1
|
Yahya A, Elkhedir A, Homaida MA, Haran Y, Galal-Eldin I, Taha Y, Saleh E. Lemon juice pretreatment as a strategy to preserve the quality and enhance the texture of cooked potato slices of different sizes. Food Chem X 2024; 24:101800. [PMID: 39310887 PMCID: PMC11415885 DOI: 10.1016/j.fochx.2024.101800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/23/2024] [Accepted: 08/31/2024] [Indexed: 09/25/2024] Open
Abstract
Potatoes are an important food crop worldwide and are rich in essential nutrients. However, cooking can reduce their nutritional value and alter their texture. This study aimed to investigate the impact of pretreating potato slices with lemon juice. The slices were immersed in 5% lemon juice solution for 3 h, rinsed with distilled water for another 3 h, then cooked at 100°C for 20 min. Findings revealed that lemon juice pretreatment (LJP) notably improved the texture, mouthfeel, and overall acceptability of the cooked potato slices of different sizes (CPS-Ds). Additionally, LJP significantly increased vitamin C and total phenolic contents, slightly decreased pH levels, and preserved the desired color of CPS-Ds. Consumer sensory evaluations also indicated a positive response to LJP samples, suggesting its potential application in the food industry. The study confirmed that LJP is an effective, sustainable, consumer-friendly, and cost-efficient technique for improving the quality of cooked potato slices.
Collapse
Affiliation(s)
- Alsadig Yahya
- Department of Food Science and Technology, Faculty of Agriculture and Natural Resources, University of Bakht Al-Ruda, Ed Dueim, Sudan
| | - Abdeen Elkhedir
- College of Food Science and Technology, Sudan University of Science & Technology, Khartoum 11115, Sudan
| | - Mamoun A. Homaida
- Department of Food Science and Technology, Faculty of Agriculture and Natural Resources, University of Bakht Al-Ruda, Ed Dueim, Sudan
| | - Yassin Haran
- Department of Food Science and Technology, Faculty of Agriculture and Natural Resources, University of Bakht Al-Ruda, Ed Dueim, Sudan
| | - Ikhlas Galal-Eldin
- Department of Food Science and Technology, Faculty of Agriculture and Natural Resources, University of Bakht Al-Ruda, Ed Dueim, Sudan
| | - Yassin Taha
- Sudanese Standards and Metrology Organization, Khartoum 11115, Sudan
| | - Ezzalden Saleh
- Sudanese Standards and Metrology Organization, Khartoum 11115, Sudan
| |
Collapse
|
2
|
Nakatumba-Nabende J, Babirye C, Tusubira JF, Mutegeki H, Nabiryo AL, Murindanyi S, Katumba A, Nantongo J, Sserunkuma E, Nakitto M, Ssali R, Makunde G, Moyo M, Campos H. Using machine learning for image-based analysis of sweetpotato root sensory attributes. SMART AGRICULTURAL TECHNOLOGY 2023; 5:None. [PMID: 37800125 PMCID: PMC10547598 DOI: 10.1016/j.atech.2023.100291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 10/07/2023]
Abstract
The sweetpotato breeding process involves assessing different phenotypic traits, such as the sensory attributes, to decide which varieties to progress to the next stage during the breeding cycle. Sensory attributes like appearance, taste, colour and mealiness are important for consumer acceptability and adoption of new varieties. Therefore, measuring these sensory attributes is critical to inform the selection of varieties during breeding. Current methods using a trained human panel enable screening of different sweetpotato sensory attributes. Despite this, such methods are costly and time-consuming, leading to low throughput, which remains the biggest challenge for breeders. In this paper, we describe an approach to apply machine learning techniques with image-based analysis to predict flesh-colour and mealiness sweetpotato sensory attributes. The developed models can be used as high-throughput methods to augment existing approaches for the evaluation of flesh-colour and mealiness for different sweetpotato varieties. The work involved capturing images of boiled sweetpotato cross-sections using the DigiEye imaging system, data pre-processing for background elimination and feature extraction to develop machine learning models to predict the flesh-colour and mealiness sensory attributes of different sweetpotato varieties. For flesh-colour the trained Linear Regression and Random Forest Regression models attained R 2 values of 0.92 and 0.87, respectively, against the ground truth values given by a human sensory panel. In contrast, the Random Forest Regressor and Gradient Boosting model attained R 2 values of 0.85 and 0.80, respectively, for the prediction of mealiness. The performance of the models matched the desirable R 2 threshold of 0.80 for acceptable comparability to the human sensory panel showing that this approach can be used for the prediction of these attributes with high accuracy. The machine learning models were deployed and tested by the sweetpotato breeding team at the International Potato Center in Uganda. This solution can automate and increase throughput for analysing flesh-colour and mealiness sweetpotato sensory attributes. Using machine learning tools for analysis can inform and quicken the selection of promising varieties that can be progressed for participatory evaluation during breeding cycles and potentially lead to increased chances of adoption of the varieties by consumers.
