1
|
Adeyemi KD, Abdulkadir LO. Roasting temperature and fat type influence cholesterol oxidation products, fatty acid composition, physicochemical properties and sensory attributes of beef sausages. PLoS One 2025; 20:e0322290. [PMID: 40279345 PMCID: PMC12027223 DOI: 10.1371/journal.pone.0322290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 03/19/2025] [Indexed: 04/27/2025] Open
Abstract
The impact of fat type (FT) and roasting temperature (RT) on oxysterols, physicochemical properties and sensory attributes of beef sausages were investigated. Beef sausages were formulated with either 20% Beef tallow (BT), Palm olein (PO) or Soybean oil (SO), and oven-cooked at either 180oC for 30 min or 240oC for 15 min. The BT, PO, and SO sausages had the highest (P<0.05) levels of saturated fatty acids (SFA), monounsaturated fatty acids (MUFA), and polyunsaturated fatty acids (PUFA), respectively. Roasting at 240°C increased PUFA, MUFA, and total cholesterol levels, and reduced SFA moisture, and fat levels (P<0.05). The FT × RT interaction was significant for oxysterols, instrumental color and cook loss. The SO-180 sausages had higher levels of 7-ketocholesterol, 5,6β-epoxy cholesterol, cholesta-3,5-dien-7-one, and total oxysterols, but these levels decreased significantly at 240°C. The BT sausages exhibited lower overall cholesterol oxidation, though 22R-hydroxycholesterol was elevated at 180°C, while the PO sausages showed intermediate oxysterol oxidation, with 7α-hydroxycholesterol increasing at 240°C (P<0.05). The SO sausages had higher TBARS compared to other sausages (P<0.05). The BT sausages had greater lightness and lower cook loss at 240°C, while redness increased in both BT and SO sausages at 240oC (P<0.05). The BT sausages had higher hardness and chewiness. The PO sausages had better taste scores than the BT sausages, with similar results to SO sausages, and both PO and SO sausages had higher appearance and overall acceptance scores than the BT sausages. Fat type and roasting temperature synergistically affect oxysterol levels and quality attributes of beef sausages, highlighting the importance of selecting suitable fats and roasting conditions to ensure safety, nutritional value, and sensory quality.
Collapse
Affiliation(s)
- Kazeem Dauda Adeyemi
- Department of Animal Production, Faculty of Agriculture, University of Ilorin, PMB, Ilorin, Nigeria.
| | | |
Collapse
|
2
|
Guo J, Huang Y, Gu X, Meng Z. Spirulina platensis protein-based emulsion gel as fat substitute in meat analogs: Evaluation performance across post-processing. Food Chem 2025; 463:141414. [PMID: 39383797 DOI: 10.1016/j.foodchem.2024.141414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/24/2024] [Accepted: 09/22/2024] [Indexed: 10/11/2024]
Abstract
In this paper, Spirulina platensis protein-based emulsion gels were investigated as fat substitutes in meat analogs and compared with conventional fat sources like palm oil, oleogel, and soybean oil. Evaluating parameters such as cooking loss, shrinkage, texture, appearance, and moisture distribution across various cooking methods. Emulsion gels imparted superior juiciness to meat analogs whereas palm oil and oleogel led to drier meat textures. Besides they also resulted in comparable cooking loss and shrinkage to traditional fats, indicating preferred fat options for incorporation of emulsion gels. The novel emulsion gel-filled meat analogs exhibited robust tolerance across three distinct cooking methods, boiling, steaming, and deep-frying. Steamed meat analogs exhibited brighter MRI signals, while fried counterparts displayed peripheral hollowing, attributed to steam's energy transfer and humidity-induced water migration, respectively. Overall, the study underscores the efficacy of these fat analogs in meat analogs, offering insights into their potential as viable alternatives in food formulations.
Collapse
Affiliation(s)
- Jiaxin Guo
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| | - Yizhou Huang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| | - Xinya Gu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| | - Zong Meng
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China.
| |
Collapse
|
3
|
Yan HY, Zhang SB. Peanut and Soy Protein-Based Emulsion Gels Loaded with Curcumin as a New Fat Substitute in Sausages: A Comparative Study. Gels 2025; 11:62. [PMID: 39852033 PMCID: PMC11765018 DOI: 10.3390/gels11010062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/02/2025] [Accepted: 01/10/2025] [Indexed: 01/26/2025] Open
Abstract
The aim of this study was to evaluate the effects of the complete or partial substitution (0, 20, 40, and 100%) of the pork backfat in prepared sausage with protein emulsion gels loaded with curcumin. The effects of three protein emulsion gels (i.e., peanut proteins, ultrasound-modified peanut proteins, and soy proteins) on sausage characteristics (cooking loss, textural properties, microstructure, sensory characteristics, and antioxidant activity) were investigated and compared using a one-way analysis of variance and Duncan's multiple tests. The results revealed that the addition of each emulsion gel reduced cooking loss and improved the textural properties of the sausages in a dose-dependent manner. When 20% of pork backfat was substituted with untreated or ultrasound-modified peanut protein emulsion gel (PPEG), cooking loss decreased to a greater extent than when soy protein emulsion gel (SPEG) was used. However, the latter yielded higher cohesiveness and resilience at the same substitution levels. Compared with untreated PPEG, the sausages containing modified PPEG (at 200 W for 20 min) had significantly greater resilience and a denser microstructure. In addition, when 100% of pork backfat was substituted with modified PPEG, the sausages had desirable sensory characteristics. All sausages enriched with protein emulsion gels loaded with curcumin presented higher DPPH and ABTS radical scavenging capacities than the control sausages. The sausages prepared with the modified PPEG had the highest antioxidant activity (DPPH: 37.43 ± 0.35%; ABTS: 39.48 ± 0.50%; TBARS: 0.65 ± 0.05 mg MDA/Kg), which may be attributed to the increased stability of curcumin in the modified PPEG with a denser network structure. Therefore, ultrasound-modified PPEG loaded with curcumin can be used as a new fat substitute in functional sausages or other healthy meat products.
Collapse
Affiliation(s)
| | - Shao-Bing Zhang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China;
| |
Collapse
|
4
|
Mahmud N, Ferdaus MJ, Silva RCD. Exploring the Feasibility of Direct-Dispersion Oleogels in Healthier Sausage Formulations. Gels 2024; 10:819. [PMID: 39727577 DOI: 10.3390/gels10120819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024] Open
Abstract
Oleogels developed through the direct-dispersion method offer an innovative, scalable, and efficient alternative to traditional fats in sausage production, providing a solution to health concerns associated with the high saturated fat content of conventional formulations. By closely mimicking the texture, stability, and mouthfeel of animal fats, these oleogels provide a novel approach to improving the nutritional profile of sausages while maintaining desirable sensory characteristics. This review critically evaluates cutting-edge research on oleogels, emphasizing innovations in their ability to enhance emulsion stability, increase cooking yield, reduce processing weight loss, and optimize fatty acid composition by reducing overall fat and saturated fat levels. Despite their potential, sausage formulations with oleogel still face challenges in achieving consistent sensory properties, texture, and oxidative stability, often failing to fully replicate the sensory qualities and shelf-life of animal fats. To push the boundaries of oleogel technology and meet the increasing demand for healthier, high-quality sausage products, we propose focused innovations in refining oil-to-gelator ratios, exploring a wider range of novel gelators, optimizing production methods, and developing cost-effective, scalable strategies. These advancements hold significant potential for revolutionizing the sausage industry by improving both the technological and nutritional qualities of oleogels.
Collapse
Affiliation(s)
- Niaz Mahmud
- Food and Nutritional Sciences Program, North Carolina A&T State University, Greensboro, NC 27411, USA
| | - Md Jannatul Ferdaus
- Food and Nutritional Sciences Program, North Carolina A&T State University, Greensboro, NC 27411, USA
| | - Roberta Claro da Silva
- Food and Nutritional Sciences Program, North Carolina A&T State University, Greensboro, NC 27411, USA
| |
Collapse
|
5
|
Ashfaq A, Osama K, Yousuf O, Younis K. Protein-based Emulsion Hydrogels and Their Application in the Development of Sustainable Food Products. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2024; 79:759-768. [PMID: 39136829 DOI: 10.1007/s11130-024-01214-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/03/2024] [Indexed: 11/19/2024]
Abstract
Consumers have become more conscious of their diet, resulting in an increased demand for low-calorie and nutrient-rich food. Therefore, finding alternative ways to develop food products with improved nutritional values has become necessary without compromising the textural and sensorial properties. In the last few years, emulsion gels have gained much popularity for oil structuring, delivery of bioactive compounds, and development of nutritious food products. Protein-stabilized emulsion hydrogels have the most significant potential to be utilized in the food industry as they contain natural ingredients that help with clean label tags. Different gelation methods can be used to fabricate emulsion gels depending on the requirements of end products. Emulsion hydrogels' rheological, textural, mechanical, and structural properties can be modified by altering their composition, oil concentration, gelation method, and gelling environment, such as pH, temperature, etc. This review addresses using protein-based emulsion gels to develop novel food products with reduced-calorie and nutrition-rich content.
