1
|
Wu X, Hu Q, Liang X, Chen J, Huan C, Fang S. Methyl jasmonate encapsulated in protein-based nanoparticles to enhance water dispersibility and used as coatings to improve cherry tomato storage. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
2
|
Di H, Zhang Y, Ma J, Wei J, Wang Y, Li Z, Cui C, Fang P, Ma W, Li H, Sun B, Zhang F. Sucrose treatment delays senescence and maintains the postharvest quality of baby mustard ( Brassica juncea var. gemmifera). Food Chem X 2022; 14:100272. [PMID: 35257095 PMCID: PMC8897633 DOI: 10.1016/j.fochx.2022.100272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 11/23/2022] Open
Abstract
The effect of water and sucrose treatments on the sensory quality and content of health-promoting compounds in the lateral buds of baby mustard stored at 20 °C was investigated in this study. Although water treatment maintained the content of various nutrients, the decay of baby mustard was greater under water treatment. Sucrose treatment delayed the weight loss and the decline in sensory parameter scores, chlorophyll and sucrose content; slowed the decline in antioxidant capacity by maintaining the content of carotenoids and ascorbic acid; suppressed the increase in total phenolics; and maintained and even increased the content of several individual glucosinolates in the lateral buds of baby mustard. These findings indicate that sucrose application can maintain the sensory and nutritional qualities of the lateral buds of postharvest baby mustard.
Collapse
Affiliation(s)
- Hongmei Di
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yi Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Jie Ma
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Bijie Institute of Agricultural Science, Bjie 551700, China
| | - Jia Wei
- Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yating Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhiqing Li
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Cexian Cui
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Pengcheng Fang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Wei Ma
- Bijie Institute of Agricultural Science, Bjie 551700, China
| | - Huanxiu Li
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Bo Sun
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Fen Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
3
|
Wang J, Mao S, Liang M, Zhang W, Chen F, Huang K, Wu Q. Preharvest Methyl Jasmonate Treatment Increased Glucosinolate Biosynthesis, Sulforaphane Accumulation, and Antioxidant Activity of Broccoli. Antioxidants (Basel) 2022; 11:antiox11071298. [PMID: 35883789 PMCID: PMC9312100 DOI: 10.3390/antiox11071298] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/25/2022] [Accepted: 06/25/2022] [Indexed: 11/16/2022] Open
Abstract
Broccoli is becoming increasingly popular among consumers owing to its nutritional value and rich bioactive compounds, such glucosinolates (GSLs) and hydrolysis products, which are secondary metabolites for plant defense, cancer prevention, and higher antioxidant activity for humans. In this study, 40 μmol/L methyl jasmonate (MeJA) was sprayed onto broccoli from budding until harvest. The harvested broccoli florets, stem, and leaves were used to measure the contents of GSLs, sulforaphane, total phenolics, and flavonoids, as well as myrosinase activity, antioxidant activity, and gene expression involved in GSL biosynthesis. The overall results revealed that GSL biosynthesis and sulforaphane accumulation were most likely induced by exogenous MeJA treatment by upregulating the expression of CYP83A1, SUR1, UGT74B1, and SOT18 genes. Exogenous MeJA treatment more remarkably contributed to the increased GSL biosynthesis in broccoli cultivars with low-level GSL content (Yanxiu) than that with high-level GSLs (Xianglv No.3). Moreover, MeJA treatment had a more remarkable increasing effect in broccoli florets than stem and leaves. Interestingly, total flavonoid content substantially increased in broccoli florets after MeJA treatment, but total phenolics did not. Similarly, 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging capacity, trolox-equivalent antioxidant capacity (ABTS), and ferric-reducing antioxidant power (FRAP) were higher in broccoli floret after MeJA treatment. In conclusion, MeJA mediated bioactive compound metabolism, had positive effects on GSL biosynthesis, sulforaphane, and flavonoids accumulation, and showed positive correlation on inducing higher antioxidant activities in broccoli floret. Hence, preharvest supplementation with 40 μM MeJA could be a good way to improve the nutritional value of broccoli florets.
Collapse
Affiliation(s)
- Junwei Wang
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (J.W.); (S.M.); (M.L.); (W.Z.); (F.C.)
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha 410128, China
- Key Laboratory for Vegetable Biology of Hunan Province, Changsha 410128, China
| | - Shuxiang Mao
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (J.W.); (S.M.); (M.L.); (W.Z.); (F.C.)
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha 410128, China
- Key Laboratory for Vegetable Biology of Hunan Province, Changsha 410128, China
| | - Mantian Liang
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (J.W.); (S.M.); (M.L.); (W.Z.); (F.C.)
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha 410128, China
- Key Laboratory for Vegetable Biology of Hunan Province, Changsha 410128, China
| | - Wenxia Zhang
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (J.W.); (S.M.); (M.L.); (W.Z.); (F.C.)
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha 410128, China
- Key Laboratory for Vegetable Biology of Hunan Province, Changsha 410128, China
| | - Fangzhen Chen
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (J.W.); (S.M.); (M.L.); (W.Z.); (F.C.)
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha 410128, China
- Key Laboratory for Vegetable Biology of Hunan Province, Changsha 410128, China
| | - Ke Huang
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (J.W.); (S.M.); (M.L.); (W.Z.); (F.C.)