Collapse
Affiliation(s)
| | - Claire Babirye
- Makerere Artificial Intelligence Lab, Makerere University, Uganda
| | | | - Henry Mutegeki
- Makerere Artificial Intelligence Lab, Makerere University, Uganda
| | - Ann Lisa Nabiryo
- Makerere Artificial Intelligence Lab, Makerere University, Uganda
| | | | - Andrew Katumba
- Department of Electrical and Computer Engineering, Makerere University, Uganda
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Kharbach M, Alaoui Mansouri M, Taabouz M, Yu H. Current Application of Advancing Spectroscopy Techniques in Food Analysis: Data Handling with Chemometric Approaches. Foods 2023; 12:2753. [PMID: 37509845 PMCID: PMC10379817 DOI: 10.3390/foods12142753] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/30/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
In today's era of increased food consumption, consumers have become more demanding in terms of safety and the quality of products they consume. As a result, food authorities are closely monitoring the food industry to ensure that products meet the required standards of quality. The analysis of food properties encompasses various aspects, including chemical and physical descriptions, sensory assessments, authenticity, traceability, processing, crop production, storage conditions, and microbial and contaminant levels. Traditionally, the analysis of food properties has relied on conventional analytical techniques. However, these methods often involve destructive processes, which are laborious, time-consuming, expensive, and environmentally harmful. In contrast, advanced spectroscopic techniques offer a promising alternative. Spectroscopic methods such as hyperspectral and multispectral imaging, NMR, Raman, IR, UV, visible, fluorescence, and X-ray-based methods provide rapid, non-destructive, cost-effective, and environmentally friendly means of food analysis. Nevertheless, interpreting spectroscopy data, whether in the form of signals (fingerprints) or images, can be complex without the assistance of statistical and innovative chemometric approaches. These approaches involve various steps such as pre-processing, exploratory analysis, variable selection, regression, classification, and data integration. They are essential for extracting relevant information and effectively handling the complexity of spectroscopic data. This review aims to address, discuss, and examine recent studies on advanced spectroscopic techniques and chemometric tools in the context of food product applications and analysis trends. Furthermore, it focuses on the practical aspects of spectral data handling, model construction, data interpretation, and the general utilization of statistical and chemometric methods for both qualitative and quantitative analysis. By exploring the advancements in spectroscopic techniques and their integration with chemometric tools, this review provides valuable insights into the potential applications and future directions of these analytical approaches in the food industry. It emphasizes the importance of efficient data handling, model development, and practical implementation of statistical and chemometric methods in the field of food analysis.
