1
|
Karabulut G, Subasi BG, Ivanova P, Goksen G, Chalova V, Capanoglu E. Towards sustainable and nutritional-based plant protein sources: A review on the role of rapeseed. Food Res Int 2025; 202:115553. [PMID: 39967129 DOI: 10.1016/j.foodres.2024.115553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 11/29/2024] [Accepted: 12/28/2024] [Indexed: 02/20/2025]
Abstract
Rapeseed (Brassica napus L.), commonly known as canola, is a key oilseed crop with an emerging interest in its protein content. Rapeseed proteins, primarily cruciferin and napin, are valued for their balanced amino acid profile, making them a promising source of plant-based protein. These proteins demonstrate diverse functional properties, such as emulsification, foaming, and gelling, which are essential for food applications. However, the extraction and isolation processes pose challenges, particularly in retaining functionality while minimizing antinutritional compounds like glucosinolates and phytates. Additionally, off-flavors, bitterness, and limited solubility hinder their widespread use. To address these challenges, novel extraction and modification techniques, including enzymatic and fermentation methods, have been explored to enhance protein functionality and improve flavor profiles. Moreover, sustainable production methods, such as enzymatic hydrolysis and membrane filtration, have been developed to reduce environmental impacts, resource consumption, and waste generation associated with rapeseed protein production. Despite the current challenges, rapeseed protein holds significant potential beyond food, with applications in biomedicine and materials science, such as biodegradable films and drug delivery systems. Future research should focus on optimizing extraction techniques, improving functional properties, and mitigating off-flavors to fully unlock the potential of rapeseed protein as a sustainable and versatile protein source for the growing global demand.
Collapse
Affiliation(s)
- Gulsah Karabulut
- Department of Food Engineering, Faculty of Engineering, Sakarya University, 54187 Sakarya, Türkiye
| | - Busra Gultekin Subasi
- Center for Innovative Food (CiFOOD), Department of Food Science, Aarhus University, Agro Food Park 48, Aarhus N 8200, Denmark
| | - Petya Ivanova
- Department of Biochemistry and Nutrition, University of Food Technologies, 26 Maritsa Blvd, 4002 Plovdiv, Bulgaria
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, 33100 Mersin, Türkiye
| | - Vesela Chalova
- Department of Biochemistry and Nutrition, University of Food Technologies, 26 Maritsa Blvd, 4002 Plovdiv, Bulgaria
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Istanbul, Türkiye; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
2
|
Zhu H, Wang L, Li X, Shi J, Scanlon M, Xue S, Nosworthy M, Vafaei N. Canola Seed Protein: Pretreatment, Extraction, Structure, Physicochemical and Functional Characteristics. Foods 2024; 13:1357. [PMID: 38731728 PMCID: PMC11083811 DOI: 10.3390/foods13091357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/16/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
The rapid growth of the global population has led to an unprecedented demand for dietary protein. Canola seeds, being a widely utilized oil resource, generate substantial meal by-products following oil extraction. Fortunately, canola meals are rich in protein. In this present review, foremost attention is directed towards summarizing the characteristics of canola seed and canola seed protein. Afterwards, points of discussion related to pretreatment include an introduction to pulsed electric field treatment (PEF), microwave treatment (MC), and ultrasound treatment (UL). Then, the extraction method is illustrated, including alkaline extraction, isoelectric precipitation, acid precipitation, micellization (salt extraction), and dry fractionation and tribo-electrostatic separation. Finally, the structural complexity, physicochemical properties, and functional capabilities of rapeseed seeds, as well as the profound impact of various applications of rapeseed proteins, are elaborated. Through a narrative review of recent research findings, this paper aims to enhance a comprehensive understanding of the potential of canola seed protein as a valuable nutritional supplement, highlighting the pivotal role played by various extraction methods. Additionally, it sheds light on the broad spectrum of applications where canola protein demonstrates its versatility and indispensability as a resource.
Collapse
Affiliation(s)
- Huipeng Zhu
- Nano-Biotechnology Key Laboratory of Hebei Province, Skate Key Laboratory of Metastable Materials Science and Technology, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China (L.W.)
| | - Lu Wang
- Nano-Biotechnology Key Laboratory of Hebei Province, Skate Key Laboratory of Metastable Materials Science and Technology, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China (L.W.)
| | - Xiaoyu Li
- Nano-Biotechnology Key Laboratory of Hebei Province, Skate Key Laboratory of Metastable Materials Science and Technology, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China (L.W.)
- Guelph Research and Development Center, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada; (S.X.)
| | - John Shi
- Guelph Research and Development Center, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada; (S.X.)
| | - Martin Scanlon
- Faculty of Agricultural and Food Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Sophia Xue
- Guelph Research and Development Center, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada; (S.X.)
| | - Matthew Nosworthy
- Guelph Research and Development Center, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada; (S.X.)
| | - Nazanin Vafaei
- Faculty of Agricultural and Food Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
3
|
Hussain SM, Bano AA, Ali S, Rizwan M, Adrees M, Zahoor AF, Sarker PK, Hussain M, Arsalan MZUH, Yong JWH, Naeem A. Substitution of fishmeal: Highlights of potential plant protein sources for aquaculture sustainability. Heliyon 2024; 10:e26573. [PMID: 38434023 PMCID: PMC10906437 DOI: 10.1016/j.heliyon.2024.e26573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/11/2024] [Accepted: 02/15/2024] [Indexed: 03/05/2024] Open
Abstract
High protein content, excellent amino acid profile, absence of anti-nutritional factors (ANFs), high digestibility and good palatability of fishmeal (FM), make it a major source of protein in aquaculture. Naturally derived FM is at risk due to an increase in its demand, unsustainable practices, and price. Thus, there is an urgent need to find affordable and suitable protein sources to replace FM. Plant protein sources are suitable due to their widespread availability and low cost. However, they contained certain ANFs, deficiency of some amino acids, low nutrient bioavailability and poor digestibility due to presence of starch and fiber. These unfavourable characteristics make them less suitable for feed as compared to FM. Thus, these potential challenges and limitations associated with various plant proteins have to be overcome by using different methods, i.e. enzymatic pretreatments, solvent extraction, heat treatments and fermentation, that are discussed briefly in this review. This review assessed the impacts of plant products on growth performance, body composition, flesh quality, changes in metabolic activities and immune response of fishes. To minimize the negative effects and to enhance nutritional value of plant products, beneficial functional additives such as citric acid, phytase and probiotics could be incorporated into the plant-based FM. Interestingly, these additives improve growth of fishes by increasing digestibility and nutrient utilization of plant based feeds. Overall, this review demonstrated that the substitution of fishmeal by plant protein sources is a plausible, technically-viable and practical option for sustainable aquaculture feed production.
