1
|
He H, Ge Y, Ma X, Wang J, Qi W, Liu Y. Effect of LacBS/LacBP on biogenic amines degradation, physicochemical property, and flavor of Huangjiu. Food Chem 2025; 475:143244. [PMID: 39938271 DOI: 10.1016/j.foodchem.2025.143244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 08/14/2024] [Accepted: 02/04/2025] [Indexed: 02/14/2025]
Abstract
Enzymatic reduction of biogenic amines (BAs) in fermented foods is effective and safe, with minimal impact on food flavor and the fermentation process. This study aimed to efficiently reduce BAs in Huangjiu using laccase. LacBS, LacBP, and LacBV demonstrated extensive substrate specificity for BAs. Additionally, these three laccases were resistant to acidic conditions and stable across a wide ethanol range (3-24 % vol). The effect of temperature on the ability of the three laccases to degrade BAs in Huangjiu was investigated, revealing that LacBS and LacBP had higher total BAs degradation than LacBV at 30 °C + 80 °C. Furthermore, synergistic LacBS/LacBP (at a 1:1 ratio) treatment efficiently increased the degradation of BAs in Huangjiu Sp.4, Sp.8, and Sp.10 by 68.93 %, 72.1 %, and 75.37 %, respectively, without affecting the flavor profile or physicochemical properties. Synergistic laccase system for BAs degradation might be a potential "green technology" for industries of traditional fermented foods.
Collapse
Affiliation(s)
- Hongpeng He
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Yanyan Ge
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Xiangyang Ma
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Jiahui Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Wei Qi
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| | - Yihan Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| |
Collapse
|
2
|
Thanh C, Avallone S, Chochois V, Douny C, Bethune K, Mith H, Peng C, Servent A, Collombel I. Nutritional and microbiological dynamics in the preparation of prahoc fish paste. PLoS One 2025; 20:e0321834. [PMID: 40273221 PMCID: PMC12021279 DOI: 10.1371/journal.pone.0321834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 03/12/2025] [Indexed: 04/26/2025] Open
Abstract
Prahoc is a traditional fermented fish widely consumed in Cambodia. Nevertheless, the processing and nutritional values of this daily-consumed product were poorly described. This study offers a detailed analysis of the biochemistry, nutritional composition, and microbiota during the six-month Prahoc incubation. Macronutrients (e.g. lipids, proteins) are rather well preserved during the preparation of the fish paste but the fatty acid and amino acid profiles are slightly modified at the end of the unit operation. Free amino acids increased, which facilitates the in vitro digestibility of the final paste, while beneficial fatty acids, such as eicosapentaenoic and docosahexaenoic acids, decreased. At the end of the process, the peroxide value was nearly five times greater than the limit set by the Codex Alimentarius (10 meq O2/kg). Biogenic amines, particularly cadaverine, were present but remained within acceptable limits. Metabarcoding analysis revealed that salt-tolerant bacteria dominated the fermentation process, while fungal activity was minimal. Lactic acid bacteria, such as Vagococcus and Streptococcus, were predominant before salt addition, while the fish pathogen Aeromonas established itself immediately after. Clostridium remained steady throughout, and Lentibacillus became dominant after six months. Food safety concerns related to biogenic amines, peroxides, and Clostridium highlight the need for establishing standard operational practices among national processors to mitigate food risks.