Collapse
Affiliation(s)
- Mourad Kharbach
- Department of Food and Nutrition, University of Helsinki, 00014 Helsinki, Finland
- Department of Computer Sciences, University of Helsinki, 00560 Helsinki, Finland
| | - Mohammed Alaoui Mansouri
- Nano and Molecular Systems Research Unit, University of Oulu, 90014 Oulu, Finland
- Research Unit of Mathematical Sciences, University of Oulu, 90014 Oulu, Finland
| | - Mohammed Taabouz
- Biopharmaceutical and Toxicological Analysis Research Team, Laboratory of Pharmacology and Toxicology, Faculty of Medicine and Pharmacy, University Mohammed V in Rabat, Rabat BP 6203, Morocco
| | - Huiwen Yu
- Shenzhen Hospital, Southern Medical University, Shenzhen 518005, China
- Chemometrics group, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg, Denmark
| |
Collapse
|
4
|
Li X, Wei Z, Peng F, Liu J, Han G. Non-destructive prediction and visualization of anthocyanin content in mulberry fruits using hyperspectral imaging. FRONTIERS IN PLANT SCIENCE 2023; 14:1137198. [PMID: 37051079 PMCID: PMC10083272 DOI: 10.3389/fpls.2023.1137198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/06/2023] [Indexed: 06/19/2023]
Abstract
Being rich in anthocyanin is one of the most important physiological traits of mulberry fruits. Efficient and non-destructive detection of anthocyanin content and distribution in fruits is important for the breeding, cultivation, harvesting and selling of them. This study aims at building a fast, non-destructive, and high-precision method for detecting and visualizing anthocyanin content of mulberry fruit by using hyperspectral imaging. Visible near-infrared hyperspectral images of the fruits of two varieties at three maturity stages are collected. Successive projections algorithm (SPA), competitive adaptive reweighted sampling (CARS) and stacked auto-encoder (SAE) are used to reduce the dimension of high-dimensional hyperspectral data. The least squares-support vector machine and extreme learning machine (ELM) are used to build models for predicting the anthocyanin content of mulberry fruit. And genetic algorithm (GA) is used to optimize the major parameters of models. The results show that the higher the anthocyanin content is, the lower the spectral reflectance is. 15, 7 and 13 characteristic variables are extracted by applying CARS, SPA and SAE respectively. The model based on SAE-GA-ELM achieved the best performance with R2 of 0.97 and the RMSE of 0.22 mg/g in both the training set and testing set, and it is applied to retrieve the distribution of anthocyanin content in mulberry fruits. By applying SAE-GA-ELM model to each pixel of the mulberry fruit images, distribution maps are created to visualize the changes in anthocyanin content of mulberry fruits at three maturity stages. The overall results indicate that hyperspectral imaging, in combination with SAE-GA-ELM, can help achieve rapid, non-destructive and high-precision detection and visualization of anthocyanin content in mulberry fruits.
Collapse
|
5
|
Tang T, Zhang M, Mujumdar AS. Intelligent detection for fresh-cut fruit and vegetable processing: Imaging technology. Compr Rev Food Sci Food Saf 2022; 21:5171-5198. [PMID: 36156851 DOI: 10.1111/1541-4337.13039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/31/2022] [Accepted: 08/23/2022] [Indexed: 01/28/2023]
Abstract
Fresh-cut fruits and vegetables are healthy and convenient ready-to-eat foods, and the final quality is related to the raw materials and each step of the cutting unit. It is necessary to integrate suitable intelligent detection technologies into the production chain so as to inspect each operation to ensure high product quality. In this paper, several imaging technologies that can be applied online to the processing of fresh-cut products are reviewed, including: multispectral/hyperspectral imaging (M/HSI), fluorescence imaging (FI), X-ray imaging (XRI), ultrasonic imaging, thermal imaging (TI), magnetic resonance imaging (MRI), terahertz imaging, and microwave imaging (MWI). The principles, advantages, and limitations of these imaging technologies are critically summarized. The potential applications of these technologies in online quality control and detection during the fresh-cut processing are comprehensively discussed, including quality of raw materials, contamination of cutting equipment, foreign bodies mixed in the processing, browning and microorganisms of the cutting surface, quality/shelf-life evaluation, and so on. Finally, the challenges and future application prospects of imaging technology in industrialization are presented.