Collapse
Affiliation(s)
- Alweera Ashfaq
- Food Science Department, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Abu Dhabi, UAE
| | - Khwaja Osama
- Department of Bioengineering, Integral University, Lucknow, 226026, U.P, India
| | - Owais Yousuf
- Department of Food Technology, Islamic University of Science and Technology, J & K, 192122, India
| | - Kaiser Younis
- Department of Food Technology, Islamic University of Science and Technology, J & K, 192122, India.
| |
Collapse
|
6
|
Igenbayev A, Kakimov M, Mursalykova M, Wieczorek B, Gajdzik B, Wolniak R, Dzienniak D, Bembenek M. Effect of Using Oleogel on the Physicochemical Properties, Sensory Characteristics, and Fatty Acid Composition of Meat Patties. Foods 2024; 13:3849. [PMID: 39682921 DOI: 10.3390/foods13233849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
This study investigated the physicochemical properties of meat patties, comparing a control sample and an experimental sample with the addition of 10% oleogel. The experimental sample showed a reduction in protein content (19.47%) and fat (18.37%) compared with the control sample (20.47% and 19.95%, respectively), accompanied by an increase in carbohydrates (2.56% vs. 1.65%). The fatty acid composition analysis revealed that the inclusion of oleogel significantly increased the content of polyunsaturated fatty acids (PUFAs) from 12.458% to 18.94%. Saturated fatty acids (SFAs), such as capric, lauric, myristic, and stearic acids, were markedly reduced, while the level of linoleic acid increased, indicating an improved and balanced fatty acid profile in the experimental patties. The moisture-binding capacity of the experimental sample was determined to be 75.54%, a 2.53% improvement over the control one. Microstructural analysis found no significant differences between the control and experimental samples, with no large oleogel particles visible. Overall, the substitution of pork fat with oleogel did not adversely affect key physicochemical properties, such as pH and moisture-binding capacity, or the structural integrity of the beef patties. These findings suggest that oleogel can be used effectively as a fat substitute in meat products, enhancing their nutritional profile without compromising quality.
Collapse
Affiliation(s)
- Aidyn Igenbayev
- Department of Food Technology and Processing Products, S. Seifullin Kazakh Agrotechnical Research University, Zhenis Avenue 62, Astana 010011, Kazakhstan
| | - Mukhtarbek Kakimov
- Department of Food Technology and Processing Products, S. Seifullin Kazakh Agrotechnical Research University, Zhenis Avenue 62, Astana 010011, Kazakhstan
| | - Maigul Mursalykova
- Department of Food Technology and Processing Products, S. Seifullin Kazakh Agrotechnical Research University, Zhenis Avenue 62, Astana 010011, Kazakhstan
| | - Bartosz Wieczorek
- Institute of Machine Design, Faculty of Mechanical Engineering, Poznan University of Technology, Piotrowo 3, 60-965 Poznan, Poland
| | - Bożena Gajdzik
- Department of Industrial Informatics, Faculty of Materials Engineering, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Radosław Wolniak
- Department of Economics and Informatics, Faculty of Organization and Management, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Damian Dzienniak
- Department of Manufacturing Systems, Faculty of Mechanical Engineering and Robotics, AGH University of Krakow, A. Mickiewicza 30, 30-059 Krakow, Poland
| | - Michał Bembenek
- Department of Manufacturing Systems, Faculty of Mechanical Engineering and Robotics, AGH University of Krakow, A. Mickiewicza 30, 30-059 Krakow, Poland
| |
Collapse
|
7
|
Paschoa JLF, Ávila PF, da Costa GF, Ribeiro APB, Grimaldi R, da Cunha RL, Pollonio MAR, Goldbeck R. Application of Xylo-Oligosaccharide-Rich Gel Emulsion as a Fat Replacer in Sausages. Foods 2024; 13:3625. [PMID: 39594041 PMCID: PMC11593327 DOI: 10.3390/foods13223625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/07/2024] [Accepted: 11/09/2024] [Indexed: 11/28/2024] Open
Abstract
Xylo-oligosaccharides (XOS) are functional oligosaccharides obtained from xylan present in lignocellulosic material. This study investigated the effects of replacing pork fat with functional xylo-oligosaccharide gel emulsion (XGE) on the chemical and physical structure of developed meat products. The product's centesimal composition, energy value, pH, color parameters, and microstructure were analyzed. The results showed that replacing pork fat with XGE reduced the total lipid content by approximately 30%, and provided a desirable lipidic profile with reduced thrombogenicity and atherogenicity indices. A microstructure analysis showed that products with partial and full pork fat replacement presented a more compact structure than the control formulation. Thus, XGE is a viable alternative to replace pork fat in meat products since it maintains similar physicochemical and technological properties to the original products and contributes to the development of healthier meat products with prebiotic properties, lower fat content, and, consequently, lower energetic value.
Collapse
Affiliation(s)
- João L. F. Paschoa
- Laboratory of Bioprocess and Metabolic Engineering, School of Food Engineering, University of Campinas (UNICAMP), Campinas 13083-862, SP, Brazil; (J.L.F.P.)
| | - Patrícia F. Ávila
- Laboratory of Bioprocess and Metabolic Engineering, School of Food Engineering, University of Campinas (UNICAMP), Campinas 13083-862, SP, Brazil; (J.L.F.P.)
| | - Gilmar F. da Costa
- Meat and Process Laboratory, School of Food Engineering, University of Campinas (UNICAMP), Campinas 13083-862, SP, Brazil; (G.F.d.C.); (M.A.R.P.)
| | - Ana Paula B. Ribeiro
- Oils and Fats Laboratory, School of Food Engineering, University of Campinas (UNICAMP), Campinas 13083-862, SP, Brazil; (A.P.B.R.); (R.G.)
| | - Renato Grimaldi
- Oils and Fats Laboratory, School of Food Engineering, University of Campinas (UNICAMP), Campinas 13083-862, SP, Brazil; (A.P.B.R.); (R.G.)
| | - Rosiane L. da Cunha
- Process Engineering Laboratory, School of Food Engineering, University of Campinas (UNICAMP), Campinas 13083-862, SP, Brazil
| | - Marise A. R. Pollonio
- Meat and Process Laboratory, School of Food Engineering, University of Campinas (UNICAMP), Campinas 13083-862, SP, Brazil; (G.F.d.C.); (M.A.R.P.)
| | - Rosana Goldbeck
- Laboratory of Bioprocess and Metabolic Engineering, School of Food Engineering, University of Campinas (UNICAMP), Campinas 13083-862, SP, Brazil; (J.L.F.P.)
| |
Collapse
|
8
|
Chowdhury B, Sharma A, Akshit FNU, Mohan MS, Salunke P, Anand S. A review of oleogels applications in dairy foods. Crit Rev Food Sci Nutr 2024; 64:9691-9709. [PMID: 37229559 DOI: 10.1080/10408398.2023.2215871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The characteristics of dairy products, such as texture, color, flavor, and nutritional profile, are significantly influenced by the presence of milk fat. However, saturated fatty acids account for 65% of total milk fat. With increased health awareness and regulatory recommendations, consumer preferences have evolved toward low/no saturated fat food products. Reducing the saturated fat content of dairy products to meet market demands is an urgent yet challenging task, as it may compromise product quality and increase production costs. In this regard, oleogels have emerged as a viable milk fat replacement in dairy foods. This review focuses on recent advances in oleogel systems and explores their potential for incorporation into dairy products as a milk fat substitute. Overall, it can be concluded that oleogel can be a potential alternative to replace milk fat fully or partially in the product matrix to improve nutritional profile by mimicking similar rheological and textural product characteristics as milk fat. Furthermore, the impact of consuming oleogel-based dairy foods on digestibility and gut health is also discussed. A thorough comprehension of the application of oleogels in dairy products will provide an opportunity for the dairy sector to develop applications that will appeal to the changing consumer needs.