Collapse
Affiliation(s)
- Syed Makhdoom Hussain
- Fish Nutrition Lab, Department of Zoology, Government College University Faisalabad, Punjab, 38000, Pakistan
| | - Aumme Adeeba Bano
- Fish Nutrition Lab, Department of Zoology, Government College University Faisalabad, Punjab, 38000, Pakistan
| | - Shafaqat Ali
- Department of Environmental Sciences, Government College University Faisalabad, Punjab, 38000, Pakistan
- Department of Biological Sciences and Technology, China Medical University, Taichung, 40402, Taiwan
| | - Muhammad Rizwan
- Department of Environmental Sciences, Government College University Faisalabad, Punjab, 38000, Pakistan
| | - Muhammad Adrees
- Department of Environmental Sciences, Government College University Faisalabad, Punjab, 38000, Pakistan
| | - Ameer Fawad Zahoor
- Department of Chemistry, Government College University, Faisalabad, Punjab, 38000, Pakistan
| | - Pallab K. Sarker
- Environmental Studies Department, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
| | - Majid Hussain
- Department of Fisheries and Aquaculture, University of Okara, Okara, Punjab, 56300, Pakistan
| | | | - Jean Wan Hong Yong
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, 23456, Alnarp, Sweden
| | - Adan Naeem
- Fish Nutrition Lab, Department of Zoology, Government College University Faisalabad, Punjab, 38000, Pakistan
| |
Collapse
|
4
|
Bleibach Alpiger S, Corredig M. Pectin polysaccharide contribution to oleosome extraction after wet milling of rapeseed. Food Res Int 2024; 175:113736. [PMID: 38129046 DOI: 10.1016/j.foodres.2023.113736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/10/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023]
Abstract
Oleosomes are lipid composites providing energy storage in oilseeds. They possess a unique structure, comprised of a triglyceride core stabilized by a phospholipid-protein membrane, and they have shown potential to be used as ingredients in several food applications. Intact oleosomes are extracted by an aqueous process which includes soaking, milling, and gravitational separation. However, the details of the complexes formed between oleosomes, proteins and pectin polysaccharides during this extraction are not known. It was hypothesized that pectins play an important role during the oleosome separation, and different proteins will be complexed on the surface of the oleosomes, depending on the pH of extraction. Rapeseed extracts were treated with and without pectinase (Pectinex Ultra SP-L) and extracted at pH 5.7 or 8.5, as this will affect electrostatic complexation. Acidic conditions led to co-extraction of storage proteins, structured as dense oleosome emulsions, stabilized by a network of proteins and polysaccharides. Pectinase intensified this effect, highlighting pectic polysaccharides' role in bridging interactions among proteins and oleosomes under acidic conditions. The presence of this dense interstitial layer around the oleosomes protected them from coalescence during extraction. Conversely, under alkaline conditions, the extraction process yielded more purified oleosomes characterized by a larger particle size, most likely due to coalescence. Nevertheless, pectinase addition at pH 8.5 mitigated coalescence tendencies. These results contribute to a better understanding of the details of the colloidal complexes formed during extraction and can be used to modulate the composition of the extracted fractions, with significant consequences not only for yields and purity but also for the functional properties of the ingredients produced.
Collapse
Affiliation(s)
- Simone Bleibach Alpiger
- Department of Food Science, CiFood Center, Aarhus University, Agro Food Park 48, Skejby 8200, Denmark.
| | - Milena Corredig
- Department of Food Science, CiFood Center, Aarhus University, Agro Food Park 48, Skejby 8200, Denmark.
| |
Collapse
|
5
|
Kasprzak MM, Jarzębski M, Smułek W, Berski W, Zając M, Östbring K, Ahlström C, Ptasznik S, Domagała J. Effects of Concentration and Type of Lipids on the Droplet Size, Encapsulation, Colour and Viscosity in the Oil-in-Water Emulsions Stabilised by Rapeseed Protein. Foods 2023; 12:2288. [PMID: 37372498 PMCID: PMC10296879 DOI: 10.3390/foods12122288] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/31/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
The objective of this study was to extract the rapeseed protein from by-products and further examine the effect of lab-made rapeseed protein on the droplet size, microstructure, colour, encapsulation and apparent viscosity of emulsions. Rapeseed protein-stabilised emulsions with an increasing gradient of milk fat or rapeseed oil (10, 20, 30, 40 and 50%, v/v) were fabricated using a high shear rate homogenisation. All emulsions showed 100% oil encapsulation for 30 days of storage, irrespective of lipid type and the concentration used. Rapeseed oil emulsions were stable against coalescence, whereas the milk fat emulsion showed a partial micro-coalescence. The apparent viscosity of emulsions raised with increased lipid concentrations. Each of the emulsions showed a shear thinning behaviour, a typical behaviour of non-Newtonian fluids. The average droplet size was raised in milk fat and rapeseed oil emulsions when the concentration of lipids increased. A simple approach to manufacturing stable emulsions offers a feasible hint to convert protein-rich by-products into a valuable carrier of saturated or unsaturated lipids for the design of foods with a targeted lipid profile.