Collapse
Affiliation(s)
- Tiantian Tang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,China General Chamber of Commerce Key Laboratory on Fresh Food Processing & Preservation, Jiangnan University, Wuxi, Jiangsu, China
| | - Arun S Mujumdar
- Department of Bioresource Engineering, Macdonald Campus, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
6
|
Wang Y, Yang J, Yu S, Fu H, He S, Yang B, Nan T, Yuan Y, Huang L. Prediction of chemical indicators for quality of Zanthoxylum spices from multi-regions using hyperspectral imaging combined with chemometrics. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.1036892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Fruits of Zanthoxylum bungeanum Maxim (Red “Huajiao,” RHJ) and Z. schinifolium Sieb. et Zucc. (Green “Huajiao,” GHJ) are famous spices around the world. Antioxidant capability (AOC), total alkylamides content (TALC) and volatile oil content (VOC) in HJ are three important quality indicators and lack rapid and effective methods for detection. Non-destructive, time-saving, and effective technology of hyperspectral imaging (HSI) combined with chemometrics was adopted to improve the indicators prediction in this study. Results showed that the three chemical indexes exhibited significant differences between different regions and varieties (P < 0.05). Specifically, the mass percentages of TALC were 11–22% in RHJ group and 21–36% in GHJ group. The mass percentages of VOC content were 23–31% and 16–24% in RHJ and GHJ groups, respectively. More importantly, these indicators could be well predicted based on the full or effective HSI wavelengths via model adaptive space shrinkage (MASS) and iteratively variable subset optimization (IVSO) selections combined with wavelet transform (WT) method for noise reduction. The best prediction results of AOC, TALC, and VOC indicators were achieved with the highest residual predictive deviation (RPD) values of 7.43, 7.82, and 3.73 for RHJ, respectively, and 6.82, 2.66, and 4.64 for GHJ, respectively. The above results highlight the great potential of HSI assisted with chemometrics in the rapid and effective prediction of chemical indicators of Zanthoxylum spices.
Collapse
|
7
|
López-Maestresalas A, Lopez-Molina C, Oliva-Lobo GA, Jarén C, Ruiz de Galarreta JI, Peraza-Alemán CM, Arazuri S. Evaluation of near-infrared hyperspectral imaging for the assessment of potato processing aptitude. Front Nutr 2022; 9:999877. [PMID: 36324619 PMCID: PMC9618585 DOI: 10.3389/fnut.2022.999877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/30/2022] [Indexed: 12/02/2022] Open
Abstract
The potato (Solanum tuberosum L.) is the world’s fifth most important staple food with high socioeconomic relevance. Several potato cultivars obtained by selection and crossbreeding are currently on the market. This diversity causes tubers to exhibit different behaviors depending on the processing to which they are subjected. Therefore, it is interesting to identify cultivars with specific characteristics that best suit consumer preferences. In this work, we present a method to classify potatoes according to their cooking or frying as crisps aptitude using NIR hyperspectral imaging (HIS) combined with a Partial Least Squares Discriminant Analysis (PLS-DA). Two classification approaches were used in this study. First, a classification model using the mean spectra of a dataset composed of 80 tubers belonging to 10 different cultivars. Then, a pixel-wise classification using all the pixels of each sample of a small subset of samples comprised of 30 tubers. Hyperspectral images were acquired using fresh-cut potato slices as sample material placed on a mobile platform of a hyperspectral system in the NIR range from 900 to 1,700 nm. After image processing, PLS-DA models were built using different pre-processing combinations. Excellent accuracy rates were obtained for the models developed using the mean spectra of all samples with 90% of tubers correctly classified in the external dataset. Pixel-wise classification models achieved lower accuracy rates between 66.62 and 71.97% in the external validation datasets. Moreover, a forward interval PLS (iPLS) method was used to build pixel-wise PLS-DA models reaching accuracies above 80 and 71% in cross-validation and external validation datasets, respectively. Best classification result was obtained using a subset of 100 wavelengths (20 intervals) with 71.86% of pixels correctly classified in the validation dataset. Classification maps were generated showing that false negative pixels were mainly located at the edges of the fresh-cut slices while false positive were principally distributed at the central pith, which has singular characteristics.