Collapse
Affiliation(s)
- Bhaswati Chowdhury
- Department of Dairy and Food Science, South Dakota State University, Brookings, South Dakota, USA
| | - Aditya Sharma
- Department of Dairy and Food Science, South Dakota State University, Brookings, South Dakota, USA
| | - F N U Akshit
- Department of Dairy and Food Science, South Dakota State University, Brookings, South Dakota, USA
| | - Maneesha S Mohan
- Department of Dairy and Food Science, South Dakota State University, Brookings, South Dakota, USA
| | - Prafulla Salunke
- Department of Dairy and Food Science, South Dakota State University, Brookings, South Dakota, USA
| | - Sanjeev Anand
- Department of Dairy and Food Science, South Dakota State University, Brookings, South Dakota, USA
| |
Collapse
|
9
|
Garofalo G, Ponte M, Busetta G, Barbera M, Tinebra I, Piazzese D, Franciosi E, Di Grigoli A, Farina V, Bonanno A, Gaglio R, Settanni L. Microbial dynamics and quality characteristics of spontaneously fermented salamis produced by replacing pork fat with avocado pulp. Food Microbiol 2024; 122:104536. [PMID: 38839216 DOI: 10.1016/j.fm.2024.104536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/29/2024] [Accepted: 04/08/2024] [Indexed: 06/07/2024]
Abstract
The aim of this study was to develop a novel and healthier fermented meat product by replacing pork fat with avocado pulp (AVP) during salami production. Experimental salamis were produced under laboratory conditions by substituting pork fat with AVP partially (10-AVP) and totally (20-AVP), while control salamis (CTR) remained AVP-free. The microbial composition of control and experimental salamis was assessed using a combined culture-dependent and -independent approach. Over a 20-days ripening period, lactic acid bacteria, coagulase-negative staphylococci, and yeasts dominated the microbial community, with approximate levels of 9.0, 7.0 and 6.0 log CFU/g, respectively. Illumina technology identified 26 taxonomic groups, with leuconostocs being the predominant group across all trials [constituting 31.26-59.12 % of relative abundance (RA)]. Gas Chromatography-Mass Spectrometry (GC-MS) analysis revealed changes in fatty acid composition and volatile organic compounds due to the substitution of pork fat with AVP. Specifically, monounsaturated fatty acids and terpene compounds increased, while saturated fatty acids and lipid oxidation products decreased. Although AVP influenced the sensory characteristics of the salamis, the highest overall satisfaction ratings were observed for the 10-AVP salamis. Consequently, substituting pork fat with AVP emerges as a viable strategy for producing healthier salamis and diversifying the meat product portfolio.
Collapse
Affiliation(s)
- Giuliana Garofalo
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Viale delle Scienze, Bldg. 5, 90128, Palermo, Italy
| | - Marialetizia Ponte
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Viale delle Scienze, Bldg. 5, 90128, Palermo, Italy
| | - Gabriele Busetta
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Viale delle Scienze, Bldg. 5, 90128, Palermo, Italy
| | - Marcella Barbera
- Department of Earth and Marine Sciences, University of Palermo, Via Archirafi, Palermo, 90123, Italy
| | - Ilenia Tinebra
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Viale delle Scienze, Bldg. 5, 90128, Palermo, Italy
| | - Daniela Piazzese
- Department of Earth and Marine Sciences, University of Palermo, Via Archirafi, Palermo, 90123, Italy
| | - Elena Franciosi
- Research and Innovation Centre, Fondazione Edmund Mach (FEM), Via E. Mach 1, 38098, San Michele all'Adige, Italy
| | - Antonino Di Grigoli
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Viale delle Scienze, Bldg. 5, 90128, Palermo, Italy
| | - Vittorio Farina
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Viale delle Scienze, Bldg. 5, 90128, Palermo, Italy; University Center for Sustainability and Ecological Transition, University of Palermo, Viale delle Scienze, 90128, Palermo, Italy
| | - Adriana Bonanno
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Viale delle Scienze, Bldg. 5, 90128, Palermo, Italy
| | - Raimondo Gaglio
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Viale delle Scienze, Bldg. 5, 90128, Palermo, Italy.
| | - Luca Settanni
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Viale delle Scienze, Bldg. 5, 90128, Palermo, Italy
| |
Collapse
|
10
|
Valdivia-Culqui JE, Maicelo-Quintana JL, Cayo-Colca IS, Medina-Mendoza M, Castro-Alayo EM, Balcázar-Zumaeta CR. Oleogel Systems for Chocolate Production: A Systematic Review. Gels 2024; 10:561. [PMID: 39330164 PMCID: PMC11431030 DOI: 10.3390/gels10090561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/28/2024] Open
Abstract
In response to the growing demand for healthier food options, this review explores advances in oleogel systems as an innovative solution to reduce saturated fats in chocolates. Although appreciated for its flavor and texture, chocolate is high in calories, mainly due to cocoa butter (CB), which is rich in saturated fats. Oleogels, three-dimensional structures formed by structuring agents in edible oils, stand out in terms of mimicking saturated fats' physical and sensory properties without compromising the quality of chocolate. This study reviews how oleogels could improve chocolate's stability and sensory quality, exploring the potential of pectin-rich agro-industrial by-products as sustainable alternatives. It also explores the need for physicochemical evaluations of both oleogel and oleogel-based chocolate.
Collapse
Affiliation(s)
- Jheniffer E Valdivia-Culqui
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01000, Peru
| | - Jorge L Maicelo-Quintana
- Facultad de Ingeniería Zootecnista, Agronegocios y Biotecnología, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01000, Peru
| | - Ilse S Cayo-Colca
- Facultad de Ingeniería Zootecnista, Agronegocios y Biotecnología, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01000, Peru
| | - Marleni Medina-Mendoza
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01000, Peru
| | - Efraín M Castro-Alayo
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01000, Peru
| | - César R Balcázar-Zumaeta
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01000, Peru
- Programa de Doctorado en Ciencias Agrarias, Escuela de Posgrado, Universidad Nacional de Piura, Jr. Tacna 748, Piura 20002, Peru
| |
Collapse
|
11
|
Cîrstea (Lazăr) N, Nour V, Corbu AR, Codină GG. Blackcurrant Pomace Extract as a Natural Antioxidant in Vienna Sausages Reformulated by Replacement of Pork Backfat with Emulsion Gels Based on High Oleic Sunflower and Flaxseed Oils. Gels 2024; 10:534. [PMID: 39195063 PMCID: PMC11487386 DOI: 10.3390/gels10080534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/06/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024] Open
Abstract
The incorporation of a blackcurrant pomace extract (BPE) at 2.5%, 5.0% and 10.0% into an emulsion gel based on high oleic sunflower and linseed oils was examined in order to obtain a functional ingredient to be used as a pork backfat replacer in Vienna sausages. The replacement of the pork backfat with the control emulsion gel reduced the cooking loss but negatively affected the color by decreasing L* and a* values as compared with the traditional product. A decrease in the n-6/n-3 ratio from 10.99 to around 1.54 (by 7 times) was achieved through reformulation, while the PUFA/SFA ratio increased from 0.49 to 1.09. The incorporation of BPE did not have a major impact on the fatty acid profile and improved color by increasing redness, but negatively affected the texture by increasing hardness, gumminess and share force as compared with the sausages reformulated without extract. BPE reduced the pH and the thermal stability of the emulsion gels, increased cooking loss and decreased moisture retention in sausages. BPE increased the oxidative stability of Vienna sausages enriched in polyunsaturated fatty acids; however, the incorporation of BPE into the emulsion gels above 5% affected the sensory scores for appearance, texture and general acceptability of the reformulated sausages.
Collapse
Affiliation(s)
- Nicoleta Cîrstea (Lazăr)
- Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, Domnească Street 111, 800201 Galati, Romania;
- Department of Horticulture & Food Science, University of Craiova, 13 AI Cuza Street, 200585 Craiova, Romania;
| | - Violeta Nour
- Department of Horticulture & Food Science, University of Craiova, 13 AI Cuza Street, 200585 Craiova, Romania;
| | - Alexandru Radu Corbu
- Department of Horticulture & Food Science, University of Craiova, 13 AI Cuza Street, 200585 Craiova, Romania;
| | | |
Collapse
|
12
|
Qiu H, Zhang H, Eun JB. Oleogel classification, physicochemical characterization methods, and typical cases of application in food: a review. Food Sci Biotechnol 2024; 33:1273-1293. [PMID: 38585566 PMCID: PMC10992539 DOI: 10.1007/s10068-023-01501-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/27/2023] [Accepted: 12/07/2023] [Indexed: 04/09/2024] Open
Abstract
The harmful effects of trans and saturated fatty acids have attracted worldwide attention. Edible oleogels, which can structure liquid oils, are promising healthy alternatives to traditional fats. Active research on oleogels is focused on the interaction between unsaturated oils with different fatty acid compositions and low molecular weight or polymer oleogels. The unique network structure inside oleogels has facilitated their application in candies, spreads, meat, and other products. However, the micro- and macro-properties, as well as the functional properties of oleogels vary by preparation method and the system composition. This review discusses the characteristics of oleogels, serving as a reference for the application of oleogels in food products. Specifically, it (i) classifies oleogels and explains the influence of gelling factors on their gelation, (ii) describes the methods for measuring the physicochemical properties of oleogels, and (iii) discusses the current applications of oleogels in food products.