Collapse
Affiliation(s)
- Channmuny Thanh
- QualiSud, Université de Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de la Réunion, Montpellier, France
- Research and Innovation Center, Institute of Technology of Cambodia, Phnom Penh, Cambodia
| | - Sylvie Avallone
- QualiSud, Université de Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de la Réunion, Montpellier, France
| | - Vincent Chochois
- QualiSud, Université de Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de la Réunion, Montpellier, France
| | - Caroline Douny
- Department of Food Sciences, Laboratory of Food Analysis, Faculty of Veterinary Medicine, Fundamental and Applied Research for Animals & Health (FARAH), Veterinary Public Health, University of Liège, Liège, Belgium
| | - Kevin Bethune
- QualiSud, Université de Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de la Réunion, Montpellier, France
| | - Hasika Mith
- Research and Innovation Center, Institute of Technology of Cambodia, Phnom Penh, Cambodia
| | - Chanthol Peng
- Research and Innovation Center, Institute of Technology of Cambodia, Phnom Penh, Cambodia
| | - Adrien Servent
- QualiSud, Université de Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de la Réunion, Montpellier, France
| | - Ingrid Collombel
- QualiSud, Université de Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de la Réunion, Montpellier, France
| |
Collapse
|
3
|
Tabolacci C, Caruso A, Micai M, Galati G, Lintas C, Pisanu ME, Scattoni ML. Biogenic Amine Metabolism and Its Genetic Variations in Autism Spectrum Disorder: A Comprehensive Overview. Biomolecules 2025; 15:539. [PMID: 40305279 DOI: 10.3390/biom15040539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/26/2025] [Accepted: 03/29/2025] [Indexed: 05/02/2025] Open
Abstract
Autism spectrum disorder (ASD) is a genetically heterogeneous syndrome characterized by repetitive, restricted, and stereotyped behaviors, along with persistent difficulties with social interaction and communication. Despite its increasing prevalence globally, the underlying pathogenic mechanisms of this complex neurodevelopmental disorder remain poorly understood. Therefore, the identification of reliable biomarkers could play a crucial role in enabling early screening and more precise classification of ASD subtypes, offering valuable insights into its physiopathology and aiding the customization of treatment or early interventions. Biogenic amines, including serotonin, histamine, dopamine, epinephrine, norepinephrine, and polyamines, are a class of organic compounds mainly produced by the decarboxylation of amino acids. A substantial portion of the genetic variation observed in ASD has been linked to genes that are either directly or indirectly involved in the metabolism of biogenic amines. Their potential involvement in ASD has become an area of growing interest due to their pleiotropic activities in the central nervous system, where they act as both neurotransmitters and neuromodulators or hormones. This review examines the role of biogenic amines in ASD, with a particular focus on genetic alterations in the enzymes responsible for their synthesis and degradation.
Collapse
Affiliation(s)
- Claudio Tabolacci
- Coordination and Promotion of Research, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Angela Caruso
- Coordination and Promotion of Research, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Martina Micai
- Coordination and Promotion of Research, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Giulia Galati
- Coordination and Promotion of Research, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Carla Lintas
- Research Unit of Medical Genetics, Department of Medicine and Surgery, University Campus Bio-Medico of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy
- Operative Research Unit of Medical Genetics, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo 200, 00128 Rome, Italy
| | - Maria Elena Pisanu
- Core Facilities, High Resolution NMR Unit, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Maria Luisa Scattoni
- Coordination and Promotion of Research, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| |
Collapse
|
4
|
San SP, Chea R, Grace D, Roesel K, Tum S, Young S, Charaslertrangsi T, Zand N, Thombathu SS, Thorng R, Kong L, Fidero K, Nicolaides L. Biological Hazards and Indicators Found in Products of Animal Origin in Cambodia from 2000 to 2022: A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:1621. [PMID: 39767462 PMCID: PMC11675544 DOI: 10.3390/ijerph21121621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 01/11/2025]
Abstract
Biological hazards in products of animal origin pose a significant threat to human health. In Cambodia, there are few comprehensive data and information on the causes of foodborne diseases or risks. To date, there has been no known published study similar to this review. This systematic review is aimed to investigate the prevalence of biological hazards and their indicators in products of animal origin from 2000 to 2022. The main objective of this study was also to contribute to strengthening Cambodia's food control system. This review followed the established "Preferred Reporting Items for Systematic Reviews and Meta-Analyses" (PRISMA) guidelines. In total, 46 studies were retained for complete review. Most studies (n = 40) had been conducted by or with external researchers, reflecting the under-resourcing of the National Food Control System in terms of surveillance; areas outside the capital were relatively understudied, reflecting evidence found in Ethiopia and Burkina Faso. Five categories of hazards were reported with the highest number of studies on fish parasites. Marketed fish, often originating from different countries, had a higher mean value of parasite prevalence (58.85%) than wild-caught fish (16.46%). Viral pathogens in bat meat presented a potential spillover risk. Many potentially important hazards had not yet been studied or reported (e.g., Norovirus, Shigella, toxin-producing Escherichia coli, and Vibrio cholerae). The findings of our review highlighted significant urgencies for national competent authorities to enhance food hygiene practices along the production chain, tackle import control, and enforce the implementation of a traceability system, alongside more research collaboration with neighboring countries and key trading partners. It is crucial to conduct more extensive research on food safety risk analysis, focusing on the identification and understanding of various biological hazards and their associated risk factors in food.