Collapse
Affiliation(s)
- Ainara López-Maestresalas
- Department of Engineering, Institute on Innovation and Sustainable Development in Food Chain (IS-FOOD), Universidad Pública de Navarra (UPNA), Pamplona, Spain
- *Correspondence: Ainara López-Maestresalas,
| | - Carlos Lopez-Molina
- Department of Statistics, Computer Science and Mathematics, Universidad Pública de Navarra (UPNA), Pamplona, Spain
| | - Gil Alfonso Oliva-Lobo
- Department of Engineering, Institute on Innovation and Sustainable Development in Food Chain (IS-FOOD), Universidad Pública de Navarra (UPNA), Pamplona, Spain
| | - Carmen Jarén
- Department of Engineering, Institute on Innovation and Sustainable Development in Food Chain (IS-FOOD), Universidad Pública de Navarra (UPNA), Pamplona, Spain
| | - Jose Ignacio Ruiz de Galarreta
- Department of Plant Production, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Vitoria, Spain
| | - Carlos Miguel Peraza-Alemán
- Department of Engineering, Institute on Innovation and Sustainable Development in Food Chain (IS-FOOD), Universidad Pública de Navarra (UPNA), Pamplona, Spain
| | - Silvia Arazuri
- Department of Engineering, Institute on Innovation and Sustainable Development in Food Chain (IS-FOOD), Universidad Pública de Navarra (UPNA), Pamplona, Spain
| |
Collapse
|
8
|
Detection of moisture content in salted sea cucumbers by hyperspectral and low field nuclear magnetic resonance based on deep learning network framework. Food Res Int 2022; 156:111174. [DOI: 10.1016/j.foodres.2022.111174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 11/23/2022]
|
9
|
Nondestructive Methods for the Quality Assessment of Fruits and Vegetables Considering Their Physical and Biological Variability. FOOD ENGINEERING REVIEWS 2022. [DOI: 10.1007/s12393-021-09300-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
10
|
Zhang N, Li PC, Liu H, Huang TC, Liu H, Kong Y, Dong ZC, Yuan YH, Zhao LL, Li JH. Water and nitrogen in-situ imaging detection in live corn leaves using near-infrared camera and interference filter. PLANT METHODS 2021; 17:117. [PMID: 34774082 PMCID: PMC8590316 DOI: 10.1186/s13007-021-00815-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Realizing imaging detection of water and nitrogen content in different regions of plant leaves in-site and real-time can provide an efficient new technology for determining crop drought resistance and nutrient regulation mechanisms, or for use in precision agriculture. Near-infrared imaging is the preferred technology for in-situ real-time detection owing to its non-destructive nature; moreover, it provides rich information. However, the use of hyperspectral imaging technology is limited as it is difficult to use it in field because of its high weight and power. RESULTS We developed a smart imaging device using a near-infrared camera and an interference filter; it has a low weight, requires low power, and has a multi-wavelength resolution. The characteristic wavelengths of the filter that realize leaf moisture measurement are 1150 and 1400 nm, respectively, the characteristic wavelength of the filter that realizes nitrogen measurement is 1500 nm, and all filter bandwidths are 25 nm. The prediction result of the average leaf water content model obtained with the device was R2 = 0.930, RMSE = 1.030%; the prediction result of the average nitrogen content model was R2 = 0.750, RMSE = 0.263 g. CONCLUSIONS Using the average water and nitrogen content model, an image of distribution of water and nitrogen in different areas of corn leaf was obtained, and its distribution characteristics were consistent with the actual leaf conditions. The experimental materials used in this research were fresh leaves in the field, and the test was completed indoors. Further verification of applying the device and model to the field is underway.