Collapse
Affiliation(s)
- Hongtu Qiu
- Department of Integrative Food, Bioscience and Biotechnology, Graduate School of Chonnam National University, 77 Yongbong-ro Buk-gu, Gwangju, 61186 South Korea
- Department of School of Life Science and Bioengineering, Jining University, No.1 Xin tan Road, JiNing, 273155 China
- Yanbian University, Department of Food Science and Technology, No.977 Gong yuan Road, Yanji, 133002 China
| | - Hua Zhang
- Yanbian University, Department of Food Science and Technology, No.977 Gong yuan Road, Yanji, 133002 China
| | - Jong-Bang Eun
- Department of Integrative Food, Bioscience and Biotechnology, Graduate School of Chonnam National University, 77 Yongbong-ro Buk-gu, Gwangju, 61186 South Korea
| |
Collapse
|
13
|
Zampouni K, Filippou A, Papadimitriou K, Katsanidis E. Evaluation of bigel systems as potential substitutes to partially replace pork backfat in semi-dry sausages. Meat Sci 2024; 208:109392. [PMID: 37979346 DOI: 10.1016/j.meatsci.2023.109392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/07/2023] [Accepted: 11/10/2023] [Indexed: 11/20/2023]
Abstract
Bigels prepared with olive oil oleogels admixed with κ-carrageenan or κ-carrageenan and gelatin hydrogels (BG1 and BG2, respectively) were characterized with respect to microstructure and textural properties and were used as pork backfat alternatives in semi-dry sausages. Stable oleogel-in-hydrogel type bigels were formed, with BG2 having higher hardness values. Control sausages (CF) were formulated with 20% pork backfat and sausage treatments B1F and B2F had 50% of the pork backfat substituted by BG1 and BG2 bigels, respectively. Moisture, water activity, texture, microbial counts, sensorial and nutritional attributes of the resulting sausages were assessed during fermentation and after pasteurization and storage. Substituted sausages had increased weight loss, moisture, and water activity. Color evaluation revealed that the treatments with bigels exhibited the same trend in color formation and no differences were recorded in L* and a* values of the sausages. Total viable counts and lactic acid bacteria populations were not affected by the addition of bigel systems. Regarding the texture parameters, B2F semi-dry sausages exhibited similar values of hardness and cohesiveness to CF. Sausages formulated with bigels exhibited a reduction in energy (20%), fat (27%), saturated fatty acids (30%) and cholesterol (∼6%) content. B2F sausages had similar liking scores with CF, and they did not show any undesirable sensory attributes. The results demonstrate that bigels are a promising fat alternative to manufacture semi-dry meat products with lower fat content and a better nutritional profile.
Collapse
Affiliation(s)
- K Zampouni
- Department of Food Science and Technology, School of Agriculture, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124, Greece
| | - A Filippou
- Department of Food Science and Technology, School of Agriculture, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124, Greece
| | - K Papadimitriou
- Department of Food Science and Technology, School of Agriculture, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124, Greece
| | - E Katsanidis
- Department of Food Science and Technology, School of Agriculture, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124, Greece.
| |
Collapse
|
14
|
Cofrades S, Gómez-Estaca J, Álvarez MD, Garcimartín A, Macho-González A, Benedí J, Pintado T. Influence of the Oil Structuring System on Lipid Hydrolysis and Bioaccessibility of Healthy Fatty Acids and Curcumin. Gels 2023; 10:33. [PMID: 38247756 PMCID: PMC10815158 DOI: 10.3390/gels10010033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024] Open
Abstract
Oleogels (OG) and gelled emulsions (GE) were elaborated with a mixture of olive and chia oils (80:20 ratio) without and with the incorporation of the health-related compound curcumin. These were studied to evaluate the influence of the oil structuring system on the lipid hydrolysis and bioaccessibility of three healthy fatty acids (FA) (palmitic, oleic, and α-linolenic acids) and of curcumin, compared to the oil mixture (bulk oil, BO). The oil structuring system influenced the firmness and texture, and the presence of curcumin significantly altered the color parameters. GE showed higher lipid digestibility, with a greater proportion of absorbable fraction (higher content of free FA and monoacylglycerides) than OG, which behaved similarly to BO. The presence of curcumin affected the degree of lipolysis, reducing lipid digestibility in OG and increasing it in GE. As for FA bioaccessibility, although GE presented higher percentages overall, curcumin significantly increased and decreased FA bioaccessibility in OG and GE, respectively. The oil structuring system also influenced the bioaccessibility of curcumin, which was higher in GE. Therefore, when selecting an oil structuring system, their physicochemical properties, the degree of lipid hydrolysis, and the bioaccessibility of both curcumin and the FA studied should all be considered.
Collapse
Affiliation(s)
- Susana Cofrades
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), 28040 Madrid, Spain; (J.G.-E.); (M.D.Á.)
| | - Joaquín Gómez-Estaca
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), 28040 Madrid, Spain; (J.G.-E.); (M.D.Á.)
| | - María Dolores Álvarez
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), 28040 Madrid, Spain; (J.G.-E.); (M.D.Á.)
| | - Alba Garcimartín
- Pharmacology, Pharmacognosy and Botany Department, Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain; (A.G.); (A.M.-G.); (J.B.)
| | - Adrián Macho-González
- Pharmacology, Pharmacognosy and Botany Department, Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain; (A.G.); (A.M.-G.); (J.B.)
| | - Juana Benedí
- Pharmacology, Pharmacognosy and Botany Department, Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain; (A.G.); (A.M.-G.); (J.B.)
| | - Tatiana Pintado
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), 28040 Madrid, Spain; (J.G.-E.); (M.D.Á.)
| |
Collapse
|
15
|
Cîrstea (Lazăr) N, Nour V, Corbu AR, Codină GG. Efficacy of Chitosan, Pectin and Xanthan as Cold Gelling Agents in Emulsion Gels Stabilized with Legume Proteins to Be Used as Pork Backfat Replacers in Beef Burgers. Gels 2023; 9:970. [PMID: 38131956 PMCID: PMC10742780 DOI: 10.3390/gels9120970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/09/2023] [Accepted: 12/10/2023] [Indexed: 12/23/2023] Open
Abstract
This study aimed to develop stable emulsion gels enriched in polyunsaturated fatty acids, formulated with a mixture of olive (75%) and linseed (25%) oils, by incorporating two different stabilizers-pea and soy protein isolates-and three different cold gelling agents-chitosan, pectin and xanthan-to be used as pork backfat replacers in beef burgers. The color, pH, stability and textural properties of the emulsion gels were analyzed as affected by cold storage (4 °C, 7 days). Proximate composition, fatty acid content, technological and sensory properties were determined after burger processing. Meanwhile, color, pH, textural parameters and lipid oxidation were monitored in burgers at 0, 5 and 10 days of storage at 4 °C. A reduction of the fat content between 21.49% and 39.26% was achieved in the reformulated burgers as compared with the control, while the n-6/n-3 polyunsaturated fatty acid ratio decreased from 5.11 to 0.62. The highest moisture and fat retention were found in reformulated burgers made with xanthan, both with pea and soy proteins; however, their textural properties were negatively affected. The reformulated burgers made with chitosan were rated highest for sensory attributes and overall acceptability, not significantly different from the controls.