Collapse
Affiliation(s)
- Mirosław M. Kasprzak
- Department of Animal Product Processing, Faculty of Food Technology, University of Agriculture, 122 Balicka Str., 30-149 Cracow, Poland; (M.Z.); (J.D.)
| | - Maciej Jarzębski
- Department of Physics and Biophysics, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 38/42, 60-637 Poznań, Poland;
| | - Wojciech Smułek
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-695 Poznań, Poland
| | - Wiktor Berski
- Department of Carbohydrates Technology and Cereals Processing, Faculty of Food Technology, University of Agriculture, 122 Balicka Str., 30-149 Cracow, Poland;
| | - Marzena Zając
- Department of Animal Product Processing, Faculty of Food Technology, University of Agriculture, 122 Balicka Str., 30-149 Cracow, Poland; (M.Z.); (J.D.)
| | - Karolina Östbring
- Department of Food Technology, Engineering and Nutrition, Faculty of Engineering, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden; (K.Ö.); (C.A.)
| | - Cecilia Ahlström
- Department of Food Technology, Engineering and Nutrition, Faculty of Engineering, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden; (K.Ö.); (C.A.)
| | - Stanisław Ptasznik
- Lipid Processing Group, The Department of Meat and Fat Technology, Institute of Agricultural and Food Biotechnology, State Research Institute, 4 Jubilerska Str., 04-190 Warsaw, Poland;
| | - Jacek Domagała
- Department of Animal Product Processing, Faculty of Food Technology, University of Agriculture, 122 Balicka Str., 30-149 Cracow, Poland; (M.Z.); (J.D.)
| |
Collapse
|
6
|
Di Lena G, Schwarze AK, Lucarini M, Gabrielli P, Aguzzi A, Caproni R, Casini I, Ferrari Nicoli S, Genuttis D, Ondrejíčková P, Hamzaoui M, Malterre C, Kafková V, Rusu A. Application of Rapeseed Meal Protein Isolate as a Supplement to Texture-Modified Food for the Elderly. Foods 2023; 12:foods12061326. [PMID: 36981253 PMCID: PMC10048395 DOI: 10.3390/foods12061326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/06/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Rapeseed meal (RSM), a by-product of rapeseed oil extraction, is currently used for low-value purposes. With a biorefinery approach, rapeseed proteins may be extracted and recovered for high-end uses to fully exploit their nutritional and functional properties. This study reports the application of RSM protein isolate, the main output of a biorefining process aimed at recovering high-value molecules from rapeseed meal, as a supplement to texture-modified (TM) food designed for elderly people with mastication and dysphagia problems. The compositional (macronutrients by Official Methods of Analyses, and mineral and trace element profiles using Inductively Coupled Plasma Optical Emission Spectrometry ICP-OES), nutritional and sensory evaluations of TM chicken breast, carrots and bread formulated without and with RSM protein supplementation (5% w/w) are hereby reported. The results show that the texture modification of food combined with rapeseed protein isolate supplementation has a positive impact on the nutritional and sensory profile of food, meeting the special requirements of seniors. TM chicken breast and bread supplemented with RSM protein isolate showed unaltered or even improved sensory properties and a higher nutrient density, with particular regard to proteins (+20-40%) and minerals (+10-16%). Supplemented TM carrots, in spite of the high nutrient density, showed a limited acceptability, due to poor sensory properties that could be overcome with an adjustment to the formulation. This study highlights the potentialities of RSM as a sustainable novel protein source in the food sector. The application of RSM protein proposed here is in line with the major current challenges of food systems such as the responsible management of natural resources, the valorization of agri-food by-products, and healthy nutrition with focus on elderly people.
Collapse
Affiliation(s)
- Gabriella Di Lena
- CREA Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy
| | | | - Massimo Lucarini
- CREA Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy
| | - Paolo Gabrielli
- CREA Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy
| | - Altero Aguzzi
- CREA Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy
| | - Roberto Caproni
- CREA Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy
| | - Irene Casini
- CREA Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy
| | | | | | | | | | | | - Valentína Kafková
- Centrum Výskumu a Vývoja, s. r.o. (Centre for Research and Development), Trnavská Cesta 1033/7, 920 41 Leopoldov, Slovakia
| | - Alexandru Rusu
- Biozoon GmbH, Nansenstraße 8, 27572 Bremerhaven, Germany
| |
Collapse
|
7
|
Impact of Agro-Industrial Side-Streams on Sesquiterpene Production by Submerged Cultured Cerrena unicolor. Foods 2023; 12:foods12030668. [PMID: 36766196 PMCID: PMC9914794 DOI: 10.3390/foods12030668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
The quality and harvest of essential oils depend on a large number of factors, most of which are hard to control in an open-field environment. Therefore, Basidiomycota have gained attention as a source for biotechnologically produced terpenoids. The basidiomycete Cerrena unicolor (Cun) was cultivated in submerged culture, and the production of sesquiterpenoids was analyzed via stir bar sorptive extraction (SBSE), followed by thermo-desorption gas chromatography coupled with mass spectrometry (TDS-GC-MS). Identification of aroma-active sesquiterpenoids was supported by GC, coupled with an olfactory detection port (ODP). Following the ideal of a circular bioeconomy, Cun was submerged (up-scalable) cultivated, and supplemented with a variety of food industrial side-streams. The effects of the different supplementations and of pure fatty acids were evaluated by liquid extraction and analysis of the terpenoids via GC-MS. As sesquiterpenoid production was enhanced by the most by lipid-rich side-streams, a cultivation with 13C-labeled acetate was conducted. Data confirmed that lipid-rich side-streams enhanced the sesquiterpene production through an increased acetyl-CoA pool.
