1
|
Liu L, Fan K, Huang Q, Wang X, Nie D, Han Z, Li Z, Zhao Z. Inhibition Effects of Infrared Radiation Prior to Cold Storage Against Alternaria alternata on Yellow Peach ( Amygdalus persica). Toxins (Basel) 2025; 17:106. [PMID: 40137879 PMCID: PMC11946141 DOI: 10.3390/toxins17030106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/20/2025] [Accepted: 02/25/2025] [Indexed: 03/29/2025] Open
Abstract
During postharvest storage, the yellow peach (Amygdalus persica) is susceptible to infection by Alternaria alternata, which causes fruit decay and produces multiple Alternaria toxins (ATs), leading to economic losses and potential health risks. The present study investigated the inhibitory effects of infrared radiation treatment against A. alternata on yellow peaches. Our in vitro experimental results indicated that infrared radiation at 50 °C for 30 min could completely inhibit fungal growth and AT production. Furthermore, infrared treatments prior to cold storage effectively delayed the onset of decay and significantly reduced the lesion diameter, decay rate, and AT levels in the yellow peaches inoculated with A. alternata. After the peaches underwent infrared radiation at 50 °C for 30 min and then cold storage for 60 days, the levels of tenuazonic acid, alternariol, alternariol methyl ether, and altenuene in the yellow peaches decreased by 95.1%, 98.6%, 76.1%, and 100.0%, respectively. Additionally, infrared radiation caused slight changes in their firmness, total soluble solids, and concentrations of sugar and organic acids, indicating minor negative impacts on the quality of the yellow peaches. Therefore, the present work provides a novel strategy for controlling A. alternata and AT contamination, thereby extending the shelf-life of yellow peaches, and improving food safety administration.
Collapse
Affiliation(s)
- Longxiao Liu
- School of Life Science and Engineering, Lanzhou University of Technology, 287 Langongping Road, Lanzhou 730050, China;
- Institute for Agro-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, 1000 Jingqi Road, Shanghai 201403, China; (K.F.); (Q.H.); (X.W.); (D.N.); (Z.H.)
| | - Kai Fan
- Institute for Agro-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, 1000 Jingqi Road, Shanghai 201403, China; (K.F.); (Q.H.); (X.W.); (D.N.); (Z.H.)
| | - Qingwen Huang
- Institute for Agro-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, 1000 Jingqi Road, Shanghai 201403, China; (K.F.); (Q.H.); (X.W.); (D.N.); (Z.H.)
| | - Xinyi Wang
- Institute for Agro-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, 1000 Jingqi Road, Shanghai 201403, China; (K.F.); (Q.H.); (X.W.); (D.N.); (Z.H.)
| | - Dongxia Nie
- Institute for Agro-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, 1000 Jingqi Road, Shanghai 201403, China; (K.F.); (Q.H.); (X.W.); (D.N.); (Z.H.)
| | - Zheng Han
- Institute for Agro-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, 1000 Jingqi Road, Shanghai 201403, China; (K.F.); (Q.H.); (X.W.); (D.N.); (Z.H.)
| | - Zhizhong Li
- School of Life Science and Engineering, Lanzhou University of Technology, 287 Langongping Road, Lanzhou 730050, China;
| | - Zhihui Zhao
- Institute for Agro-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, 1000 Jingqi Road, Shanghai 201403, China; (K.F.); (Q.H.); (X.W.); (D.N.); (Z.H.)
| |
Collapse
|
2
|
Zheng Y, Jiang Y, Yang X, Fu Z, Zhao Z, Li X, Yang K, Jia X. Automatic periodical negative air ions reduce postharvest decay and maintain texture and flavor quality of 'Fuji' apple during long-term cold storage. Food Chem X 2024; 24:101972. [PMID: 39582644 PMCID: PMC11582770 DOI: 10.1016/j.fochx.2024.101972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 10/25/2024] [Accepted: 11/04/2024] [Indexed: 11/26/2024] Open
Abstract
The aim of this study was to explore the effect of periodical negative air ions (NAI) on the quality of 'Fuji' apple fruit after treatment at 0, 30, 60, and 90 min every 4 weeks. NAI for 60 min decreased weight loss, mitigated decay, and maintained hardness of the apple fruit during the 40 weeks of storage. Treatment of fruits with NAI for 60 min enhanced the apple defense ability against pathogens by maintaining the cell wall integrity and improving the related-enzyme activities as well as accumulation of total phenols and flavonoids. Reverse-phase HPLC and solid-phase microextraction GC-MS analysis showed that NAI treatment for 60 min increased the levels of fructose, sucrose, sorbitol, malic acid and volatiles, such as 2-hexenal, 2-methylbutyl acetate, hexyl acetate, and ethyl butanoate. Taken together, NAI is promising for improving the quality 'Fuji' apples during the cold storage.