Collapse
Affiliation(s)
- Ning Zhang
- College of Information and Electrical Engineering, China Agricultural University, Beijing, 100083, China
| | - Peng-Cheng Li
- College of Information and Electrical Engineering, China Agricultural University, Beijing, 100083, China
| | - Hubin Liu
- College of Information and Electrical Engineering, China Agricultural University, Beijing, 100083, China
| | - Tian-Cheng Huang
- College of Information and Electrical Engineering, China Agricultural University, Beijing, 100083, China
| | - Han Liu
- College of Information and Electrical Engineering, China Agricultural University, Beijing, 100083, China
| | - Yu Kong
- College of Information and Electrical Engineering, China Agricultural University, Beijing, 100083, China
| | - Zhi-Cheng Dong
- College of Information and Electrical Engineering, China Agricultural University, Beijing, 100083, China
| | - Yu-Hui Yuan
- College of Information and Electrical Engineering, China Agricultural University, Beijing, 100083, China
| | - Long-Lian Zhao
- College of Information and Electrical Engineering, China Agricultural University, Beijing, 100083, China
| | - Jun-Hui Li
- College of Information and Electrical Engineering, China Agricultural University, Beijing, 100083, China.
| |
Collapse
|
11
|
Su WH, Xue H. Imaging Spectroscopy and Machine Learning for Intelligent Determination of Potato and Sweet Potato Quality. Foods 2021; 10:2146. [PMID: 34574253 PMCID: PMC8472741 DOI: 10.3390/foods10092146] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/30/2021] [Accepted: 09/07/2021] [Indexed: 11/16/2022] Open
Abstract
Imaging spectroscopy has emerged as a reliable analytical method for effectively characterizing and quantifying quality attributes of agricultural products. By providing spectral information relevant to food quality properties, imaging spectroscopy has been demonstrated to be a potential method for rapid and non-destructive classification, authentication, and prediction of quality parameters of various categories of tubers, including potato and sweet potato. The imaging technique has demonstrated great capacities for gaining rapid information about tuber physical properties (such as texture, water binding capacity, and specific gravity), chemical components (such as protein, starch, and total anthocyanin), varietal authentication, and defect aspects. This paper emphasizes how recent developments in spectral imaging with machine learning have enhanced overall capabilities to evaluate tubers. The machine learning algorithms coupled with feature variable identification approaches have obtained acceptable results. This review briefly introduces imaging spectroscopy and machine learning, then provides examples and discussions of these techniques in tuber quality determinations, and presents the challenges and future prospects of the technology. This review will be of great significance to the study of tubers using spectral imaging technology.
Collapse
Affiliation(s)
- Wen-Hao Su
- Department of Agricultural Engineering, College of Engineering, China Agricultural University, Beijing 100083, China;
| | - Huidan Xue
- School of Economics and Management, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
12
|
Özdoğan G, Lin X, Sun DW. Rapid and noninvasive sensory analyses of food products by hyperspectral imaging: Recent application developments. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.02.044] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
13
|
Wang F, Wang C, Song S. A study of starch content detection and the visualization of fresh-cut potato based on hyperspectral imaging. RSC Adv 2021; 11:13636-13643. [PMID: 35423868 PMCID: PMC8697488 DOI: 10.1039/d1ra01013a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 03/28/2021] [Indexed: 11/21/2022] Open
Abstract
Fresh-cut potatoes are popular with consumers because of their healthiness, hygiene, and convenience. Currently, starch content is mainly detected using chemical methods, which are time-consuming and laborious. Moreover, these methods may cause some side effects in the human body. Therefore, suitable methods are required for the rapid and accurate detection of starch content. In this study, Zihuabai and Atlantic potatoes were used as experimental samples. The potatoes were sliced with stainless-steel blades, and images of these potatoes were obtained through hyperspectral imaging. The images were preprocessed using different methods. Competitive adaptive reweighed sampling (CARS) and the successive projection algorithm (SPA) were used to extract characteristic wavelengths. A partial least squares regression (PLSR) model was constructed to predict the starch content from the preprocessed full spectrum and the spectrum under the characteristic wavelength. The results indicate that the full spectrum model constructed through standard normal variable transformation (SNV) preprocessing had the best performance, with a correlation coefficient in the calibration set (R c) value of 0.9020, a root mean square error of correction (RMSEC) of 2.06, and a residual prediction deviation (RPD) of 2.33. The characteristic wavelength-based multivariate scattering correction (MSC)-CARS-PLSR model exhibited better performance than the PLSR model constructed using the full spectrum, with an R c value of 0.9276, RMSEC of 1.76, correlation coefficient in the prediction set (R p) value of 0.9467, root mean square error of prediction of 1.63, and RPD of 2.95. The starch content in fresh-cut potatoes was visualized using the best model in combination with pseudocolor technology. The results indicate that hyperspectral imaging is effective for mapping the spatial distribution of starch content; thus, a solid theoretical basis is obtained for the grading and online monitoring of fresh-cut potato slices.