Collapse
|
8
|
Toledo e Silva SH, Silva LB, Eisner P, Bader-Mittermaier S. Production of Protein Concentrates from Macauba ( Acrocomia aculeata and Acrocomia totai) Kernels by Sieve Fractionation. Foods 2022; 11:foods11223608. [PMID: 36429200 PMCID: PMC9689480 DOI: 10.3390/foods11223608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/27/2022] [Accepted: 11/05/2022] [Indexed: 11/16/2022] Open
Abstract
Macauba palm fruits (Acrocomia aculeata and Acrocomia totai) are emerging as sources of high-quality oils from their pulp and kernels. The protein-rich macauba kernel meal (MKM) left after oil extraction remains undervalued, mainly due to the lack of suitable deoiling parameters and integrated protein recovery methods. Therefore, the present study aimed to produce protein concentrates from MKM using sieve fractionation. The deoiling parameters, comprising pressing, milling, and solvent extraction, were improved in terms of MKM functionality. The combination of hydraulic pressing, milling to 1 mm, and the hexane extraction of A. aculeata kernels resulted in MKM with the highest protein solubility (77.1%), emulsifying activity index (181 m2/g protein), and emulsion stability (149 min). After sieve fractionation (cut size of 62 µm), this meal yielded a protein concentrate with a protein content of 65.6%, representing a 74.1% protein enrichment compared to the initial MKM. This protein concentrate showed a reduced gelling concentration from 8 to 6%, and an increased emulsion stability from 149 to 345 min, in comparison to the MKM before sieving. Therefore, sieve fractionation after improved deoiling allows for the simple, cheap, and environmentally friendly recovery of MKM proteins, highlighting the potential of macauba kernels as a new source of protein.
Collapse
Affiliation(s)
- Sérgio Henrique Toledo e Silva
- Department of Food Process Development, Fraunhofer Institute for Process Engineering and Packaging IVV, 85354 Freising, Germany
- TUM School of Life Sciences Weihenstephan, Technical University of Munich (TUM), 85354 Freising, Germany
- Correspondence: ; Tel.: +49-08161-4910-422
| | - Lidiane Bataglia Silva
- Department of Food Process Development, Fraunhofer Institute for Process Engineering and Packaging IVV, 85354 Freising, Germany
| | - Peter Eisner
- Department of Food Process Development, Fraunhofer Institute for Process Engineering and Packaging IVV, 85354 Freising, Germany
- TUM School of Life Sciences Weihenstephan, Technical University of Munich (TUM), 85354 Freising, Germany
- Steinbeis Hochschule Berlin, 12489 Berlin, Germany
| | - Stephanie Bader-Mittermaier
- Department of Food Process Development, Fraunhofer Institute for Process Engineering and Packaging IVV, 85354 Freising, Germany
| |
Collapse
|
9
|
Dunford NT. Enzyme aided oil and oilseed processing: opportunities and challenges. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Tian Y, Kriisa M, Föste M, Kütt ML, Zhou Y, Laaksonen O, Yang B. Impact of enzymatic pre-treatment on composition of nutrients and phytochemicals of canola (Brassica napus) oil press residues. Food Chem 2022; 387:132911. [DOI: 10.1016/j.foodchem.2022.132911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/07/2022] [Accepted: 04/04/2022] [Indexed: 11/04/2022]
|
11
|
Vahedifar A, Wu J. Extraction, nutrition, functionality and commercial applications of canola proteins as an underutilized plant protein source for human nutrition. ADVANCES IN FOOD AND NUTRITION RESEARCH 2022; 101:17-69. [PMID: 35940704 DOI: 10.1016/bs.afnr.2022.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Concerns about sustainability and nutrition security have encouraged the food sector to replace animal proteins in food formulations with underutilized plant protein sources and their co-products. In this scenario, canola protein-rich materials produced after oil extraction, including canola cold-pressed cakes and meals, offer an excellent opportunity, considering their nutritional advantages such as a well-balanced amino acid composition and their potential bioactivity. However, radical differences among major proteins (i.e., cruciferin and napin) in terms of the physicochemical properties, and the presence of a wide array of antinutritional factors in canola, impede the production of a highly pure protein extract with a reasonable extraction yield. In this manuscript, principles regarding the extraction methods applicable for the production of canola protein concentrates and isolates are explored in detail. Alkaline and salt extraction methods are presented as the primary isolation methods, which result in cruciferin-rich and napin-rich isolates with different nutritional and functional properties. Since a harsh alkaline condition would result in an inferior functionality in protein isolates, strategies are recommended to reduce the required solvent alkalinity, including using a combination of salt and alkaline and employing membrane technologies, application of proteases and carbohydrases to facilitate the protein solubilization from biomass, and novel green physical methods, such as ultrasound and microwave treatments. In terms of the commercialization progress, several canola protein products have received a GRAS notification so far, which facilitates their incorporation in food formulations, such as bakery, beverages, salad dressings, meat products and meat analogues, and dairies.
Collapse
Affiliation(s)
- Amir Vahedifar
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Jianping Wu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
12
|
Ahlström C, Thuvander J, Rayner M, Matos M, Gutiérrez G, Östbring K. The Effect of Precipitation pH on Protein Recovery Yield and Emulsifying Properties in the Extraction of Protein from Cold-Pressed Rapeseed Press Cake. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092957. [PMID: 35566309 PMCID: PMC9104397 DOI: 10.3390/molecules27092957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/28/2022] [Accepted: 05/03/2022] [Indexed: 11/16/2022]
Abstract
Rapeseed is the second most cultivated oilseed after soybean and is mainly used to produce vegetable oil. The by-product rapeseed press cake is rich in high-quality proteins, thus having the possibility of becoming a new plant protein food source. This study aimed to investigate how the precipitation pH affects the protein yield, protein content, and emulsifying properties when industrially cold-pressed rapeseed press cake is used as the starting material. Proteins were extracted under alkaline conditions (pH 10.5) with an extraction coefficient of 52 ± 2% followed by precipitation at various pH (3.0–6.5). The most preferred condition in terms of process efficiency was pH 4.0, which is reflected in the zeta potential results, where the proteins’ net charge was 0 at pH 4.2. pH 4.0 also exhibited the highest protein recovery yield (33 ± 0%) and the highest protein concentration (64 ± 1%, dry basis). Proteins precipitated at pH 6.0–6.5 stabilized emulsions with the smallest initial droplet size, although emulsions stabilized by rapeseed protein precipitated at pH 5.0–6.0 showed the highest emulsion stability at 37 °C for 21 days, with a limited layer of free oil. Overall, emulsion stabilized by protein precipitated at pH 5.0 was the most stable formulation, with no layer of free oil after 21 days of incubation.