Collapse
Affiliation(s)
- Yanli Zheng
- Institute of Agricultural Products Preservation and Processing Science and Technology, Tianjin Academy of Agricultural Sciences, National Engineering and Technology Research Center for Preservation of Agricultural Products (Tianjin), Tianjin 300384, China
| | - Yunbin Jiang
- Shanxi Fruit Industry Cold Chain New Material Co., Ltd, Tongchuan 727199, China
| | - Xiangzheng Yang
- Jinan Fruit Research Institute, All China Federation of Supply and Marketing Cooperatives, Jinan 250200, China
| | - Zhiqiang Fu
- Tianjin University of Science and Technology, Tianjin 300457, China
| | - Zhiyong Zhao
- Instiute of Agro-Products Processing Science and Technology, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi 832000, China
| | - Xihong Li
- Tianjin University of Science and Technology, Tianjin 300457, China
| | - Kejing Yang
- Xinjiang Yuanxiang Agricultural Technology Co., Ltd., Hetian 848000, China
| | - Xiaoyu Jia
- Institute of Agricultural Products Preservation and Processing Science and Technology, Tianjin Academy of Agricultural Sciences, National Engineering and Technology Research Center for Preservation of Agricultural Products (Tianjin), Tianjin 300384, China
- Shanxi Fruit Industry Cold Chain New Material Co., Ltd, Tongchuan 727199, China
- Xinjiang Yuanxiang Agricultural Technology Co., Ltd., Hetian 848000, China
| |
Collapse
|
3
|
Ran B, Ran L, Wang Z, Liao J, Li D, Chen K, Cai W, Hou J, Peng X. Photocatalytic Antimicrobials: Principles, Design Strategies, and Applications. Chem Rev 2023; 123:12371-12430. [PMID: 37615679 DOI: 10.1021/acs.chemrev.3c00326] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Nowadays, the increasing emergence of antibiotic-resistant pathogenic microorganisms requires the search for alternative methods that do not cause drug resistance. Phototherapy strategies (PTs) based on the photoresponsive materials have become a new trend in the inactivation of pathogenic microorganisms due to their spatiotemporal controllability and negligible side effects. Among those phototherapy strategies, photocatalytic antimicrobial therapy (PCAT) has emerged as an effective and promising antimicrobial strategy in recent years. In the process of photocatalytic treatment, photocatalytic materials are excited by different wavelengths of lights to produce reactive oxygen species (ROS) or other toxic species for the killing of various pathogenic microbes, such as bacteria, viruses, fungi, parasites, and algae. Therefore, this review timely summarizes the latest progress in the PCAT field, with emphasis on the development of various photocatalytic antimicrobials (PCAMs), the underlying antimicrobial mechanisms, the design strategies, and the multiple practical antimicrobial applications in local infections therapy, personal protective equipment, water purification, antimicrobial coatings, wound dressings, food safety, antibacterial textiles, and air purification. Meanwhile, we also present the challenges and perspectives of widespread practical implementation of PCAT as antimicrobial therapeutics. We hope that as a result of this review, PCAT will flourish and become an effective weapon against pathogenic microorganisms and antibiotic resistance.