Collapse
Affiliation(s)
- Shwe Phue San
- Natural Resources Institute, University of Greenwich, Medway ME4 4TB, UK; (S.P.S.); (S.Y.)
| | - Rortana Chea
- National Animal Health and Production Research Institute, General Directorate of Animal Health and Production, Phnom Penh 120603, Cambodia
| | - Delia Grace
- Natural Resources Institute, University of Greenwich, Medway ME4 4TB, UK; (S.P.S.); (S.Y.)
- International Livestock Research Institute, Nairobi 00100, Kenya
| | - Kristina Roesel
- International Livestock Research Institute, Nairobi 00100, Kenya
| | - Sothyra Tum
- National Animal Health and Production Research Institute, General Directorate of Animal Health and Production, Phnom Penh 120603, Cambodia
| | - Stephen Young
- Natural Resources Institute, University of Greenwich, Medway ME4 4TB, UK; (S.P.S.); (S.Y.)
| | | | - Nazanin Zand
- Natural Resources Institute, University of Greenwich, Medway ME4 4TB, UK; (S.P.S.); (S.Y.)
| | | | - Ra Thorng
- United Nations Industrial Development Organization, Phnom Penh 120101, Cambodia; (S.S.T.); (L.K.)
| | - Leab Kong
- United Nations Industrial Development Organization, Phnom Penh 120101, Cambodia; (S.S.T.); (L.K.)
| | - Kuok Fidero
- Ministry of Industry, Science, Technology, and Innovation, Phnom Penh 120203, Cambodia;
| | - Linda Nicolaides
- Natural Resources Institute, University of Greenwich, Medway ME4 4TB, UK; (S.P.S.); (S.Y.)
| |
Collapse
|
5
|
Saha Turna N, Chung R, McIntyre L. A review of biogenic amines in fermented foods: Occurrence and health effects. Heliyon 2024; 10:e24501. [PMID: 38304783 PMCID: PMC10830535 DOI: 10.1016/j.heliyon.2024.e24501] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/25/2023] [Accepted: 01/10/2024] [Indexed: 02/03/2024] Open
Abstract
Biogenic amines (BAs) are low-molecular decarboxylation products of amino acids formed during microbial fermentation. Several fermented foods may contain BAs such as histamine, tyramine, and/or phenylethylamine, at levels above documented toxic doses. Dietary exposure to foods containing high levels of BAs is associated with many adverse health effects, such as migraines, elevated blood pressure, and tachycardia. BA-mediated toxicity may occur at levels a hundred times below regulatory and suggested toxic doses, depending on an individual's sensitivity and factors such as alcohol consumption and certain medications. Although BAs occur in a wide variety of fermented foods, food safety and public health professionals are not well informed about the potential health risks and control strategies in these foods. In this review, we highlight the health risks and symptoms linked to BA exposures, the BA levels found in different fermented foods, regulatory and suggested toxic doses, and risk mitigation strategies to inform food industry and public health professionals' practice.