Collapse
Affiliation(s)
- Cecilia Ahlström
- Department of Food Technology Engineering and Nutrition, Lund University, Naturvetarvägen 12, 223 62 Lund, Sweden; (J.T.); (M.R.); (K.Ö.)
- Correspondence:
| | - Johan Thuvander
- Department of Food Technology Engineering and Nutrition, Lund University, Naturvetarvägen 12, 223 62 Lund, Sweden; (J.T.); (M.R.); (K.Ö.)
| | - Marilyn Rayner
- Department of Food Technology Engineering and Nutrition, Lund University, Naturvetarvägen 12, 223 62 Lund, Sweden; (J.T.); (M.R.); (K.Ö.)
| | - María Matos
- Department of Chemical and Environmental Engineering, University of Oviedo, Julián Clavería 8, 33006 Oviedo, Spain; (M.M.); (G.G.)
| | - Gemma Gutiérrez
- Department of Chemical and Environmental Engineering, University of Oviedo, Julián Clavería 8, 33006 Oviedo, Spain; (M.M.); (G.G.)
| | - Karolina Östbring
- Department of Food Technology Engineering and Nutrition, Lund University, Naturvetarvägen 12, 223 62 Lund, Sweden; (J.T.); (M.R.); (K.Ö.)
| |
Collapse
|
13
|
Baker PW, Višnjevec AM, Krienke D, Preskett D, Schwarzkopf M, Charlton A. Pilot scale extraction of protein from cold and hot-pressed rapeseed cake: Preliminary studies on the effect of upstream mechanical processing. FOOD AND BIOPRODUCTS PROCESSING 2022. [DOI: 10.1016/j.fbp.2022.03.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
14
|
Pilot-Scale Protein Recovery from Cold-Pressed Rapeseed Press Cake: Influence of Solids Recirculation. Processes (Basel) 2022. [DOI: 10.3390/pr10030557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The agricultural sector is responsible for about 30% of greenhouse gas emissions, and thus there is a need to develop new plant-based proteins with lower climate impact. Rapeseed press cake, a by-product from rapeseed oil production, contains 30% high-quality protein. The purpose of this study was to recover protein from cold-pressed rapeseed press cakes on a pilot scale using a decanter and investigate the effect of recirculation of the spent solids fraction on protein yield. Proteins were extracted under alkaline conditions (pH 10.5) followed by precipitation at pH 3.5. Recirculating the spent solids fraction once increased the accumulated protein yield from 70% to 83%. The efficiency of the recovery process was highest in the first and second cycles. The additional yield after the third and fourth cycles was only 2%. The amino acid composition showed high levels of essential amino acids and was not reduced throughout the recovery process. The glucosinolate and phytate content was reduced in the precipitate after one cycle, although additional process steps are needed to further reduce the phytate content and limit the negative effect on mineral uptake.
Collapse
|
15
|
Combined Effect of Mild Pretreatment and Fungal Fermentation on Nutritional Characteristics of Canola Meal and Nutrient Digestibility of Processed Canola Meal in Rainbow trout. FOOD AND BIOPRODUCTS PROCESSING 2022. [DOI: 10.1016/j.fbp.2022.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Premkumar J, Kumar MS, RaghulPrashanth R, Eshwar G, Kumar A. Corn protein isolate: Characteristic analysis, functional properties, and utilization in beverage formulation. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.16257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jayapal Premkumar
- Department of Food Technology Sri Shakthi Institute of Engineering and Technology Coimbatore India
| | - Manikandan Santhosh Kumar
- Department of Biotechnology Faculty of Engineering Karpagam Academy of Higher Education Coimbatore India
| | - Rajan RaghulPrashanth
- Department of Biotechnology Faculty of Engineering Karpagam Academy of Higher Education Coimbatore India
| | - Guhan Eshwar
- Department of Biotechnology Faculty of Engineering Karpagam Academy of Higher Education Coimbatore India
| | - Arun Kumar
- Department of Biotechnology Faculty of Engineering Karpagam Academy of Higher Education Coimbatore India
| |
Collapse
|
17
|
Helstad A, Forsén E, Ahlström C, Mayer Labba IC, Sandberg AS, Rayner M, Purhagen JK. Protein extraction from cold-pressed hempseed press cake: From laboratory to pilot scale. J Food Sci 2021; 87:312-325. [PMID: 34953090 DOI: 10.1111/1750-3841.16005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/26/2021] [Accepted: 11/15/2021] [Indexed: 11/26/2022]
Abstract
During the production of industrial hempseed oil, a press cake is formed as a byproduct, which is often used as animal feed although it contains a high amount of protein that could be used for human consumption. Extracting this valuable protein would reduce food waste and increase the availability of plant-based protein. A protein extraction process based on the pH-shift method was adapted to improve the protein extraction yield from industrial hempseed press cake (HPC). Parameters such as alkali extraction pH, time, and temperature, as well as isoelectric precipitation pH, were investigated in laboratory scale and were thereafter carried out in a pilot trial to explore the suitability for future scale up. The phytic acid content of the extracted protein isolate was also analyzed to investigate any potential inhibitory effect on mineral absorption. A final protein yield of 60.6%, with a precipitated protein content of 90.3% (dw), was obtained using a constant alkali extraction pH of 10.5 for 1 h at room temperature, followed by precipitation at pH 5.5. The pilot trial showed promising results for the future production of industrial hemp protein precipitate on a larger scale, showing a protein yield of 57.0% and protein content of 90.8% (dw). The amount of phytic acid in the protein isolate produced in the optimal laboratory experiment and in the pilot trial was 0.595 and 0.557 g phytic acid/100 g dw, respectively, which is 83%-88% less than in the HPC. This is in the range of other plant-based protein sources (tofu, kidney beans, peas, etc.). PRACTICAL APPLICATION: Industrial hempseed press cake is a byproduct in the production of industrial hempseed oil, which is mostly used as animal feed, but has the potential to become an additional source of plant-based protein for human consumption with a suitable protein extraction method. The extracted hemp protein could be used to develop new plant-based dairy or meat analog products.