Collapse
Affiliation(s)
- Bei Ran
- Institute of Regulatory Science for Medical Devices, Sichuan University, Chengdu 610064, P. R. China
| | - Lei Ran
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, P. R. China
- Ability R&D Energy Centre, School of Energy and Environment, City University of Hong Kong, Hong Kong 999077, P. R. China
| | - Zuokai Wang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, P. R. China
| | - Jinfeng Liao
- West China Hospital of Stomatology Sichuan University, Chengdu 610064, P. R. China
| | - Dandan Li
- West China Hospital of Stomatology Sichuan University, Chengdu 610064, P. R. China
| | - Keda Chen
- Ability R&D Energy Centre, School of Energy and Environment, City University of Hong Kong, Hong Kong 999077, P. R. China
| | - Wenlin Cai
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, P. R. China
| | - Jungang Hou
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, P. R. China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, P. R. China
- State Key Laboratory of Fine Chemicals, College of Material Science and Engineering, Shenzhen University, Shenzhen 518071, P. R. China
| |
Collapse
|
4
|
Zheng Y, Jia X, Duan L, Li X, Zhao Z. Synergistic Effects of 1-MCP Fumigation and ε-Poly-L-Lysine Treatments on Delaying Softening and Enhancing Disease Resistance of Flat Peach Fruit. Foods 2023; 12:3683. [PMID: 37835335 PMCID: PMC10572130 DOI: 10.3390/foods12193683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/03/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023] Open
Abstract
Flat peach, a predominant fruit consumed in China, is highly susceptible to softening and perishable. The impact of 1-methylcycloproene (1-MCP) fumigation combined with ε-poly-L-lysine (ε-PL) on softening and postharvest reactive oxygen species (ROS) and phenylpropanoid pathway metabolisms in peaches and its relationship to disease resistance were investigated. Findings revealed that a combination of 1 µL L-1 1-MCP and 300 mg L-1 ε-PL effectively suppressed the activity of cell-wall-degrading enzymes and the disassembly of cell wall structure, thus maintaining higher firmness and lower decay incidence. Compared to the control group, the synergistic approach bolstered enzymatic responses linked to disease resistance and ROS-scavenge system, consistently preserving total phenolics, flavonoids, ascorbic acid, and glutathione levels. Concurrently, the accumulation of hydrogen peroxide and malondialdehyde was significantly diminished post-treatment. These results show that there is good synergistic effect between 1-MCP and ε-PL, which could effectively maintain the quality of flat peach fruit by modulating cell wall metabolism and enhancing the resistance.
Collapse
Affiliation(s)
- Yanli Zheng
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (Y.Z.); (L.D.); (X.L.)
| | - Xiaoyu Jia
- Institute of Agricultural Products Preservation and Processing Science and Technology, Tianjin Academy of Agricultural Sciences, Tianjin 300384, China
| | - Lihua Duan
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (Y.Z.); (L.D.); (X.L.)
| | - Xihong Li
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (Y.Z.); (L.D.); (X.L.)
| | - Zhiyong Zhao
- Instiute of Agro-Products Processing Science and Technology, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi 832000, China
| |
Collapse
|
5
|
Mabusela BP, Belay ZA, Godongwana B, Caleb OJ. Impact of vacuum ultraviolet (VUV) photolysis on ethylene degradation kinetics and removal in mixed-fruit storage, and direct exposure to 'Fuji' apples during storage. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:2557-2567. [PMID: 37599845 PMCID: PMC10439093 DOI: 10.1007/s13197-023-05775-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 08/10/2022] [Accepted: 05/24/2023] [Indexed: 08/22/2023]
Abstract
Accumulated ethylene in fruit storage/transportation causes rapid senescence resulting in reduced shelf-life and postharvest losses. The aim of this study was to investigate the application of vacuum ultraviolet (VUV) photolysis modular reactor for fruit storage. The first experiment compared the effectiveness of VUV photolysis reactor with the standard fruit industry adsorbent (potassium permanganate, KMnO4) on the removal of ethylene from mixed-fruit loading of apples, banana, and pears stored at ambient temperature (16 °C) for 6 days. Second study evaluated the impact of direct VUV radiation on quality attributes of apples stored at 10 °C for 21 days. Results showed that ethylene produced in mixed-fruit loading storage significantly (p < 0.05) reduced by 86.9% in the storage chamber connected to VUV modular reactor compared to 25.4% for storage under potassium permanganate. Direct exposure of apples to VUV radiation successfully reduced both ethylene and respiration rate but damaged the skin of the apples. Hue angle and lightness (L*) for apples exposed to VUV radiation declined significantly (p < 0.05) from 60.7 ± 1.09 to 33.5 ± 9.51 and 58.1 ± 3.60 to 50.4 ± 1.13, respectively. This study showed the potential of VUV photolysis as an innovative technique for removing ethylene from storage facility.