Collapse
Affiliation(s)
- Nikita Saha Turna
- Environmental Health Services, British Columbia Centre for Disease Control, 655 W 12th Ave, Vancouver, BC, V5Z 4R4, Canada
| | - Rena Chung
- Public Health Ontario (PHO), 480 University Avenue, Suite 300, Toronto, ON, M5G 1V2, Canada
| | - Lorraine McIntyre
- Environmental Health Services, British Columbia Centre for Disease Control, 655 W 12th Ave, Vancouver, BC, V5Z 4R4, Canada
| |
Collapse
|
6
|
Samarajeewa U. Emerging challenges in maintaining marine food-fish availability and food safety. Compr Rev Food Sci Food Saf 2023; 22:4734-4757. [PMID: 37732477 DOI: 10.1111/1541-4337.13239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/30/2023] [Accepted: 08/22/2023] [Indexed: 09/22/2023]
Abstract
The marine finfish and crustaceans contribute immensely to human nutrition. Harvesting marine food-fish to meet the global demand has become a challenge due to reduction of the fishery areas and food safety hazards associated with increased pre-harvest and post-harvest contaminations. The causes of low fish availability and contaminations were reviewed following the published literature from 2000 to 2023. The marine fish yields are stressed due to spread of contaminants triggered by rising sea temperatures, transport of microorganisms by marine vessels across the oceans, anthropogenic activities leading to increase in the toxic microorganisms, and the entry of toxic chemicals and antibiotic residues into the seawater through rivers or directly. Processing adds pyrogenic chemicals to foods. The hazardous materials may accumulate in the food-fish, beyond tolerance limits permitted for human foods. While the research and control measures focus on minimizing the hazards due to pathogenic microorganisms and chemicals in market fish, there is less discussion on the unhealthy changes occurring in the oceans affecting the quantity and quality of food-fish, and the origins of microbial and chemical contaminations. This review examines the factors affecting availability of wild food-fish and increased contaminations. It aims to bridge the knowledge gaps between the spread of hazardous agents in the marine environment, and their effects on the food-fish. Meeting the future human food security and safety through marine fish and fish products may need marine cage farming, introduction of genetically modified high yielding food-fish, and cultured contaminant free finless fish muscles as options.
Collapse
Affiliation(s)
- Upali Samarajeewa
- Department of Food Science & Technology, University of Peradeniya, Peradeniya, Sri Lanka
| |
Collapse
|
7
|
Li D, Zhang W. Biogenic amines and volatile N-nitrosamines in Chinese smoked-cured bacon (Larou) from industrial and artisanal origins. FOOD ADDITIVES & CONTAMINANTS. PART B, SURVEILLANCE 2023; 16:143-160. [PMID: 36927403 DOI: 10.1080/19393210.2023.2186489] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
This study aimed to compare biogenic amines (BAs), volatile N-nitrosamines (VNAs) and chemical properties of Chinese smoked-cured bacon (Larou) from industrial and artisanal sources. The results indicated that nitrite residues were low in artisanal Larou, whereas the salt content was relatively high in all samples. The family-made Larou accumulated high levels of BAs and probably present a health risk. Additionally, phenylethylamine exceeded 30 mg/kg in 4 out of 5 industrial Larou samples, whereas, 9 VNAs concentrations were low and unlikely to induce adverse health effects on consumers. Principal component analysis revealed that the industrial Larou products had similar safety properties in terms of BAs and VNAs content when compared to the family-made samples. Correlation analysis indicated that BAs and VNAs were significantly correlated with free amino acids, aw, pH and NaCl, respectively. This study suggests that the quality of Larou needs to be further improved by reducing salt and BAs content.
Collapse
Affiliation(s)
- Dawei Li
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Key Laboratory of Meat Processing, Ministry of Agriculture, and Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Wangang Zhang
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Key Laboratory of Meat Processing, Ministry of Agriculture, and Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
8
|
Zhai Y, Zhao X, Ma Z, Guo X, Wen Y, Yang H. Au Nanoparticles (NPs) Decorated Co Doped ZnO Semiconductor (Co 400-ZnO/Au) Nanocomposites for Novel SERS Substrates. BIOSENSORS 2022; 12:1148. [PMID: 36551115 PMCID: PMC9775326 DOI: 10.3390/bios12121148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Au nanoparticles were decorated on the surface of Co-doped ZnO with a certain ratio of Co2+/Co3+ to obtain a novel semiconductor-metal composite. The optimal substrate, designated as Co400-ZnO/Au, is beneficial to the promotion of separation efficiency of electron and hole in a semiconductor excited under visible laser exposure, which the enhances localized surface plasmon resonance (LSPR) of the Au nanoparticles. As an interesting finding, during Co doping, quantum dots of ZnO are generated, which strengthen the strong semiconductor metal interaction (SSSMI) effect. Eventually, the synergistic effect effectively advances the surface enhancement Raman scattering (SERS) performance of Co400-ZnO/Au composite. The enhancement mechanism is addressed in-depth by morphologic characterization, UV-visible, X-ray diffraction, photoluminescence, X-ray photoelectron spectroscopy, density functional theory, and finite difference time domain (FDTD) simulations. By using Co400-ZnO/Au, SERS detection of Rhodamine 6G presents a limit of detection (LOD) of 1 × 10-9 M. As a real application, the Co400-ZnO/Au-based SERS method is utilized to inspect tyramine in beer and the detectable concentration of 1 × 10-8 M is achieved. In this work, the doping strategy is expected to realize a quantum effect, triggering a SSSMI effect for developing promising SERS substrates in future.