Collapse
Affiliation(s)
- Nicoleta Cîrstea (Lazăr)
- Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, Domnească Street 111, 800201 Galati, Romania;
| | - Violeta Nour
- Department of Horticulture & Food Science, University of Craiova, 13 AI Cuza Street, 200585 Craiova, Romania;
| | - Alexandru Radu Corbu
- Department of Horticulture & Food Science, University of Craiova, 13 AI Cuza Street, 200585 Craiova, Romania;
| | | |
Collapse
|
16
|
Leahu A, Ropciuc S, Ghinea C, Damian C. Physico-Chemical, Textural and Sensory Evaluation of Emulsion Gel Formulated with By-Products from the Vegetable Oil Industry. Gels 2023; 9:964. [PMID: 38131950 PMCID: PMC10743262 DOI: 10.3390/gels9120964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/02/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023] Open
Abstract
The aim of this study was to obtain low fat mayonnaise-like emulsion gels using sesame cake and walnut cake by-products resulting from vegetable oil extraction. The ingredients used to formulate the mayonnaise like emulsion gel samples were corn starch, sesame seed cake (SSC), walnuts seed cake (WSC), lemon juice, sunflower oil, mustard, sugar, salt, gelatin and water. Five different samples were prepared: one control lab sample (M) containing only corn starch and the other ingredients (without SSC and WSC), two samples (SO1 and SO2) with 2 and 4% of SSC (without corn starch and WSC) and two samples (WO1 and WO2) with 2 and 4% of WSC (without corn starch and SSC). Also, an egg-free commercial mayonnaise (CM) was purchased and used for comparison. Physicochemical (fat, protein, moisture, ash, carbohydrate, water activity, emulsion stability, viscosity, density and color), textural (hardness, adhesiveness, springiness, cohesiveness, gumminess and chewiness), and sensory (aspect, color, texture/firmness, flavor, taste and acceptability) attributes of all samples were investigated. The results showed that carbohydrate content decreased in all four seed cakes samples compared to the control sample, while protein and fat content increased in all seed cakes samples, with the largest increases observed in the sesame seed cake samples. It was observed that the CM sample has a carbohydrate content value close to that obtained for the M sample, while the protein content has the lowest value for the CM sample compared to all samples analyzed. The stability of the emulsion gels increased from 70.73% (control sample) to 83.64% for the sample with 2% addition sesame seed cake and to 84.09% for the 2% walnut cake added, due to the coagulation capacity of the added cakes. The type and concentration of oil seeds cake added in emulsion gels affected their textural properties such as hardness, adhesiveness, gumminess, and chewiness. The hardness and adhesiveness of low-fat mayonnaise-like emulsion gels samples decreased with the addition of oil seeds cake. However, the addition of by-products improved the sensory properties of emulsion gels. This study provided a theoretical basis for the food industry's application of oilseed cakes, especially for the development of low-fat mayonnaise.
Collapse
Affiliation(s)
- Ana Leahu
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, 720229 Suceava, Romania; (S.R.); (C.G.); (C.D.)
| | | | | | | |
Collapse
|
17
|
Domínguez R, Dos Santos BA, Pateiro M, Munekata PES, Campagnol PCB, Lorenzo JM. Elevating meat products: Unleashing novel gel techniques for enhancing lipid profiles. Meat Sci 2023; 204:109277. [PMID: 37454480 DOI: 10.1016/j.meatsci.2023.109277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/30/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023]
Abstract
Rising health concerns and the diet-health link drive demand for healthier foods, prompting meat manufacturers to reformulate traditional products. These manufacturers have reduced fat content to enhance nutritional quality, which is essential for maintaining desired product features. As a result, numerous strategies have emerged over recent decades to decrease fat and enhance the lipid profiles of meat products. Among these strategies, using hydrocolloids, emulsification, encapsulation, or gelation of oils to produce fat substitutes stands out. Using gels allows fat replacers with characteristics similar to animal fat (similar rheological, physical, or appearance properties) but with a much healthier lipid profile (by incorporating highly unsaturated oils). Therefore, this manuscript aims to comprehensively describe the main fat replacers used to prepare meat products. In addition, an in-depth review of the latest studies (2022-2023) that use novel gels to reform meat products has been made, indicating in each case the implications that the reformulation produces at a physicochemical, nutritional, and sensory level. Given the reported results, it seems clear that the strategy of using bigels or emulgels is very promising and allows obtaining nutritionally highly improved meat products without affecting their sensory or physicochemical properties. However, the best conditions to obtain a novel gel suitable for use as a fat substitute for each meat product still need to be studied and correctly defined. Moreover, these advancements can pave the way for more extensive studies on using novel gel techniques in other food industries, expanding their applicability and leading to healthier consumer options across various food categories.
Collapse
Affiliation(s)
- Rubén Domínguez
- Centro Tecnológico de la Carne de Galicia, Avd. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
| | | | - Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, Avd. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
| | - Paulo E S Munekata
- Centro Tecnológico de la Carne de Galicia, Avd. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
| | | | - José Manuel Lorenzo
- Centro Tecnológico de la Carne de Galicia, Avd. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain.
| |
Collapse
|
18
|
Fernandes SS, da Silva Cardoso P, Egea MB, Quintal Martínez JP, Segura Campos MR, Otero DM. Chia mucilage carrier systems: A review of emulsion, encapsulation, and coating and film strategies. Food Res Int 2023; 172:113125. [PMID: 37689890 DOI: 10.1016/j.foodres.2023.113125] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/06/2023] [Accepted: 06/09/2023] [Indexed: 09/11/2023]
Abstract
The use of carrier systems for the protection and delivery of bioactive compounds in the agri-food industry is an area of opportunity that requires the design of new systems and sources of materials for their structure. Chia seeds (Salvia hispanica L.) produce mucilage with functional qualities that allow their application in diverse areas of the food industry. These qualities have been used to form very stable carrier systems, such as capsules, emulsions, coatings, and films that can protect and prolong the functionalities of loaded compounds (e.g., antimicrobial and antioxidant capabilities). This paper presents a review of chia mucilage-based carrier systems and their applications in food products (micro-and nanoparticles, emulsions, coatings, and films for food packaging), as well as the current technological prospects of these systems. The use of chia mucilage in coatings and films shows a high potential for use in biodegradable, edible, and organic packaging. Although many studies have been conducted on chia mucilage encapsulation systems, there is still a gap in the application of capsules and particles in food.
Collapse
Affiliation(s)
- Sibele Santos Fernandes
- Graduate Program in Chemical Engineering, School of Chemistry and Food, Federal University of Rio Grande, Campus Carreiros, Rio Grande, Rio Grande do Sul 96203-900, Brazil.
| | - Patrick da Silva Cardoso
- Graduate Program in Food, Nutrition, and Health, Nutrition School, Federal University of Bahia, Campus Canela, Salvador, Bahia 40110907, Brazil.
| | - Mariana Buranelo Egea
- Goiano Federal Institute of Education, Science and Technology, Campus Rio Verde, Rio Verde, Goiás, Brazil.
| | - Juan Pablo Quintal Martínez
- Facultad de Ingeniería Química, Universidad Autónoma de Yucatán, Periférico Norte Km. 33.5, Tablaje Catastral 13615, Colonia Chuburná de Hidalgo Inn. Mérida, Yucatán C.P. 97203, Mexico.
| | - Maira Rubi Segura Campos
- Facultad de Ingeniería Química, Universidad Autónoma de Yucatán, Periférico Norte Km. 33.5, Tablaje Catastral 13615, Colonia Chuburná de Hidalgo Inn. Mérida, Yucatán C.P. 97203, Mexico.
| | - Deborah Murowaniecki Otero
- Graduate Program in Food, Nutrition, and Health, Nutrition School, Federal University of Bahia, Campus Canela, Salvador, Bahia 40110907, Brazil; Graduate Program in Food Science, Faculty of Pharmacy, Federal University of Bahia, Campus Ondina, Salvador, Bahia 40170-115, Brazil.
| |
Collapse
|
19
|
Cîrstea (Lazăr) N, Nour V, Corbu AR, Muntean C, Codină GG. Reformulation of Bologna Sausage by Total Pork Backfat Replacement with an Emulsion Gel Based on Olive, Walnut, and Chia Oils, and Stabilized with Chitosan. Foods 2023; 12:3455. [PMID: 37761164 PMCID: PMC10529321 DOI: 10.3390/foods12183455] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Bologna sausage, also called "la grassa", is a very popular meat product despite its high fat content and lipidic profile raising serious negative health concerns. An emulsion gel containing olive, walnut, and chia oils, stabilized with soy protein isolate, transglutaminase, and chitosan, was used as total pork backfat replacer in Bologna sausage. The nutritional, textural, and technological properties were assessed and sensory analyses were conducted. Color, pH, and lipid oxidation were monitored during 18 days of cold storage (4 °C). A normal fat Bologna sausage was used as a control reference. A decrease in the n-6/n-3 ratio from 16.85 to 1.86 (by 9 times) was achieved in the reformulated product as compared with the control, while the PUFA/SFA ratio increased from 0.57 to 1.61. Color measurements indicated that the lightness and yellowness increased while redness slightly decreased in the reformulated product. The total substitution of pork backfat in Bologna sausage by the emulsion gel developed in the present study was realized without significantly affecting the technological properties, the oxidative stability and the overall acceptance by the consumers.