Collapse
Affiliation(s)
- Bongolwethu P. Mabusela
- Agri-Food Systems and Omics Laboratory, Post-Harvest and Agro-Processing Technologies (PHATs), Agricultural Research Council (ARC) Infruitec-Nietvoorbij, Stellenbosch, 7599 South Africa
- Department of Chemical Engineering, Cape Peninsula University of Technology, P.O Box 1906, Bellville, 7535 South Africa
| | - Zinash A. Belay
- Agri-Food Systems and Omics Laboratory, Post-Harvest and Agro-Processing Technologies (PHATs), Agricultural Research Council (ARC) Infruitec-Nietvoorbij, Stellenbosch, 7599 South Africa
| | - Buntu Godongwana
- Department of Chemical Engineering, Cape Peninsula University of Technology, P.O Box 1906, Bellville, 7535 South Africa
| | - Oluwafemi James Caleb
- Department of Horticultural Science, Faculty of AgriSciences, Stellenbosch University, Private Bag X1, Matieland, 7602 South Africa
- Africa Institute for Postharvest Technology, Faculty of AgriSciences, Stellenbosch University, Private Bag X1, Matieland, 7602 South Africa
| |
Collapse
|
6
|
Li Q, Wang G, Zhang L, Zhu S. AcbHLH144 transcription factor negatively regulates phenolic biosynthesis to modulate pineapple internal browning. HORTICULTURE RESEARCH 2023; 10:uhad185. [PMID: 37899952 PMCID: PMC10611554 DOI: 10.1093/hr/uhad185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/03/2023] [Indexed: 10/31/2023]
Abstract
Internal browning (IB), a major physiological disorder of pineapples, usually happens in postharvest processes, but the underlying mechanism remains elusive. The bHLH transcription factors are involved in regulating various biological processes, but whether they could regulate tissue browning in fruit during storage remains unknown. Here we showed that the phenolic biosynthesis pathway was activated in pineapples showing IB following 9 days of storage. AcbHLH144 expression was the highest of the 180 transcription factors identified, downregulated in pineapple with IB, and negatively correlated with the major phenolic biosynthetic genes. AcbHLH144 was shown to be localized in the nucleus and its transient overexpression in pineapples and overexpression in Arabidopsis decreased phenolic biosynthesis. The yeast one-hybrid assay and electrophoretic mobility shift assay showed that AcbHLH144 directly bound to the Ac4CL5 promoter and the dual-luciferase reporter assay showed that it inactivated Ac4CL5 transcription. These results strongly suggest AcbHLH144 as a repressor for phenolic biosynthesis. Abscisic acid (ABA) alleviated IB, reduced phenolic accumulation, and downregulated phenolic biosynthetic genes, including Ac4CL5. Transcriptomic analysis showed that AcbHLH144 was the most upregulated of all 39 bHLHs in response to ABA. ABA enhanced AcbHLH144 expression, reduced phenolic contents, and downregulated phenolic biosynthetic genes in pineapples transiently overexpressing AcbHLH144. Moreover, ABA enhanced enzyme activity of GUS driven by the AcbHLH144 promoter. These results showed that AcbHLH144 as a repressor for phenolic biosynthesis could be activated by ABA. Collectively, the work demonstrated that AcbHLH144 negatively regulated phenolic biosynthesis via inactivating Ac4CL5 transcription to modulate pineapple IB. The findings provide novel insight into the role of AcbHLH144 in modulating pineapple IB during postharvest processes.