Collapse
|
9
|
Amayreh M, Basheer C, Hassan A. Conductive Cloth-Assisted Electromediated Extraction for the Determination of Biogenic Amines from Beverages. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2022. [DOI: 10.1007/s13369-022-07287-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Qu Y, Wang J, Liu Z, Wang X, Zhou H. Effect of Storage Temperature and Time on Biogenic Amines in Canned Seafood. Foods 2022; 11:foods11182743. [PMID: 36140871 PMCID: PMC9497643 DOI: 10.3390/foods11182743] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
Biogenic amines in canned seafood are associated with food quality and human health. In this study, a total of nine biogenic amines (histamine (HIS), phenylethylamine (PHE), tyramine (TYM), putrescine (PUT), cadaverine (CAD), tryptamine (TRY), spermine (SPM), spermidine (SPD), and octopamine (OCT)) were used as standards. The biogenic amines of five canned seafood species (canned mud carp, canned sardine, canned mantis shrimp, canned scallop, and canned oyster) were investigated every three months for 12 months at different storage temperatures (4, 10, 25, and 30 °C). The biogenic amine contents were determined by the ultrasound-assisted dispersive solid-phase extraction method combined with reversed-phase high-performance liquid chromatography-photodiode array detection (UADSPE-RPLC-PDA). These results showed a detection rate of 100, 60, and 40% for HIS, PHE, PUT, and TYM; CAD, SPM, and SPD; OCT in all the samples, respectively. The contents of histamine and tyramine exceeded the recommended maximum limits (50 and 100 mg kg−1) in the canned mud carp and canned scallop when stored at 30 °C, indicating their potential health risks (p < 0.05). This result also indicates that low temperatures could inhibit the BAs content of canned seafood during storage. Overall, storage temperature and time can be used as the primary means to monitor and control the quality and safety of canned seafood.
Collapse
Affiliation(s)
- Yinghong Qu
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, College of Food Science and Technology, Shanghai Ocean University, Shanghai 200120, China
| | - Jingyu Wang
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, College of Food Science and Technology, Shanghai Ocean University, Shanghai 200120, China
| | - Zhidong Liu
- Key Laboratory of Oceanic and Polar Fisheries, Ministry of Agriculture and Rural Affair, East China Sea Fishery Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
- Correspondence:
| | - Xichang Wang
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, College of Food Science and Technology, Shanghai Ocean University, Shanghai 200120, China
| | - Huimin Zhou
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, College of Food Science and Technology, Shanghai Ocean University, Shanghai 200120, China
| |
Collapse
|
11
|
Owolabi IO, Kolawole O, Jantarabut P, Elliott CT, Petchkongkaew A. The importance and mitigation of mycotoxins and plant toxins in Southeast Asian fermented foods. NPJ Sci Food 2022; 6:39. [PMID: 36045143 PMCID: PMC9433409 DOI: 10.1038/s41538-022-00152-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 08/03/2022] [Indexed: 11/30/2022] Open
Abstract
Fermented foods (ffs) and beverages are widely consumed in Southeast Asia (SEA) for their nutritional balance, flavor, and food security. They serve as vehicles for beneficial microorganisms performing a significant role in human health. However, there are still major challenges concerning the safety of ffs and beverages due to the presence of natural toxins. In this review, the common toxins found in traditional ffs in SEA are discussed with special reference to mycotoxins and plant toxins. Also, mitigation measures for preventing risks associated with their consumption are outlined. Ochratoxin, citrinin, aflatoxins were reported to be major mycotoxins present in SEA ffs. In addition, soybean-based ff food products were more vulnerable to mycotoxin contaminations. Common plant toxins recorded in ffs include cyanogenic glycosides, oxalates, phytates and saponins. Combined management strategies such as pre-harvest, harvest and post-harvest control and decontamination, through the integration of different control methods such as the use of clean seeds, biological control methods, fermentation, appropriate packaging systems, and controlled processing conditions are needed for the safe consumption of indigenous ffs in SEA.