Collapse
Affiliation(s)
- Nicoleta Cîrstea (Lazăr)
- Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, Domnească Street 111, 800201 Galati, Romania;
- Department of Horticulture and Food Science, University of Craiova, A.I. Cuza Street 13, 200585 Craiova, Romania; (A.R.C.); (C.M.)
| | - Violeta Nour
- Department of Horticulture and Food Science, University of Craiova, A.I. Cuza Street 13, 200585 Craiova, Romania; (A.R.C.); (C.M.)
| | - Alexandru Radu Corbu
- Department of Horticulture and Food Science, University of Craiova, A.I. Cuza Street 13, 200585 Craiova, Romania; (A.R.C.); (C.M.)
| | - Camelia Muntean
- Department of Horticulture and Food Science, University of Craiova, A.I. Cuza Street 13, 200585 Craiova, Romania; (A.R.C.); (C.M.)
| | | |
Collapse
|
20
|
Badar IH, Li Y, Liu H, Chen Q, Liu Q, Kong B. Effect of vegetable oil hydrogel emulsion as a fat substitute on the physicochemical properties, fatty acid profile, and color stability of modified atmospheric packaged buffalo burgers. Meat Sci 2023; 199:109143. [PMID: 36827828 DOI: 10.1016/j.meatsci.2023.109143] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/04/2023] [Accepted: 02/16/2023] [Indexed: 02/21/2023]
Abstract
Buffalo burgers were prepared with 50% or 100% buffalo backfat substitution using walnut, and peanut oil emulsion gels (EGs) blended with chia flour. Burgers were stored at 2 °C in modified atmosphere packaging for 12 days. The fat replacement decreased total fat by 26% and increased ash by 34%. Hardness and chewiness decreased with increasing the fat replacement; however, it did not affect springiness and cohesiveness values. Burger reformulations led to an increase in cooking yield (10%). Walnut oil EGs increased PUFA level up to 458%. Both oils enhanced PUFA/SFA and ω-6/ω-3 ratios and atherogenic and thrombogenic indices. Concerning color attribute, about 66% reduction was observed in redness values during the storage period of 12 days. Moreover, the sensory scores for all attributes, i.e., appearance, odor, flavor, and juiciness, were in the acceptable range of five or above in the reformulated burgers. In conclusion, 50% fat substitution using walnut and peanut oil EGs improved the nutritional profile of buffalo burgers without compromising the technological and sensory characteristics.
Collapse
Affiliation(s)
- Iftikhar Hussain Badar
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Department of Meat Science and Technology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Yuexin Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Haotian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Chen
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
21
|
Botella-Martínez C, Pérez-Álvarez JÁ, Sayas-Barberá E, Navarro Rodríguez de Vera C, Fernández-López J, Viuda-Martos M. Healthier Oils: A New Scope in the Development of Functional Meat and Dairy Products: A Review. Biomolecules 2023; 13:biom13050778. [PMID: 37238648 DOI: 10.3390/biom13050778] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/24/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
In the present day, it has been widely established that a high intake of animal fat that contains a high content of saturated fatty acids may cause several life-threatening diseases, including obesity, diabetes-type 2, cardiovascular diseases, as well as several types of cancer. In this context, a great number of health organizations and government agencies have launched campaigns to reduce the saturated fat content in foods, which has prompted the food industry, which is no stranger to this problem, to start working to develop foods with a lower fat content or with a different fatty acid profile. Nevertheless, this is not an easy task due to the fact that saturated fat plays a very important role in food processing and in the sensorial perception of foods. Actually, the best way to replace saturated fat is with the use of structured vegetable or marine oils. The main strategies for structuring oils include pre-emulsification, microencapsulation, the development of gelled emulsions, and the development of oleogels. This review will examine the current literature on the different (i) healthier oils and (ii) strategies that will be potentially used by the food industry to reduce or replace the fat content in several food products.
Collapse
Affiliation(s)
- Carmen Botella-Martínez
- IPOA Research Group, Agro-Food Technology Department, Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Miguel Hernández University, 03312 Orihuela, Spain
| | - José Ángel Pérez-Álvarez
- IPOA Research Group, Agro-Food Technology Department, Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Miguel Hernández University, 03312 Orihuela, Spain
| | - Estrella Sayas-Barberá
- IPOA Research Group, Agro-Food Technology Department, Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Miguel Hernández University, 03312 Orihuela, Spain
| | - Casilda Navarro Rodríguez de Vera
- IPOA Research Group, Agro-Food Technology Department, Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Miguel Hernández University, 03312 Orihuela, Spain
| | - Juana Fernández-López
- IPOA Research Group, Agro-Food Technology Department, Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Miguel Hernández University, 03312 Orihuela, Spain
| | - Manuel Viuda-Martos
- IPOA Research Group, Agro-Food Technology Department, Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Miguel Hernández University, 03312 Orihuela, Spain
| |
Collapse
|
22
|
Siachou C, Zampouni K, Katsanidis E. Bigels as Fat Replacers in Fermented Sausages: Physicochemical, Microbiological, Sensory, and Nutritional Characteristics. Gels 2023; 9:gels9040340. [PMID: 37102952 PMCID: PMC10137812 DOI: 10.3390/gels9040340] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/04/2023] [Accepted: 04/14/2023] [Indexed: 04/28/2023] Open
Abstract
Olive oil bigels structured with monoglycerides, gelatin, and κ-carrageenan were designed for the partial substitution of pork backfat in fermented sausages. Two different bigels were used: bigel B60 consisted of 60% aqueous and 40% lipid phase; and bigel B80 was formulated with 80% aqueous and 20% lipid phase. Three different pork sausage treatments were manufactured: control with 18% pork backfat; treatment SB60 with 9% pork backfat and 9% bigel B60; and treatment SB80 with 9% pork backfat and 9% bigel B80. Microbiological and physicochemical analyses were carried out for all three treatments on 0, 1, 3, 6, and 16 days after sausage preparation. Bigel substitution did not affect water activity or the populations of lactic acid bacteria, total viable counts, Micrococcaceae, and Staphylococcacea during the fermentation and ripening period. Treatments SB60 and SB80 presented higher weight loss during fermentation and higher TBARS values only on day 16 of storage. Consumer sensory evaluation did not identify significant differences among the sausage treatments in color, texture, juiciness, flavor, taste, and overall acceptability. The results show that bigels can be utilized for the formulation of healthier meat products with acceptable microbiological, physicochemical, and organoleptic characteristics.
Collapse
Affiliation(s)
- Christina Siachou
- Department of Food Science and Technology, School of Agriculture, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Konstantina Zampouni
- Department of Food Science and Technology, School of Agriculture, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Eugenios Katsanidis
- Department of Food Science and Technology, School of Agriculture, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
23
|
Tarasevičienė Ž, Laukagalis V, Paulauskienė A, Baltušnikienė A, Meškinytė E. Quality Changes of Cold-Pressed Black Cumin ( Nigella sativa L.), Safflower ( Carthamus tinctorius L.), and Milk Thistle ( Silybum marianum L.) Seed Oils during Storage. PLANTS (BASEL, SWITZERLAND) 2023; 12:1351. [PMID: 36987040 PMCID: PMC10052079 DOI: 10.3390/plants12061351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/12/2023] [Accepted: 03/14/2023] [Indexed: 06/19/2023]
Abstract
Oils derived from non-traditional seeds, such as safflower, milk thistle, and black cumin seeds, have recently grown in popularity. Seed oil is in high demand due to consumer interest in illness prevention and health promotion through healthier diets that include a high concentration of monounsaturated and polyunsaturated fatty acids and antioxidant phenolic components. This study assessed the quality characteristics of cold-pressed seed oil at three unique storage times: at the beginning of the trial (i.e., before storage), after 2 months, and after 4 months. The results of the performed analyses indicate that the acidity of extracted black cumin, safflower, and milk thistle seed oil fluctuates considerably over time. The highest acidity level change was detected for black cumin seed oil, from 10.26% after the extraction to 16.96% after 4 months of storage at 4 °C. Consequently, changes between pre- and post-storage peroxide concentrations were discernible after four months. Peroxide value in milk thistle and safflower seed oils increased by 0.92 meq/kg and 2.00 meq/kg, respectively, during the assessed storage time, while that of black cumin was very high and fluctuated. The storage period substantially affects oxidative changes and the oxidation stability of the oil. Major changes were observed in the polyunsaturated fatty acids in seed oil during storage. The essential changes were detected in the black cumin seed oil odor profile after 4 storage months. Their quality and stability, as well as the nature of the changes that occur during the storage of oil, require extensive investigation.