Collapse
Affiliation(s)
- Qian Li
- Guangdong Province Key Laboratory of Postharvest Physiology and Technology of Fruit and Vegetables, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Guang Wang
- Guangdong Province Key Laboratory of Postharvest Physiology and Technology of Fruit and Vegetables, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Ling Zhang
- Guangdong Province Key Laboratory of Postharvest Physiology and Technology of Fruit and Vegetables, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Shijiang Zhu
- Guangdong Province Key Laboratory of Postharvest Physiology and Technology of Fruit and Vegetables, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
7
|
Chen L, Wang M, Wang H, Zhou C, Yuan J, Li X, Pan Y. Isothermal Storage Delays the Senescence of Post-Harvest Apple Fruit through the Regulation of Antioxidant Activity and Energy Metabolism. Foods 2023; 12:foods12091765. [PMID: 37174303 PMCID: PMC10178556 DOI: 10.3390/foods12091765] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/17/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
The purpose of this work was to elucidate the influence of TF (5 ± 5 °C, and 5 ± 1 °C) and CT (5 ± 0.1 °C served as an isothermal state) storage environment on the antioxidant ability and energy metabolism in post-harvest apple fruit during storage. Specifically, compared with fruit in TFs groups, the quality attributes of apples in the CT group, including firmness, fresh weight, contents of SSC, and TA were maintained at a higher level. In addition, fruit stored in the CT environment revealed a suppressed respiration rate and EL, lower MDA, O2·-, and H2O2 accumulation but increased the activities of SOD, CAT, APX, and GR. At the end of storage, the SOD, CAT, APX, and GR activities of fruit in the CT group were 38.14%,48.04%, 115.29%, and 34.85% higher than that of the TF5 group, respectively. Fruit in the CT environment also revealed higher AsA, GSH, total phenols, and total flavonoid content. In addition, fruit stored in the CT environment maintained higher ATP content, EC, and more active H+-ATPase, Ca2+-ATPase, CCO, and SDH. At the end of storage, the SDH and CCO activities of fruit in the TF0.1 group were 1.74, and 2.59 times higher than that in the TF5 group, respectively. Taken together, we attributed the fact that a constant temperature storage environment can retard the fruit senescence to the enhancement of antioxidant capacities and maintaining of higher energy status in apple fruit.
Collapse
Affiliation(s)
- Lan Chen
- International Centre in Fundamental and Engineering Thermophysics, Tianjin University of Commerce, Tianjin 300134, China
- Institute of Food Science and Technology, Chinese Academic of Agricultural Sciences, Beijing 100193, China
- Shanxi Fruit Industry Cold Chain New Material Co., Ltd., Tongchuan 727100, China
| | - Mengya Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Haifen Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Cong Zhou
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Junwei Yuan
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xihong Li
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yanfang Pan
- Institute of Food Science and Technology, Chinese Academic of Agricultural Sciences, Beijing 100193, China
- Tianjin Gasin-DH Preservation Technologies Co., Ltd., Tianjin 300300, China
| |
Collapse
|
8
|
Kaur K, Pandiselvam R, Kothakota A, Padma Ishwarya S, Zalpouri R, Mahanti NK. Impact of ozone treatment on food polyphenols – A comprehensive review. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Anjali KU, Reshma C, Sruthi NU, Pandiselvam R, Kothakota A, Kumar M, Siliveru K, Marszałek K, Mousavi Khaneghah A. Influence of ozone treatment on functional and rheological characteristics of food products: an updated review. Crit Rev Food Sci Nutr 2022; 64:3687-3701. [PMID: 36268992 DOI: 10.1080/10408398.2022.2134292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In this milieu, ozone technology has emerged as an avant-garde non-thermal mode of disinfection with potential applications in the food industry. This eco-friendly technology has a comprehendible adeptness in replacing alternative chemical sanitizers and is recognized as a generally safe disinfectant for fruits and vegetables. Several researchers have been focusing on the biochemical impacts of ozone on different quantitative and qualitative aspects of fruits and vegetables. A collection of those works is presented in this review highlighting the effect of ozone on the functional, antioxidant, and rheological properties of food. This can be a benevolent tool for discovering the processing states of ozone applications and ensuing influence on safety and quality attributes of previously studied foods and opening further research areas. It extends shelf life and never leaves any harmful residues on the product since it decomposes to form oxygen. It was seen that the impact on a specific property of food was dependent on the ozone concentration and treatment time, and the adverse effects of ozone exposure can be alleviated once the processing conditions are optimized. The present review can be used as a baseline for designing different food processing operations involving ozone.
