consejo Superior de Investigaciones Científicas (CSIC), Campus Universitario Pablo de Olavide, Edificio 46, Ctra. de Utrera, km. 1, 41013 Seville, Spain; (Á.F.-P.); (A.B.-O.); (M.d.C.M.-L.); (J.F.-B.)
| | - Alejandra Bermúdez-Oria
- Instituto de la Grasa, Consejo Superior de Investigaciones Científicas (CSIC), Campus Universitario Pablo de Olavide, Edificio 46, Ctra. de Utrera, km. 1, 41013 Seville, Spain; (Á.F.-P.); (A.B.-O.); (M.d.C.M.-L.); (J.F.-B.)
| | - María del Carmen Millán-Linares
- Instituto de la Grasa, Consejo Superior de Investigaciones Científicas (CSIC), Campus Universitario Pablo de Olavide, Edificio 46, Ctra. de Utrera, km. 1, 41013 Seville, Spain; (Á.F.-P.); (A.B.-O.); (M.d.C.M.-L.); (J.F.-B.)
| | - Juan Fernández-Bolaños
- Instituto de la Grasa, Consejo Superior de Investigaciones Científicas (CSIC), Campus Universitario Pablo de Olavide, Edificio 46, Ctra. de Utrera, km. 1, 41013 Seville, Spain; (Á.F.-P.); (A.B.-O.); (M.d.C.M.-L.); (J.F.-B.)
| | | | - Guillermo Rodríguez-Gutiérrez
- Instituto de la Grasa, Consejo Superior de Investigaciones Científicas (CSIC), Campus Universitario Pablo de Olavide, Edificio 46, Ctra. de Utrera, km. 1, 41013 Seville, Spain; (Á.F.-P.); (A.B.-O.); (M.d.C.M.-L.); (J.F.-B.)
| |
Collapse
|
10
|
Single and Multiple Inoculum of Lactiplantibacillus plantarum Strains in Table Olive Lab-Scale Fermentations. FERMENTATION-BASEL 2020. [DOI: 10.3390/fermentation6040126] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In order to improve the olives’ quality, and to reduce the de-bittering time during the table olive fermentation process, it is necessary to pilot the fermentation by inoculating the brine with selected cultures of microorganisms. Some probiotic tests, such as resistance/sensitivity to antibiotics, bile salt hydrolase (BSH) activity, growth at acidic pH, an auto-aggregation assay, and a test of the production of exopolysaccharides, were carried out in order to screen 35 oleuropeinolytic Lactiplantibacillus plantarum subsp. plantarum strains to be used in guided fermentations of table olives. On the basis of the technological and probiotic screening, we analyzed the progress of three different lab-scale fermentations of Olea europaea L. Itrana cv. olives inoculated with spontaneous, single, and multiple starters: jar A was left to ferment spontaneously; jar B was inoculated with a strongly oleuropeinolytic strain (L. plantarum B1); jar C was inoculated with a multiple inoculum (L. plantarum B1 + L. plantarum B51 + L. plantarum B124). The following parameters were monitored during the fermentation: pH, titratable acidity, NaCl concentration, the degradation of bio-phenols, and the enrichment rate of hydroxytyrosol and tyrosol in the olive’s flesh, oil and brine. The degradation of secoiridoid glucosides appeared to be faster in the inoculated jars than in the spontaneously-fermented jar. The production of hydroxytyrosol and ligstroside aglycons was high. This indicated a complete degradation of the oleuropein and a partial degradation of the ligstroside. The multiple inoculum ensured a complete debittering, and could give probiotic traits. The presence of L. plantarum B1 and B124 as a fermentation starter guarantees an optimal trend of de-bittering and fermentation variables, thus ensuring the production of a better final product. L. plantarum B51 could be considered to be a promising probiotic candidate for obtaining probiotic food of completely vegetable origin.