Collapse
Affiliation(s)
- Fuxiang Wang
- School of Mechanical and Electrical Engineering, Inner Mongolia Agricultural University Hohhot Inner Mongolia China
| | - Chunguang Wang
- School of Mechanical and Electrical Engineering, Inner Mongolia Agricultural University Hohhot Inner Mongolia China
| | - Shiyong Song
- Inner Mongolia Lvtao Detection Technology Company Limited Hohhot Inner Mongolia China
| |
Collapse
|
14
|
von Gersdorff GJ, Kulig B, Hensel O, Sturm B. Method comparison between real-time spectral and laboratory based measurements of moisture content and CIELAB color pattern during dehydration of beef slices. J FOOD ENG 2021. [DOI: 10.1016/j.jfoodeng.2020.110419] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
15
|
Yan T, Duan L, Chen X, Gao P, Xu W. Application and interpretation of deep learning methods for the geographical origin identification of Radix Glycyrrhizae using hyperspectral imaging. RSC Adv 2020; 10:41936-41945. [PMID: 35516565 PMCID: PMC9057915 DOI: 10.1039/d0ra06925f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/01/2020] [Indexed: 11/21/2022] Open
Abstract
Radix Glycyrrhizae is used as a functional food and traditional medicine. The geographical origin of Radix Glycyrrhizae is a determinant factor influencing the chemical and physical properties as well as its medicinal and health effects. The visible/near-infrared (Vis/NIR) (376–1044 nm) and near-infrared (NIR) hyperspectral imaging (915–1699 nm) were used to identify the geographical origin of Radix Glycyrrhizae. Convolutional neural network (CNN) and recurrent neural network (RNN) models in deep learning methods were built using extracted spectra, with logistic regression (LR) and support vector machine (SVM) models as comparisons. For both spectral ranges, the deep learning methods, LR and SVM all exhibited good results. The classification accuracy was over 90% for the calibration, validation, and prediction sets by the LR, CNN, and RNN models. Slight differences in classification performances existed between the two spectral ranges. Further, interpretation of the CNN model was conducted to identify the important wavelengths, and the wavelengths with high contribution rates that affected the discriminant analysis were consistent with the spectral differences. Thus, the overall results illustrate that hyperspectral imaging with deep learning methods can be used to identify the geographical origin of Radix Glycyrrhizae, which provides a new basis for related research. Hyperspectral imaging provides an effective way to identify the geographical origin of Radix Glycyrrhizae to assess its quality.![]()
Collapse
Affiliation(s)
- Tianying Yan
- College of Information Science and Technology, Shihezi University Shihezi 832003 China .,Key Laboratory of Oasis Ecology Agriculture, Shihezi University Shihezi 832003 China
| | - Long Duan
- College of Information Science and Technology, Shihezi University Shihezi 832003 China .,Key Laboratory of Oasis Ecology Agriculture, Shihezi University Shihezi 832003 China
| | - Xiaopan Chen
- College of Information Science and Technology, Shihezi University Shihezi 832003 China
| | - Pan Gao
- College of Information Science and Technology, Shihezi University Shihezi 832003 China .,Key Laboratory of Oasis Ecology Agriculture, Shihezi University Shihezi 832003 China
| | - Wei Xu
- College of Agriculture, Shihezi University Shihezi 832003 China .,Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization Shihezi 832003 China
| |
Collapse
|
16
|
Xiao Q, Bai X, Gao P, He Y. Application of Convolutional Neural Network-Based Feature Extraction and Data Fusion for Geographical Origin Identification of Radix Astragali by Visible/Short-Wave Near-Infrared and Near Infrared Hyperspectral Imaging. SENSORS (BASEL, SWITZERLAND) 2020; 20:E4940. [PMID: 32882807 PMCID: PMC7506783 DOI: 10.3390/s20174940] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/16/2020] [Accepted: 08/25/2020] [Indexed: 12/13/2022]
Abstract