Collapse
Affiliation(s)
- Iyiola O Owolabi
- School of Food Science and Technology, Faculty of Science and Technology, Thammasat University, 99 Mhu 18, Phahonyothin Road, Khong Luang, Pathum Thani, 12120, Thailand.,International Joint Research Center on Food Security (IJC-FOODSEC), 113 Thailand Science Park, Phahonyothin Road, Khong Luang, Pathum Thani, 12120, Thailand
| | - Oluwatobi Kolawole
- Institute for Global Food Security, School of Biological Science, Queen's University Belfast, 19 Chlorine Gardens Belfast, BT9 5DL, Belfast, Northern Ireland
| | - Phantakan Jantarabut
- School of Food Science and Technology, Faculty of Science and Technology, Thammasat University, 99 Mhu 18, Phahonyothin Road, Khong Luang, Pathum Thani, 12120, Thailand.,International Joint Research Center on Food Security (IJC-FOODSEC), 113 Thailand Science Park, Phahonyothin Road, Khong Luang, Pathum Thani, 12120, Thailand
| | - Christopher T Elliott
- International Joint Research Center on Food Security (IJC-FOODSEC), 113 Thailand Science Park, Phahonyothin Road, Khong Luang, Pathum Thani, 12120, Thailand.,Institute for Global Food Security, School of Biological Science, Queen's University Belfast, 19 Chlorine Gardens Belfast, BT9 5DL, Belfast, Northern Ireland
| | - Awanwee Petchkongkaew
- School of Food Science and Technology, Faculty of Science and Technology, Thammasat University, 99 Mhu 18, Phahonyothin Road, Khong Luang, Pathum Thani, 12120, Thailand. .,International Joint Research Center on Food Security (IJC-FOODSEC), 113 Thailand Science Park, Phahonyothin Road, Khong Luang, Pathum Thani, 12120, Thailand. .,Institute for Global Food Security, School of Biological Science, Queen's University Belfast, 19 Chlorine Gardens Belfast, BT9 5DL, Belfast, Northern Ireland.
| |
Collapse
|
12
|
Changes in the Microbial Community and Biogenic Amine Content in Rapeseed Meal during Fermentation with an Antimicrobial Combination of Lactic Acid Bacteria Strains. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8040136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
The aim of this study was to evaluate the microbial changes and biogenic amine (BA) formation in rapeseed meal (RP) during fermentation with a bacterial starter combination of Lactiplantibacillus plantarum-LUHS122 and -LUHS135, Lacticaseibacillus casei-LUHS210, Lentilactobacillus farraginis-LUHS206, Pediococcus acidilactici-LUHS29, and Liquorilactobacillus uvarum-LUHS245. Sampling was carried out after 12 h and 7, 14, 21, and 28 days of cultivation under conditions of constant changes to the substrate, with a change frequency of 12 h. The highest lactic acid bacteria (LAB) and yeast/mould counts were established in RP fermented for 14 days (8.29 and 4.34 log10 CFU/g, respectively); however, the lowest total enterobacteria count was found in RP fermented for 12 h (3.52 log10 CFU/g). Further metagenomic analysis showed that Lactobacillus spp. were the most prevalent species in fermented RP. The changes in microbial community in RP led to differences in BA formation. Putrescine and phenylethylamine were found in all fermented RP samples, while the contents of some other amines increased with prolonged fermentation. Finally, the use of combined fermentation could ensure Lactobacillus spp. domination; however, other parameters should be controlled due to the formation of undesirable compounds.