Collapse
Affiliation(s)
- K U Anjali
- Department of Food Science and Technology, Pondicherry University, Puducherry, India
| | - C Reshma
- National Institute of Food Technology Entrepreneurship and Management, Sonipat, Haryana, India
| | - N U Sruthi
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - R Pandiselvam
- Physiology, Biochemistry, and Post-harvest Technology Division, ICAR-Central Plantation Crops Research Institute, Kasaragod, Kerala, India
| | - Anjineyulu Kothakota
- Agro-Processing & Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum, Kerala, India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR-Central Institute for Research on Cotton Technology, Mumbai, Maharashtra, India
| | - Kaliramesh Siliveru
- Department of Grain Science & Industry, Kansas State University, Manhattan, Kansas, USA
| | - Krystian Marszałek
- Department of Fruit and Vegetable Product Technology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Warsaw, Poland
| | - Amin Mousavi Khaneghah
- Department of Fruit and Vegetable Product Technology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Warsaw, Poland
| |
Collapse
|
10
|
Li X, Peng S, Yu R, Li P, Zhou C, Qu Y, Li H, Luo H, Yu L. Co-Application of 1-MCP and Laser Microporous Plastic Bag Packaging Maintains Postharvest Quality and Extends the Shelf-Life of Honey Peach Fruit. Foods 2022; 11:foods11121733. [PMID: 35741931 PMCID: PMC9222991 DOI: 10.3390/foods11121733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 05/31/2022] [Accepted: 06/09/2022] [Indexed: 11/30/2022] Open
Abstract
Honey peach (Prunus persica L.) is highly nutritious; it is an excellent source of sugars, proteins, amino acids, vitamins, and mineral elements. However, it is a perishable climacteric fruit that is difficult to preserve. In this study, “Feicheng” honey peach fruit was used as a test material to investigate the synergistic preservation effect of 1-methylcyclopropene (1-MCP) and laser microporous film (LMF). The peach fruits were fumigated for 24 h with 2 μL L−1 1-MCP, then packed in LMF. In comparison with the control treatment, 1-MCP + LMF treatment markedly decreased the respiration rate, weight loss, and rot rate of peach fruits. Moreover, the combination of 1-MCP and LMF suppressed the increase in soluble solids (SS) and reducing sugars (RS), as well as the decrease in titratable acid (TA) and ascorbic acid (AsA). The combined application also maintained a high protopectin content and low soluble pectin content; it reduced the accumulation of superoxide anions (O2−) and hydrogen peroxide (H2O2). Except in a few samples, the catalase (CAT) and ascorbate peroxidase (APX) activities were higher when treated by 1-MCP + LMF. Conversely, the phenylalanine deaminase (PAL), peroxidase (POD), lipase, lipoxygenase (LOX), polygalacturonase (PG), β-glucosidase, and cellulase (Cx) activities were lower than in the control. Furthermore, 1-MCP + LMF treatment reduced the relative abundances of dominant pathogenic fungi (e.g., Streptomyces, Stachybotrys, and Issa sp.). The combined treatment improved the relative abundances of antagonistic fungi (e.g., Aureobasidium and Holtermanniella). The results indicated that the co-application of 1-MCP and LMF markedly reduced weight loss and spoilage, delayed the decline of nutritional quality, and inhibited the physiological and biochemical metabolic activities of peach during storage. These changes extended its shelf-life to 28 days at 5 °C. The results provide a reference for the commercial application of this technology.
Collapse
Affiliation(s)
- Xuerui Li
- Agro-Products Processing Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650221, China; (X.L.); (Y.Q.); (H.L.)
| | - Sijia Peng
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China; (S.P.); (R.Y.)
| | - Renying Yu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China; (S.P.); (R.Y.)
| | - Puwang Li
- South Subtropical Crop Research Institute of Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, Zhanjiang 524091, China; (P.L.); (C.Z.)
| | - Chuang Zhou
- South Subtropical Crop Research Institute of Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, Zhanjiang 524091, China; (P.L.); (C.Z.)
| | - Yunhui Qu
- Agro-Products Processing Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650221, China; (X.L.); (Y.Q.); (H.L.)
| | - Hong Li
- Agro-Products Processing Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650221, China; (X.L.); (Y.Q.); (H.L.)
| | - Haibo Luo
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China; (S.P.); (R.Y.)
- Correspondence: (H.L.); (L.Y.)
| | - Lijuan Yu
- Agro-Products Processing Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650221, China; (X.L.); (Y.Q.); (H.L.)