Radix Astragali is a prized traditional Chinese functional food that is used for both medicine and food purposes, with various benefits such as immunomodulation, anti-tumor, and anti-oxidation. The geographical origin of Radix Astragali has a significant impact on its quality attributes. Determining the geographical origins of Radix Astragali is essential for quality evaluation. Hyperspectral imaging covering the visible/short-wave near-infrared range (Vis-NIR, 380-1030 nm) and near-infrared range (NIR, 874-1734 nm) were applied to identify Radix Astragali from five different geographical origins. Principal component analysis (PCA) was utilized to form score images to achieve preliminary qualitative identification. PCA and convolutional neural network (CNN) were used for feature extraction. Measurement-level fusion and feature-level fusion were performed on the original spectra at different spectral ranges and the corresponding features. Support vector machine (SVM), logistic regression (LR), and CNN models based on full wavelengths, extracted features, and fusion datasets were established with excellent results; all the models obtained an accuracy of over 98% for different datasets. The results illustrate that hyperspectral imaging combined with CNN and fusion strategy could be an effective method for origin identification of Radix Astragali.
Collapse
Affiliation(s)
- Qinlin Xiao
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (Q.X.); (X.B.)
- Key Laboratory of Spectroscopy Sensing, Ministry of Agriculture and Rural Affairs, Hangzhou 310058, China
| | - Xiulin Bai
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (Q.X.); (X.B.)
- Key Laboratory of Spectroscopy Sensing, Ministry of Agriculture and Rural Affairs, Hangzhou 310058, China
| | - Pan Gao
- College of Information Science and Technology, Shihezi University, Shihezi 832000, China;
| | - Yong He
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (Q.X.); (X.B.)
- Key Laboratory of Spectroscopy Sensing, Ministry of Agriculture and Rural Affairs, Hangzhou 310058, China
| |
Collapse
|
17
|
Ren G, Wang Y, Ning J, Zhang Z. Using near-infrared hyperspectral imaging with multiple decision tree methods to delineate black tea quality. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 237:118407. [PMID: 32361218 DOI: 10.1016/j.saa.2020.118407] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/19/2020] [Accepted: 04/21/2020] [Indexed: 06/11/2023]
Abstract
The evaluation of tea quality tended to be subjective and empirical by human panel tests currently. A convenient analytical approach without human involvement was developed for the quality assessment of tea with great significance. In this study, near-infrared hyperspectral imaging (HSI) combined with multiple decision tree methods was utilized as an objective analysis tool for delineating black tea quality and rank. Data fusion that integrated texture features based on gray-level co-occurrence matrix (GLCM) and short-wave near-infrared spectral features were as the target characteristic information for modeling. Three different types of supervised decision tree algorithms (fine tree, medium tree, and coarse tree) were proposed for the comparison of the modeling effect. The results indicated that the performance of models was enhanced by the multiple perception feature fusion. The fine tree model based on data fusion obtained the best predictive performance, and the correct classification rate (CCR) of evaluating black tea quality was 93.13% in the prediction process. This work demonstrated that HSI coupled with intelligence algorithms as a rapid and effective strategy could be successfully applied to accurately identify the rank quality of black tea.
Collapse
Affiliation(s)
- Guangxin Ren
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Yujie Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Jingming Ning
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Zhengzhu Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, Anhui, China.
| |
Collapse
|