Collapse
|
13
|
Annunziata L, Schirone M, Campana G, De Massis MR, Scortichini G, Visciano P. Histamine in fish and fish products: An 8-year survey. Follow up and official control activities in the Abruzzo region (Central Italy). Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
14
|
OUP accepted manuscript. Nutr Rev 2022; 80:2002-2016. [DOI: 10.1093/nutrit/nuac019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
15
|
SYAFITRI Y, KUSUMANINGRUM HD, DEWANTI-HARIYADI R. Identification of microflora and lactic acid bacteria in pado, a fermented fish product prepared with dried Pangium edule seed and grated coconut. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.19921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Wójcik W, Łukasiewicz M, Puppel K. Biogenic amines: formation, action and toxicity - a review. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:2634-2640. [PMID: 33159318 DOI: 10.1002/jsfa.10928] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 10/25/2020] [Accepted: 11/06/2020] [Indexed: 06/11/2023]
Abstract
Biogenic amines (BA) are organic compounds commonly found in food, plants and animals, as well as microorganisms that are attributed with the production of BAs. They are formed as an effect of a chemical process: the decarboxylation of amino acids. Factors determining the formation of BAs include the availability of free amino acids and the presence of microorganisms that show activity with respect to carrying out the decarboxylation process. On the one hand, BAs are compounds that are crucial for maintaining cell viability, as well as the proper course of the organism's metabolic processes, such as protein synthesis, hormone synthesis and DNA replication. On the other hand, despite their positive effects on the functioning of the organism, an excessive content of BAs proves to be toxic (diarrhea, food poisoning, vomiting, sweating or tachycardia). Moreover, they can accelerate carcinogenesis. Amines are a natural component of plant and animal raw materials. As a result of the proven negative effects of amines on living organisms, the reduction of these compounds should be the subject of scientific research. The present review aims to synthesize and summarize the information currently available on BAs, as well as discuss the interpretation of the results. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wojciech Wójcik
- Institute of Animal Science, Warsaw University of Life Sciences, Warsaw, Poland
| | - Monika Łukasiewicz
- Institute of Animal Science, Warsaw University of Life Sciences, Warsaw, Poland
| | - Kamila Puppel
- Institute of Animal Science, Warsaw University of Life Sciences, Warsaw, Poland
| |
Collapse
|
17
|
Plakidi ES, Maragou NC, Dasenaki ME, Megoulas NC, Koupparis MA, Thomaidis NS. Liquid Chromatographic Determination of Biogenic Amines in Fish Based on Pyrene Sulfonyl Chloride Pre-Column Derivatization. Foods 2020; 9:foods9050609. [PMID: 32397518 PMCID: PMC7278825 DOI: 10.3390/foods9050609] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 04/30/2020] [Accepted: 05/03/2020] [Indexed: 11/16/2022] Open
Abstract
Monitoring of biogenic amines in food is important for quality control, in terms of freshness evaluation and even more for food safety. A novel and cost-effective method was developed and validated for the determination of the main biogenic amines: histamine, putrescine, cadaverine, spermidine and spermine in fish tissues. The method includes extraction of amines with perchloric acid, pre-column derivatization with Pyrene Sulfonyl Chloride (PSCl), extraction of derivatives with toluene, back-dissolution in ACN after evaporation and determination by reversed phase high performance liquid chromatography with UV and intramolecular excimer fluorescence detection. The structure of the pyrene-derivatives was confirmed by liquid chromatography-mass spectrometry with electrospray ionization. The standard addition technique was applied for the quantitation due to significant matrix effect, while the use of 1,7-diaminoheptane as internal standard offered an additional confirmation tool for the identification of the analytes. Method repeatability expressed as %RSD ranged between 7.4-14% for the different amines and recovery ranged from 67% for histamine up to 114% for spermine. The limits of detection ranged between 0.1-1.4 mg kg-1 and the limits of quantification between 0.3-4.2 mg kg-1. The method was applied to canned fish samples and the concentrations of the individual biogenic amines were below the detection limit up to 40.1 mg kg-1, while their sum was within the range 4.1-49.6 mg kg-1.
Collapse
|