Collapse
Affiliation(s)
- Živilė Tarasevičienė
- Institute of Plant Biology and Food Sciences, Agriculture Academy Vytautas Magnus University, Donelaičio Str. 58, 44248 Kaunas, Lithuania
| | - Valdas Laukagalis
- Institute of Plant Biology and Food Sciences, Agriculture Academy Vytautas Magnus University, Donelaičio Str. 58, 44248 Kaunas, Lithuania
| | - Aurelija Paulauskienė
- Institute of Plant Biology and Food Sciences, Agriculture Academy Vytautas Magnus University, Donelaičio Str. 58, 44248 Kaunas, Lithuania
| | - Aldona Baltušnikienė
- Animal Production Research and Innovation Center, Bioeconomy Research Institute, Agriculture Academy Vytautas Magnus University, Donelaičio Str. 58, 44248 Kaunas, Lithuania
- Department of Biochemistry, Lithuanian University of Health Sciences, A. Mickeviciaus Str. 9, 44307 Kaunas, Lithuania
| | - Edita Meškinytė
- Animal Production Research and Innovation Center, Bioeconomy Research Institute, Agriculture Academy Vytautas Magnus University, Donelaičio Str. 58, 44248 Kaunas, Lithuania
| |
Collapse
|
24
|
Self-assembled emulsion gel based on modified chitosan and gelatin: Anti-inflammatory and improving cellular uptake of lipid-soluble actives. Int J Biol Macromol 2023; 231:123300. [PMID: 36657546 DOI: 10.1016/j.ijbiomac.2023.123300] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/25/2022] [Accepted: 01/12/2023] [Indexed: 01/18/2023]
Abstract
To obtain a green carrier for intestinal targeted delivery, an emulsion gel was designed by the self-assembly between gelatin and Pickering emulsion based on gallic acid modified-chitosan nanoparticles (GCS NPs). The emulsion gels loaded with garlic essential oil (Geo) and curcumin (Cur) were abbreviated as GOEG and GCEG, respectively. Meanwhile, the sodium alginate bead loaded with Geo (GOEGS3) and the bead loaded with Cur (GCEGS) were prepared as controls. Results demonstrated that the emulsion gels significantly improved the bioaccessibility of Geo and Cur, showing great intestinal targeting delivery properties comparable to that of sodium alginate beads. Moreover, Caco-2 cell experiments indicated that GOEG and GCEG displayed good biocompatibility and enhanced cellular uptake of Geo and Cur. The emulsion gels also exhibited excellent anti-inflammatory properties in the lipopolysaccharide-induced cell model, exhibiting great potential for clinical application. This work provides some references for the preparation of multifunctional emulsion gels with excellent delivery performance by a green method.
Collapse
|
25
|
da Silva RC, Ferdaus MJ, Foguel A, da Silva TLT. Oleogels as a Fat Substitute in Food: A Current Review. Gels 2023; 9:gels9030180. [PMID: 36975629 PMCID: PMC10048032 DOI: 10.3390/gels9030180] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/14/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
Fats and oils in food give them flavor and texture while promoting satiety. Despite the recommendation to consume predominantly unsaturated lipid sources, its liquid behavior at room temperature makes many industrial applications impossible. Oleogel is a relatively new technology applied as a total or partial replacement for conventional fats directly related to cardiovascular diseases (CVD) and inflammatory processes. Some of the complications in developing oleogels for the food industry are finding structuring agents Generally Recognized as Safe (GRAS), viable economically, and that do not compromise the oleogel palatability; thus, many studies have shown the different possibilities of applications of oleogel in food products. This review presents applied oleogels in foods and recent proposals to circumvent some disadvantages, as reaching consumer demand for healthier products using an easy-to-use and low-cost material can be intriguing for the food industry.
Collapse
Affiliation(s)
- Roberta Claro da Silva
- Family and Consumer Sciences Department, College of Agriculture and Environmental Sciences (CAES), North Carolina A&T State University, Greensboro, NC 27411, USA
| | - Md. Jannatul Ferdaus
- Family and Consumer Sciences Department, College of Agriculture and Environmental Sciences (CAES), North Carolina A&T State University, Greensboro, NC 27411, USA
| | - Aline Foguel
- Department of Biochemical-Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | | |
Collapse
|
26
|
Effects of Pork Backfat Replacement with Emulsion Gels Formulated with a Mixture of Olive, Chia and Algae Oils on the Quality Attributes of Pork Patties. Foods 2023; 12:foods12030519. [PMID: 36766048 PMCID: PMC9914842 DOI: 10.3390/foods12030519] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/13/2023] [Accepted: 01/20/2023] [Indexed: 01/25/2023] Open
Abstract
This paper reports on the development of new emulsion gels containing a mixture of olive, chia and algae oil emulsified with soy protein isolate and stabilized by two different cold gelling agents, gelatin (EGEL) and chitosan (ECHIT), and to evaluate their potential use as pork backfat replacers in cooked pork patties. Reformulated patties were produced by half and full pork backfat replacement and compared to normal fat patties and reduced fat content patties made by replacing half of the added fat with water. Color parameters, pH and thermal stability of the emulsion gels were determined at processing and after 10 days of refrigerated storage. Proximate composition, fatty acid profile, technological properties and sensory attributes were evaluated after patty processing, while color parameters, pH and lipid oxidation were monitored in patties during 15 days of refrigerated storage (4 °C). Reformulated patties showed significant improvements of the lipid profile (lower saturated fatty acid content and n-6/n-3 ratio and higher long-chain polyunsaturated fatty acid content) as compared to the controls. In terms of technological properties, chitosan was more effective than gelatin as a stabilizer of the emulsion gel. All reformulated patties showed a good evolution of lipid oxidation during storage and acceptable sensory attributes.
Collapse
|
27
|
Oleogels-Innovative Technological Solution for the Nutritional Improvement of Meat Products. Foods 2022; 12:foods12010131. [PMID: 36613347 PMCID: PMC9818335 DOI: 10.3390/foods12010131] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/12/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Food products contain important quantities of fats, which include saturated and/or unsaturated fatty acids. Because of a proven relationship between saturated fat consumption and the appearance of several diseases, an actual trend is to eliminate them from foodstuffs by finding solutions for integrating other healthier fats with high stability and solid-like structure. Polyunsaturated vegetable oils are healthier for the human diet, but their liquid consistency can lead to a weak texture or oil drain if directly introduced into foods during technological processes. Lately, the use of oleogels that are obtained through the solidification of liquid oils by using edible oleogelators, showed encouraging results as fat replacers in several types of foods. In particular, for meat products, studies regarding successful oleogel integration in burgers, meat batters, pâtés, frankfurters, fermented and bologna sausages have been noted, in order to improve their nutritional profile and make them healthier by substituting for animal fats. The present review aims to summarize the newest trends regarding the use of oleogels in meat products. However, further research on the compatibility between different oil-oleogelator formulations and meat product components is needed, as it is extremely important to obtain appropriate compositions with adequate behavior under the processing conditions.
Collapse
|
28
|
Frolova Y, Sarkisyan V, Sobolev R, Kochetkova A. Ultrasonic Treatment of Food Colloidal Systems Containing Oleogels: A Review. Gels 2022; 8:gels8120801. [PMID: 36547325 PMCID: PMC9777715 DOI: 10.3390/gels8120801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
The use of oleogels as an alternative to solid fats to reduce the content of saturated and trans-isomeric fatty acids is a developing area of research. Studies devoted to the search for methods of obtaining oleogels with given properties are of current interest. Ultrasonic treatment as a method for modifying oleogel properties has been used to solve this problem. The number of publications on the study of the effect of ultrasonic treatment on oleogel properties is increasing. This review aimed to systematize and summarize existing data. It allowed us to identify the incompleteness of this data, assess the effect of ultrasonic treatment on oleogel properties, which depends on various factors, and identify the vector of this direction in the food industry. A more detailed description of the parameters of ultrasonic treatment is needed to compare the results between various publications. Ultrasonic treatment generally leads to a decrease in crystal size and an increase in oil-binding capacity, rheological properties, and hardness. The chemical composition of oleogels and the concentration of gelators, the amplitude and duration of sonication, the cooling rate, and the crystallization process stage at which the treatment occurs are shown to be the factors influencing the efficiency of the ultrasonic treatment.