Collapse
Affiliation(s)
- Amanda Helstad
- Department of Food Technology Engineering and Nutrition, Lund University, Box 124 221 00, Lund, Sweden
| | - Erica Forsén
- Department of Food Technology Engineering and Nutrition, Lund University, Box 124 221 00, Lund, Sweden
| | - Cecilia Ahlström
- Department of Food Technology Engineering and Nutrition, Lund University, Box 124 221 00, Lund, Sweden
| | - Inger-Cecilia Mayer Labba
- Food and Nutrition Science, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Ann-Sofie Sandberg
- Food and Nutrition Science, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Marilyn Rayner
- Department of Food Technology Engineering and Nutrition, Lund University, Box 124 221 00, Lund, Sweden
| | - Jeanette K Purhagen
- Department of Food Technology Engineering and Nutrition, Lund University, Box 124 221 00, Lund, Sweden
| |
Collapse
|
18
|
Influence of Fresh Palm Fruit Sterilization in the Production of Carotenoid-Rich Virgin Palm Oil. Foods 2021; 10:foods10112838. [PMID: 34829117 PMCID: PMC8624240 DOI: 10.3390/foods10112838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 11/23/2022] Open
Abstract
Palm oil is known to be rich in carotenoids and other phytonutrients. However, the carotenoids and phytonutrients degrade due to high heat sterilization of oil palm fruits. The present study was conducted to produce carotenoid-rich virgin palm oil (VPO) using cold-press extraction. Herein, the influence of sterilization of oil palm fresh fruits in the production of cold-pressed VPO was determined with varying sterilization temperatures, times, and amounts of palm fruits in sterilization. The experimental sterilization conditions were optimized using response surface methodology (RSM) based on the maximum VPO yield and minimum FFAs in cold-pressed VPO. The optimal sterilization experimental conditions of oil palm fruits were determined to be a sterilization temperature of 62 °C, a time of 90 min, and an amount of oil palm fruits of 8 kg. Under these experimental conditions, the maximum cold-pressed VPO yield and the minimal content of free fatty acids (FFAs) obtained were 27.94 wt.% and 1.32 wt.%, respectively. Several analytic methods were employed to determine cold-pressed VPO quality and fatty acids compositions and compared with the crude palm oil. It was found that cold-pressed VPO contains higher carotenoids (708 mg/g) and unsaturated fatty acids compared with the carotenoid (343 mg/g) and fatty acid compositions in CPO. The findings of the present study reveal that the sterilization temperature potentially influences the carotenoid and nutrient contents in VPO; therefore, the optimization of the sterilization conditions is crucial to producing carotenoid- and phytonutrient-rich VPO.
Collapse
|
19
|
Zahari I, Ferawati F, Purhagen JK, Rayner M, Ahlström C, Helstad A, Östbring K. Development and Characterization of Extrudates Based on Rapeseed and Pea Protein Blends Using High-Moisture Extrusion Cooking. Foods 2021; 10:2397. [PMID: 34681446 PMCID: PMC8535811 DOI: 10.3390/foods10102397] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 09/28/2021] [Accepted: 10/01/2021] [Indexed: 11/17/2022] Open
Abstract
Rapeseed protein is not currently utilized for food applications, although it has excellent physicochemical, functional, and nutritional properties similar to soy protein. Thus, the goal of this study was to create new plant-based extrudates for application as high-moisture meat analogs from a 50:50 blend of rapeseed protein concentrate (RPC) and yellow pea isolate (YPI) using high-moisture-extrusion (HME) cooking with a twin-screw extruder to gain a better understanding of the properties of the protein powders and resulting extrudates. The effects of extrusion processing parameters such as moisture content (60%, 63%, 65%, 70%), screw speed (500, 700, and 900 rpm), and a barrel temperature profile of 40-80-130-150 °C on the extrudates' characteristics were studied. When compared to the effect of varying screw speeds, targeted moisture content had a larger impact on textural characteristics. The extrudates had a greater hardness at the same moisture content when the screw speed was reduced. The specific mechanical energy (SME) increased as the screw speed increased, while increased moisture content resulted in a small reduction in SME. The lightness (L*) of most samples was found to increase as the target moisture content increased from 60% to 70%. The RPC:YPI blend was equivalent to proteins produced from other sources and comparable to the FAO/WHO standard requirements.
Collapse
Affiliation(s)
- Izalin Zahari
- Department of Food Technology Engineering and Nutrition, Lund University, Naturvetarvägen 12, 22362 Lund, Sweden; (J.K.P.); (M.R.); (C.A.); (A.H.); (K.Ö.)
- Malaysian Agricultural Research and Development Institute (MARDI), Persiaran MARDI-UPM, Serdang 43400, Selangor, Malaysia
| | - Ferawati Ferawati
- Department of Chemistry and Biomedical Sciences, Linnaeus University, 39231 Kalmar, Sweden;
| | - Jeanette K. Purhagen
- Department of Food Technology Engineering and Nutrition, Lund University, Naturvetarvägen 12, 22362 Lund, Sweden; (J.K.P.); (M.R.); (C.A.); (A.H.); (K.Ö.)
| | - Marilyn Rayner
- Department of Food Technology Engineering and Nutrition, Lund University, Naturvetarvägen 12, 22362 Lund, Sweden; (J.K.P.); (M.R.); (C.A.); (A.H.); (K.Ö.)
| | - Cecilia Ahlström
- Department of Food Technology Engineering and Nutrition, Lund University, Naturvetarvägen 12, 22362 Lund, Sweden; (J.K.P.); (M.R.); (C.A.); (A.H.); (K.Ö.)
| | - Amanda Helstad
- Department of Food Technology Engineering and Nutrition, Lund University, Naturvetarvägen 12, 22362 Lund, Sweden; (J.K.P.); (M.R.); (C.A.); (A.H.); (K.Ö.)
| | - Karolina Östbring
- Department of Food Technology Engineering and Nutrition, Lund University, Naturvetarvägen 12, 22362 Lund, Sweden; (J.K.P.); (M.R.); (C.A.); (A.H.); (K.Ö.)