Collapse
|
11
|
Characterization and Processing of Table Olives: A Special Issue. Foods 2020; 9:foods9101469. [PMID: 33076335 PMCID: PMC7602591 DOI: 10.3390/foods9101469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/10/2020] [Accepted: 10/12/2020] [Indexed: 12/05/2022] Open
Abstract
Table olives are recognized as an essential component of the Mediterranean diet, having been explicitly included in the second level of its nutritional pyramid as an aperitif or culinary ingredient, with a recommended daily consumption of one to two portions (15–30 g). Producers demand innovative techniques improving the performance and industrial sustainability, as well as the development of new products that respond efficiently to increasingly demanding consumers. The purpose of this special issue was to publish high-quality papers with the aim to cover the state-of-the-art, recent progress and perspectives related to characterization and processing of table olives. Two reviews offer an overview about the processing and storage effects on the nutritional and sensory properties of table olives, as well as the main technologies used for olive fermentation, and the role of lactic acid bacteria and yeasts characterizing this niche during the fermentation. A total of 10 research papers cover a broad range of aspects such as characterization of their chemical composition, bioavailability, advances in the processing technology, chemical and microbiological changes, optimized use of starter cultures for the improvement of the different fermentative processes, and new strategies to reduce sodium and additives to stabilize the organoleptic properties and avoid defects.
Collapse
|
12
|
Factors influencing the production of the antioxidant hydroxytyrosol during alcoholic fermentation: Yeast strain, initial tyrosine concentration and initial must. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109631] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
13
|
Anagnostopoulos DA, Kamilari E, Tsaltas D. Evolution of Bacterial Communities, Physicochemical Changes and Sensorial Attributes of Natural Whole and Cracked Picual Table Olives During Spontaneous and Inoculated Fermentation. Front Microbiol 2020; 11:1128. [PMID: 32547528 PMCID: PMC7273852 DOI: 10.3389/fmicb.2020.01128] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/05/2020] [Indexed: 12/13/2022] Open
Abstract
Table olives are one of the most well-known traditionally fermented products, and their global consumption is exponentially increasing. In direct brining, table olives are produced spontaneously, without any debittering pre-treatment. Up to date, fermentation process remains empirical and inconstant, as it is affected by the physicochemical attributes of the fruit, tree and fruit management of pro and post-harvest. In the present study, whole and cracked Picual table olives were fermented at industrial scale for 120 days, using three distinct methods (natural fermentation, inoculation with lactic acid bacteria (LAB) at a 7 or a 10% NaCl concentration). Microbial, physicochemical and sensorial alterations monitored during the whole process, and several differences were observed between treatments. Results indicated that in all treatments, the dominant microflora were LAB. Yeasts also detected in noteworthy populations, especially in non-inoculated samples. However, LAB population was significantly higher in inoculated compared to non-inoculated samples. Microbial profiles identified by metagenomic approach showed meaningful differences between spontaneous and inoculated treatments. As a result, the profound dominance of starter culture had a severe effect on olives fermentation, resulting in lower pH and higher acidification, which was mainly caused by the higher levels of lactic acid produced. Furthermore, the elimination of Enterobacteriaceae was shortened, even at lower salt concentration. Although no effect observed concerning the quantitated organoleptic parameters such as color and texture, significantly higher levels in terms of antioxidant capacity were recorded in inoculated samples. At the same time, the degradation time of oleuropein was shortened, leading to the production of higher levels of hydroxytyrosol. Based on this evidence, the establishment of starter culture driven Picual olives fermentation is strongly recommended. It is crucial to mention that the inoculated treatment with reducing sodium content was highly appreciated by the sensory panel, enhancing the hypothesis that the production of Picual table olives at reduced NaCl levels is achievable.
Collapse
Affiliation(s)
- Dimitrios A Anagnostopoulos
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol, Cyprus
| | - Eleni Kamilari
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol, Cyprus
| | - Dimitrios Tsaltas
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol, Cyprus
| |
Collapse
|