- Correspondence: (H.L.); (L.Y.)
| |
Collapse
|
11
|
Liu Z, Li W, Li X, Li X. Quality maintenance of 1‐Methylcyclopropene combined with titanium dioxide photocatalytic reaction on postharvest cherry tomatoes. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ziyun Liu
- State Key Laboratory of Food Nutrition and Safety College of Food Science and Engineering Tianjin University of Science and Technology Tianjin 300457 China
| | - Wenhan Li
- State Key Laboratory of Food Nutrition and Safety College of Food Science and Engineering Tianjin University of Science and Technology Tianjin 300457 China
| | - Xuejin Li
- State Key Laboratory of Food Nutrition and Safety College of Food Science and Engineering Tianjin University of Science and Technology Tianjin 300457 China
| | - Xihong Li
- State Key Laboratory of Food Nutrition and Safety College of Food Science and Engineering Tianjin University of Science and Technology Tianjin 300457 China
| |
Collapse
|
12
|
Modesti M, Macaluso M, Taglieri I, Bellincontro A, Sanmartin C. Ozone and Bioactive Compounds in Grapes and Wine. Foods 2021; 10:2934. [PMID: 34945485 PMCID: PMC8701297 DOI: 10.3390/foods10122934] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/20/2021] [Accepted: 11/24/2021] [Indexed: 12/11/2022] Open
Abstract
Ozone is widely used in the agri-food and food processing industries mainly as a sanitizing agent. However, it has recently become clear that ozone exposition leads to another important benefit: in living tissues, the induced-oxidative stress triggers the antioxidant response, and, therefore, it enhances the production of antioxidant and stress-related secondary metabolites. As such, ozone can be considered an abiotic elicitor. The goal of the present review was to critically summarize knowledge about the possibility of improving bioactive compounds and, consequently, the health-related properties of grapes and wine, by using ozone. The greatest interest has been given not only to the pre- and post-harvest treatment of table and wine grapes, but also to the explanation of the mechanisms involved in the ozone-related response and the main secondary metabolites biosynthetic pathways. From the literature available, it is clear that the effect of ozone treatment on health-related properties and secondary metabolites accumulation depends on many factors, such as the cultivar, but also the form (water or gaseous), doses, and application method of ozone. Most of the published papers report an increase in antioxidant compounds (e.g., polyphenols) and stress-related volatiles, confirming the hypothesis that ozone could be used to improve berry and wine compositional and sensory quality.
Collapse
Affiliation(s)
- Margherita Modesti
- Department for Innovation in Biological, Agro-Food and Forest Systems, University of Tuscia, Via S. Camillo de Lellis, 01100 Viterbo, Italy;
| | - Monica Macaluso
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (M.M.); (C.S.)
| | - Isabella Taglieri
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (M.M.); (C.S.)
| | - Andrea Bellincontro
- Department for Innovation in Biological, Agro-Food and Forest Systems, University of Tuscia, Via S. Camillo de Lellis, 01100 Viterbo, Italy;
| | - Chiara Sanmartin
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (M.M.); (C.S.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| |
Collapse
|
13
|
Yuan J, Wang H, Li Y, Chen L, Zheng Y, Jiang Y, Tang Y, Li X, Wang L, Li J. 1‐MCP
and pulsed controlled atmosphere affect internal storage disorders and desired quality of watercored “Fuji” apples. J Food Saf 2021. [DOI: 10.1111/jfs.12935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Junwei Yuan
- State Key Laboratory of Food Nutrition and Safety College of Food Science and Engineering, Tianjin University of Science and Technology Tianjin China
| | - Haifen Wang
- State Key Laboratory of Food Nutrition and Safety College of Food Science and Engineering, Tianjin University of Science and Technology Tianjin China
| | - Yusheng Li
- Changli Research Institute of Pomology Hebei Academy of Agriculture and Forestry Sciences Changli China
| | - Lan Chen
- State Key Laboratory of Food Nutrition and Safety College of Food Science and Engineering, Tianjin University of Science and Technology Tianjin China
| | - Yanli Zheng
- State Key Laboratory of Food Nutrition and Safety College of Food Science and Engineering, Tianjin University of Science and Technology Tianjin China
| | - Yuqian Jiang
- State Key Laboratory of Food Nutrition and Safety College of Food Science and Engineering, Tianjin University of Science and Technology Tianjin China
| | - Yao Tang
- State Key Laboratory of Food Nutrition and Safety College of Food Science and Engineering, Tianjin University of Science and Technology Tianjin China