| |
Collapse
|
20
|
Yang M, Zhu W, Cao H. Biorefinery methods for extraction of oil and protein from rubber seed. BIORESOUR BIOPROCESS 2021; 8:45. [PMID: 38650233 PMCID: PMC10991862 DOI: 10.1186/s40643-021-00386-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/19/2021] [Indexed: 11/10/2022] Open
Abstract
Rubber seeds are a by-product of rubber production and are rich in oil and protein. Upgrading of rubber seeds to produce proteins, oils and feedstock can generate additional revenue for rubber production and reduce waste. The present study investigates the effects of different pre-treatments and extraction methods to determine the optimal methods to produce oil and protein from rubber seed kernels. Mechanical expulsion using a screw press and solvent extraction using n-hexane were employed for oil separation. The highest oil recovery efficiency of 95.12% was obtained using rubber seed meal that was pre-dried at 105 ℃. The sequential water-alkaline treatment was ideal for achieving high protein recovery while reducing the protein denaturation that can result from high operating temperatures and organic solvent contact. Over 90% of the total protein from rubber seed kernels could be recovered. Separating oil from kernels using hexane followed by protein extraction from the meals by enzymatic treatment provides a suitable method for comprehensive utilization of rubber seeds.
Collapse
Affiliation(s)
- Miao Yang
- Beijing Key Lab of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Wenlei Zhu
- Beijing Key Lab of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Hui Cao
- Beijing Key Lab of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
21
|
Daily Development of Nutritional Composition of Canola Sprouts Followed by Solid-state Fungal Fermentation. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-021-02667-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Coronel EB, Guiotto EN, Aspiroz MC, Tomás MC, Nolasco SM, Capitani MI. Development of gluten-free premixes with buckwheat and chia flours: Application in a bread product. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.110916] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
23
|
Stability and rheology of canola protein isolate-stabilized concentrated oil-in-water emulsions. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106399] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
24
|
Kaseke T, Opara UL, Fawole OA. Quality and Antioxidant Properties of Cold-Pressed Oil from Blanched and Microwave-Pretreated Pomegranate Seed. Foods 2021; 10:foods10040712. [PMID: 33810607 PMCID: PMC8066041 DOI: 10.3390/foods10040712] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 01/14/2023] Open
Abstract
The present research studied the influence of blanching and microwave pretreatment of seeds on the quality of pomegranate seed oil (PSO) extracted by cold pressing. Pomegranate seeds (cv. Acco) were independently blanched (95 ± 2 °C/3 min) and microwave heated (261 W/102 s) before cold pressing. The quality of the extracted oil was evaluated with respect to oxidation indices, refractive index, yellowness index, total carotenoids content, total phenolic content, flavor compounds, fatty acid composition, and 2.2-diphenyl-1-picryl hydrazyl (DPPH) and 2.2-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging capacity. Blanching and microwave pretreatments of seeds before pressing enhanced oil yield, total phenolic content, flavor compounds, and DPPH and ABTS radical scavenging capacity. Although the levels of oxidation indices, including the peroxide value, free fatty acids, acid value, ρ-anisidine value, and total oxidation value, also increased, and the oil quality conformed to the requirements of the Codex Alimentarius Commission (CODEX STAN 19-1981) standard for cold-pressed vegetable oils. On the other hand, blanching and microwave heating of seeds decreased the pomegranate seed oil’s yellowness index, whilst the refractive index was not significantly (p > 0.05) affected. Even though both blanching and microwave pretreatment of seeds added value to the cold-pressed PSO, the oil extracted from blanched seeds exhibited lower oxidation indices. Regarding fatty acids, microwave pretreatment of seeds before cold pressing significantly increased palmitic acid, oleic acid, and linoleic acid, whilst it decreased the level of punicic acid. On the contrary, blanching of seeds did not significantly affect the fatty acid composition of PSO, indicating that the nutritional quality of the oil was not significantly affected. Therefore, blanching of seeds is an appropriate and valuable step that could be incorporated into the mechanical processing of PSO.
Collapse
Affiliation(s)
- Tafadzwa Kaseke
- Department of Food Science, Faculty of AgriSciences, Stellenbosch University, Private Bag X1, Stellenbosch 7602, South Africa;
- Faculty of AgriSciences, Africa Institute for Postharvest Technology, South African Research Chair in Postharvest Technology, Stellenbosch University, Private Bag X1, Stellenbosch 7602, South Africa
| | - Umezuruike Linus Opara
- Faculty of AgriSciences, Africa Institute for Postharvest Technology, South African Research Chair in Postharvest Technology, Stellenbosch University, Private Bag X1, Stellenbosch 7602, South Africa
- Correspondence: (U.L.O.); (O.A.F.)
| | - Olaniyi Amos Fawole
- Faculty of AgriSciences, Africa Institute for Postharvest Technology, South African Research Chair in Postharvest Technology, Stellenbosch University, Private Bag X1, Stellenbosch 7602, South Africa
- Department of Botany and Plant Biotechnology, Faculty of Science, University of Johannesburg, P.O. Box 524, Johannesburg 2006, South Africa
- Correspondence: (U.L.O.); (O.A.F.)