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha 410128, China
- Key Laboratory for Vegetable Biology of Hunan Province, Changsha 410128, China
- Correspondence: (K.H.); (Q.W.)
| | - Qiuyun Wu
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (J.W.); (S.M.); (M.L.); (W.Z.); (F.C.)
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha 410128, China
- Key Laboratory for Vegetable Biology of Hunan Province, Changsha 410128, China
- Correspondence: (K.H.); (Q.W.)
| |
Collapse
|
4
|
Liu Z, Wang H, Lv J, Luo S, Hu L, Wang J, Li L, Zhang G, Xie J, Yu J. Effects of Plant Hormones, Metal Ions, Salinity, Sugar, and Chemicals Pollution on Glucosinolate Biosynthesis in Cruciferous Plant. FRONTIERS IN PLANT SCIENCE 2022; 13:856442. [PMID: 35574082 PMCID: PMC9096887 DOI: 10.3389/fpls.2022.856442] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/17/2022] [Indexed: 06/15/2023]
Abstract
Cruciferous vegetable crops are grown widely around the world, which supply a multitude of health-related micronutrients, phytochemicals, and antioxidant compounds. Glucosinolates (GSLs) are specialized metabolites found widely in cruciferous vegetables, which are not only related to flavor formation but also have anti-cancer, disease-resistance, and insect-resistance properties. The content and components of GSLs in the Cruciferae are not only related to genotypes and environmental factors but also are influenced by hormones, plant growth regulators, and mineral elements. This review discusses the effects of different exogenous substances on the GSL content and composition, and analyzes the molecular mechanism by which these substances regulate the biosynthesis of GSLs. Based on the current research status, future research directions are also proposed.
Collapse
Affiliation(s)
- Zeci Liu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Huiping Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jian Lv
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Shilei Luo
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Linli Hu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jie Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Lushan Li
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Guobin Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jianming Xie
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jihua Yu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
5
|
Yu X, He H, Zhao X, Liu G, Hu L, Cheng B, Wang Y. Determination of 18 Intact Glucosinolates in Brassicaceae Vegetables by UHPLC-MS/MS: Comparing Tissue Disruption Methods for Sample Preparation. MOLECULES (BASEL, SWITZERLAND) 2021; 27:molecules27010231. [PMID: 35011461 PMCID: PMC8746615 DOI: 10.3390/molecules27010231] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/22/2021] [Accepted: 12/28/2021] [Indexed: 11/22/2022]
Abstract
Glucosinolates (GSLs) are important precursor compounds with anticancer activities in Brassicaceae vegetables and are readily hydrolyzed by myrosinase. Given the diversity of these species, establishing an accurate and universal method to quantify intact GSLs in different plant tissues is necessary. Here, we compared and optimized three tissue disruption methods for sample preparation. After microwave treatment for 90 s, 13 GSLs in homogenized Chinese cabbage samples were recovered at 73–124%. However, a limitation of this method was that different tissues could not be processed under the same microwave conditions. Regarding universality, GSLs in Brassicaceae vegetables could be extracted from freeze-dried sample powder with 70% methanol (v/v) or frozen-fresh sample powder with 80% methanol (v/v). Moreover, heating extraction is necessary for GSLs extracted from frozen-fresh sample powder. Average recoveries of the two optimized methods were 74–119% with relative standard deviations ≤ 15%, with the limits of quantification 5.72–17.40 nmol/g dry weight and 0.80–1.43 nmol/g fresh weight, respectively. Notably, the method for analyzing intact GSLs was more efficient than that for desulfo-GSLs regarding operational complexity, detection speed and quantification accuracy. The developed method was applied to identify the characteristic GSLs in 15 Brassicaceae vegetables, providing a foundation for further research on GSLs.
Collapse
|
6
|
Kang X, Gao W, Wang B, Yu B, Guo L, Cui B, Abd El-Aty AM. Effect of moist and dry-heat treatment processes on the structure, physicochemical properties, and in vitro digestibility of wheat starch-lauric acid complexes. Food Chem 2021; 351:129303. [PMID: 33647689 DOI: 10.1016/j.foodchem.2021.129303] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 02/06/2023]
Abstract
Herein, we investigated the impact of moist (steaming and boiling) and dry (baking and microwaving)-heat treatment processes on the structure and physicochemical properties of wheat starch (WS) supplemented with lauric acid (LA). Elemental composition analysis revealed the interplay between WS and LA. Scanning electron microscopy (SEM) and iodine staining revealed that lamellar crystalline structure of WS-LA complexes was improved after moist-heat treatment (relative to samples without any heat treatments); the finding which is at variance to dry-heat treatment process. Additionally, high resistance to thermal decomposition and a lower 1022/995 cm-1 absorbance ratio were observed in moist-heat treated WS-LA compared with dry-heat samples. Moreover, the V-type diffraction peak intensity and resistance to in vitro enzymatic hydrolysis of samples treated with moist-heat were increased to a greater extent than the dry-heat treated counterparts. In sum, this study would facilitate the application of functional starch-lipid complexes in food necessitated heat treatments.
Collapse
Affiliation(s)
- Xuemin Kang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Wei Gao
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Bin Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Bin Yu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Li Guo
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Bo Cui
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China.
| | - A M Abd El-Aty
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, 12211-Giza, Egypt; Department of Medical Pharmacology, Medical Faculty, Ataturk University, 25240-Erzurum, Turkey.
| |
Collapse
|