| | - Xihong Li
- State Key Laboratory of Food Nutrition and Safety College of Food Science and Engineering, Tianjin University of Science and Technology Tianjin China
| | - Luyin Wang
- Xinjiang Red Flag Slope Agricultural Development Group Co., Ltd. Xinjiang China
| | - Jixin Li
- Xinjiang Academy of Agricultural and Reclamation Science Xinjiang China
| |
Collapse
|
14
|
Liu Z, Li W, Zhai X, Li X. Combination of precooling with ozone fumigation or low fluctuation of temperature for the quality modifications of postharvest sweet cherries. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ziyun Liu
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education, School of Food Engineering and Biotechnology Tianjin University of Science and Technology Tianjin China
| | - Wenhan Li
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education, School of Food Engineering and Biotechnology Tianjin University of Science and Technology Tianjin China
| | - Xuqing Zhai
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education, School of Food Engineering and Biotechnology Tianjin University of Science and Technology Tianjin China
| | - Xihong Li
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education, School of Food Engineering and Biotechnology Tianjin University of Science and Technology Tianjin China
| |
Collapse
|
15
|
Pace B, Cefola M. Innovative Preservation Technology for the Fresh Fruit and Vegetables. Foods 2021; 10:foods10040719. [PMID: 33805357 PMCID: PMC8066757 DOI: 10.3390/foods10040719] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 03/24/2021] [Accepted: 03/27/2021] [Indexed: 02/07/2023] Open
Abstract
The preservation of the freshness of fruits and vegetables until their consumption is the aim of many research activities. Quality losses of fresh fruit and vegetables during cold chain are frequently attributable to an inappropriate use of postharvest technologies. Moreover, especially when fresh produce is transported to distant markets, it is necessary to adopt proper postharvest preservation technologies in order to preserve the initial quality and limit microbial decay. Nowadays, for each step of supply chain (packing house, cold storage rooms, precooling center, refrigerate transport and distribution), are available innovative preservation technologies that, alone or in combination, could improve the fresh products in order to maintain the principal quality and nutritional characteristics. The issue groups five original studies and two comprehensive reviews within the topic of preservation technologies related to innovative packaging and postharvest operation and treatments, highlighting their effect on quality keeping.
Collapse
|
16
|
Sachadyn-Król M, Agriopoulou S. Ozonation as a Method of Abiotic Elicitation Improving the Health-Promoting Properties of Plant Products-A Review. Molecules 2020; 25:E2416. [PMID: 32455899 PMCID: PMC7288181 DOI: 10.3390/molecules25102416] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/14/2020] [Accepted: 05/21/2020] [Indexed: 12/21/2022] Open
Abstract
In this review, the primary objective was to systematize knowledge about the possibility of improving the health-promoting properties of raw plant products, defined as an increase in the content of bioactive compounds, by using ozone. The greatest attention has been paid to the postharvest treatment of plant raw materials with ozone because of its widespread use. The effect of this treatment on the health-promoting properties depends on the following different factors: type and variety of the fruit or vegetable, form and method of ozone treatment, and dosage of ozone. It seems that ozone applied in the form of ozonated water works more gently than in gaseous form. Relatively high concentration and long contact time used simultaneously might result in increased oxidative stress which leads to the degradation of quality. The majority of the literature demonstrates the degradation of vitamin C and deterioration of color after treatment with ozone. Unfortunately, it is not clear if ozone can be used as an elicitor to improve the quality of the raw material. Most sources prove that the best results in increasing the content of bioactive components can be obtained by applying ozone at a relatively low concentration for a short time immediately after harvest.
Collapse
Affiliation(s)
- Monika Sachadyn-Król
- Department of Chemistry, Faculty of Food Sciences and Biotechnology, University of Life Sciences in Lublin, 20950 Lublin, Poland
| | - Sofia Agriopoulou
- Department of Food Science and Technology, University of the Peloponnese, 24100 Antikalamos, Kalamata, Greece;
| |
Collapse
|