| |
Collapse
|
25
|
Withana-Gamage TS, Hegedus DD, McIntosh TC, Coutu C, Qiu X, Wanasundara JPD. Subunit composition affects formation and stabilization of o/w emulsions by 11S seed storage protein cruciferin. Food Res Int 2020; 137:109387. [PMID: 33233089 DOI: 10.1016/j.foodres.2020.109387] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 05/29/2020] [Accepted: 06/02/2020] [Indexed: 10/24/2022]
Abstract
The 11S globulin cruciferin is the major storage protein in Brassicaceae/Cruciferae seeds and exists as a hexamer in its natural configuration. Arabidopsis thaliana cruciferin is composed of CRUA, CRUB and CRUC subunits. Wild type (WT) cruciferin and cruciferins composed only of identical CRUA, CRUB and CRUC subunits were examined for their ability to form and stabilize oil-in-water (o/w) emulsions. All proteins (0.9% at pH 7.4 and 2.0), except CRUC, formed stable canola oil or triolein emulsions with a dispersed phase volume fraction of 22-23%. A fine emulsion was formed by CRUB at pH 7.4 with droplet sizes of 6.8 and 8.6 μm for canola oil and triolein, respectively. The presence of 0.5 M NaCl reduced the level of adsorbed protein and protein load at the interface at pH 7.4, and resulted in emulsions that were less stable. Emulsions of CRUA and CRUB (pH 7.4, zero ionic strength, canola oil or triolein) had higher stability than emulsions with WT cruciferin up to 15 days after formation. CRUC formed a stable emulsion only at pH 2.0. The low solubility, low surface hydrophobicity and compact structure of the CRUC protein may contribute to its inferior emulsifying properties at neutral pH; however, acidic pH-induced dissociation of the hexameric assembly improved these properties. The abundance and exposure of hydrophobic residues in the hypervariable regions, extended loop regions, and solvent exposed surfaces of cruciferin are critical factors affecting o/w interface stabilization.
Collapse
Affiliation(s)
| | - Dwayne D Hegedus
- Agriculture and Agri-Food Canada, Saskatoon, SK S7N 0X2, Canada; Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
| | - Tara C McIntosh
- Agriculture and Agri-Food Canada, Saskatoon, SK S7N 0X2, Canada
| | - Cathy Coutu
- Agriculture and Agri-Food Canada, Saskatoon, SK S7N 0X2, Canada
| | - Xiao Qiu
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
| | - Janitha P D Wanasundara
- Agriculture and Agri-Food Canada, Saskatoon, SK S7N 0X2, Canada; Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada.
| |
Collapse
|
26
|
Oil Press-Cakes and Meals Valorization through Circular Economy Approaches: A Review. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10217432] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The food industry generates a large amount of waste every year, which opens up a research field aimed at minimizing and efficiently managing this issue to support the concept of zero waste. From the extraction process of oilseeds results oil cakes. These residues are a source of bioactive compounds (protein, dietary fiber, antioxidants) with beneficial properties for health, that can be used in foods, cosmetics, textile, and pharmaceutical industries. They can also serve as substrates for the production of enzymes, antibiotics, biosurfactants, and mushrooms. Other applications are in animal feedstuff and for composites, bio-fuel, and films production. This review discusses the importance of oilseed and possible valorization methods for the residues obtained in the oil industry.
Collapse
|
27
|
Chmielewska A, Kozłowska M, Rachwał D, Wnukowski P, Amarowicz R, Nebesny E, Rosicka-Kaczmarek J. Canola/rapeseed protein - nutritional value, functionality and food application: a review. Crit Rev Food Sci Nutr 2020; 61:3836-3856. [PMID: 32907356 DOI: 10.1080/10408398.2020.1809342] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Plant-based diet and plant proteins specifically are predestined to meet nutritional requirements of growing population of humans and simultaneously reduce negative effects of food production on the environment. While searching for new sources of proteins, special emphasis should be placed on oilseeds of Brassica family comprising varieties of rapeseed and canola as they contain nutritionally valuable proteins, which have potential to be used in food, but are now rarely or not used as food components. The purpose of the present work is to provide a comprehensive review of main canola/rapeseed proteins: cruciferin and napin, with the focus on their nutritional and functional features, putting special emphasis on their possible applications in food. Technological challenges to obtain rapeseed protein products that are free from anti-nutritional factors are also addressed. As molecular structure of cruciferin and napin differs, they exhibit distinct features, such as solubility, emulsifying, foaming or gelling properties. Potential allergenic effect of 2S napin has to be taken under consideration. Overall, rapeseed proteins demonstrate beneficial nutritional value and functional properties and are deemed to play important roles both in food, as well as, non-food and non-feed applications.
Collapse
Affiliation(s)
- Anna Chmielewska
- NapiFeryn BioTech Ltd, Lodz, Poland.,Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Lodz, Poland
| | | | | | | | - Ryszard Amarowicz
- NapiFeryn BioTech Ltd, Lodz, Poland.,Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, Olsztyn, Poland
| | - Ewa Nebesny
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Lodz, Poland
| | - Justyna Rosicka-Kaczmarek
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Lodz, Poland
| |
Collapse
|
28
|
Östbring K, Nilsson K, Ahlström C, Fridolfsson A, Rayner M. Emulsifying and Anti-Oxidative Properties of Proteins Extracted from Industrially Cold-Pressed Rapeseed Press-Cake. Foods 2020; 9:foods9050678. [PMID: 32466177 PMCID: PMC7278726 DOI: 10.3390/foods9050678] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/12/2020] [Accepted: 05/22/2020] [Indexed: 11/20/2022] Open
Abstract
One of the functional proteins in rapeseed—the amphiphilic protein oleosin—could be used to stabilize emulsions. The objectives of this study were to extract oleosins from cold-pressed rapeseed press-cake, optimize the extraction process, and investigate their emulsifying and anti-oxidative capacity. The proteins were recovered from industrially cold-pressed rapeseed press-cake at different alkali pHs. Emulsifying properties and oxidation rates were assessed. Oleosin extracted at pH 9 stabilized smaller emulsion droplets than oleosin extracted at pH 12, although the protein yield was higher at pH 12. Emulsions were formulated from flaxseed oil and corn oil and were stabilized by oleosin, bovine serum albumin, de-oiled lecithin and Tween 20 h and the emulsions were stored in accelerated conditions (30 °C) for 12 days. Oleosin stabilized emulsions to the same extent as commercial food-grade emulsifiers. Flaxseed oil emulsions stabilized by oleosin had a significantly lower concentration of malondialdehyde (MDA) which indicates a lower oxidation rate compared to BSA, de-oiled lecithin and Tween 20. For corn oil emulsions, oleosin and BSA had a similar capacity to delay oxidation and were significantly more efficient compared to de-oiled lecithin and Tween 20. Rapeseed oleosin recovered from cold-pressed rapeseed press-cake could be a suitable natural emulsifier with anti-oxidation properties.
Collapse
|