Collapse
|
29
|
Plant Antioxidants in Dry Fermented Meat Products with a Healthier Lipid Profile. Foods 2022; 11:foods11223558. [PMID: 36429150 PMCID: PMC9689944 DOI: 10.3390/foods11223558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/02/2022] [Accepted: 11/05/2022] [Indexed: 11/10/2022] Open
Abstract
Consumers' perception of meat products has changed in recent years, which has led to an increased interest in healthier meat products. In response to this demand, academia and industry have made efforts to reformulate meat products, especially dry fermented meat products, which are known for their high fat contents, mainly saturated fat. The use of plant or marine oils stabilized in emulsion gels (EGs) or oil-bulking agents (OBAs) as animal fat replacers has been one of the most advantageous strategies to reformulate dry fermented meat products with a healthier lipid content (quality and quantity), but an increase in their polyunsaturated fatty acid content can trigger a significant increase in lipid oxidation, negatively affecting sensory and nutritional quality. The use of antioxidants is the main strategy to delay this deteriorative reaction, but the controversy around the safety and toxicity of synthetic antioxidants has driven consumers and industry toward the use of plant antioxidants, such as phenolic compounds, carotenoids, and some vitamins and minerals. This review provides information about the use of plant antioxidants to control lipid oxidation of dry fermented meat products with healthier lipids.
Collapse
|
30
|
Guo J, Cui L, Meng Z. Oleogels/emulsion gels as novel saturated fat replacers in meat products: A review. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
31
|
Wang M, Yin Z, Zeng M. Construction of 3D printable Pickering emulsion gels using complexes of fiber polysaccharide-protein extracted from Haematococcus pluvialis residues and gelatin for fat replacer. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
32
|
Use of oil mixture emulsion hydrogels as partial animal fat replacers in dry-fermented foal sausages. Food Res Int 2022; 161:111881. [DOI: 10.1016/j.foodres.2022.111881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/15/2022] [Accepted: 08/25/2022] [Indexed: 11/20/2022]
|
33
|
Pérez-Báez AJ, Valenzuela-Melendres M, Camou JP, Viuda-Martos M, González-Ríos H, Ayala-Zavala F, Gonzalez Aguilar G, Peña-Ramos A. Modelling the effects of pecan nut [Carya illinoinensis (Wangenh.) K.Koch], roselle (Hibiscus sabdariffa L.), and salt on the quality characteristics of beef patties. INTERNATIONAL FOOD RESEARCH JOURNAL 2022. [DOI: 10.47836/ifrj.29.5.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The meat industry has become increasingly interested in developing products containing new ingredients oriented to consumers’ health. Health benefits are gained from frequent consumption of pecan nut and roselle, which can therefore be used as ingredients in meat product formulations. However, incorporating novel ingredients or reducing the content of traditional ingredients might affect meat product quality, thus needs to be evaluated and optimised for the development of functional foods. The objective of the present work was to assess how pecan nut (0 to 10%), roselle (0 to 2%), and salt (0 to 2%) affect the physicochemical properties, antioxidant, and sensory characteristics of beef patties, and use response surface methodology to optimise the content of these ingredients in a meat product formulation. Regression models were developed to predict quality properties. All models were significant (p < 0.05) with an R2 > 0.85 and a nonsignificant lack of fit (p > 0.05), thus indicating that these models could adequately predict response variables. The optimised formulation was 7.97% pecan nut, 1.59% roselle, and 1.08% salt. The predicted physicochemical properties were L* = 42.88, a* = 12.29, b* = 8.51, pH = 5.10, and cooking loss = 24.66%; the antioxidant properties were DPPH = 0.53 mg TE/g fp, ABTS = 0.65 mg TE/g fp, and total phenolic content = 0.46 mg GA/g fp; and the sensory properties were flavour = 7.03, tenderness = 6.98, and juiciness = 7.01. Pecan nut and roselle are promising natural ingredients that can be used to prepare low-salt beef patties.
Collapse
|
34
|
Microencapsulated Healthy Oil Mixtures to Enhance the Quality of Foal Pâtés. Foods 2022; 11:foods11213342. [PMID: 36359954 PMCID: PMC9655113 DOI: 10.3390/foods11213342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/17/2022] [Accepted: 10/21/2022] [Indexed: 11/17/2022] Open
Abstract
This study aimed to evaluate the use of microencapsulated oil mixtures as partial animal fat replacers and their effects on the physicochemical, nutritional and sensory qualities of foal pâtés. Three different batches were manufactured: a control (CON) formulation, with foal dorsal subcutaneous fat (30 g/100 g), and treatments 1 and 2 (T1 and T2), with 50% of the animal fat replaced by microcapsules containing algal oil mixed with walnut oil (T1) or pistachio oil (T2). The reformulated samples presented significant (p < 0.001) diminutions of fat contents, which achieved reductions of 34.22% (“reduced fat content”) and 28.17% in the T1 and T2 samples, respectively, and the lipid reformulation did not affect (p > 0.05) the texture or lipid oxidation of the samples. Furthermore, both microencapsulated oil mixtures significantly (p < 0.001) reduced (11−15%) saturated fatty acid (SFA) concentrations and increased (p < 0.001) mono- (T2) and polyunsaturated (T1) fatty acid contents (8% and 68%, respectively), contributing to the obtainment of nutritional indices in line with health recommendations. Additionally, consumer acceptability did not display significant (p > 0.05) differences among samples. Hence, the outcomes indicated that the incorporation of these microencapsulated oil mixtures as partial animal fat replacers, especially the T1 mixture, represents a promising strategy to obtain healthier foal pâtés, without compromising consumer approval.
Collapse
|
35
|
Structuring of oils with high PUFA content: evaluation of the formulation conditions on the oxidative stability and structural properties of ethylcellulose oleogels. Food Chem 2022; 405:134772. [DOI: 10.1016/j.foodchem.2022.134772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 11/17/2022]
|
36
|
Domínguez R, Lorenzo JM, Pateiro M, Munekata PES, Alves Dos Santos B, Basso Pinton M, Cichoski AJ, Bastianello Campagnol PC. Main animal fat replacers for the manufacture of healthy processed meat products. Crit Rev Food Sci Nutr 2022; 64:2513-2532. [PMID: 36123812 DOI: 10.1080/10408398.2022.2124397] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The technological, sensory, and nutritional characteristics of meat products are directly related to their animal fat content. Adding animal fat to meat products significantly influences their sensory properties, such as color, taste, and aroma. In addition, the physicochemical properties of fat decisively contribute to the texture of meat products, playing a fundamental role in improving the properties of viscosity, creaminess, chewiness, cohesiveness, and hardness. However, meat products' high animal fat content makes them detrimental to a healthy diet. Therefore, reducing the fat content of meat products is an urgent need, but it is a challenge for researchers and the meat industry. The fat reduction in meat products without compromising the product's quality and with minor impacts on the production costs is not a simple task. Thus, strategies to reduce the fat content of meat products should be studied with caution. During the last decades, several fat replacers were tested, but among all of them, the use of flours and fibers, hydrocolloids, mushrooms, and some animal proteins (such as whey and collagen) presented promising results. Additionally, multiple strategies to gel oils of vegetable origin are also a current topic of study, and these have certain advantages such as their appearance (attempts to imitate animal fat), while also improving the nutritional profile of the lipid fraction of the products meat. However, each of these fat substitutes has both advantages and limitations in their use, which will be discussed in subsequent sections. Therefore, due to the growing interest in this issue, this review focuses on the main substitutes for animal fat used in the production of meat products, offering detailed and updated information on the latest discoveries and advances in this area.
Collapse
Affiliation(s)
- Rubén Domínguez
- Centro Tecnológico de la Carne de Galicia, rúa Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, Ourense, Spai
| | - José M Lorenzo
- Centro Tecnológico de la Carne de Galicia, rúa Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, Ourense, Spai
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, Ourense, Spain
| | - Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, rúa Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, Ourense, Spai
| | - Paulo E S Munekata
- Centro Tecnológico de la Carne de Galicia, rúa Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, Ourense, Spai
| | | | | | | | | |
Collapse
|
37
|
Silva PM, Cerqueira MA, Martins AJ, Fasolin LH, Cunha RL, Vicente AA. Oleogels and bigels as alternatives to saturated fats: A review on their application by the food industry. J AM OIL CHEM SOC 2022. [DOI: 10.1002/aocs.12637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Pedro M. Silva
- Centre of Biological Engineering University of Minho Braga Portugal
- International Iberian Nanotechnology Laboratory Braga Portugal
| | | | | | - Luiz H. Fasolin
- Department of Food Engineering and Technology School of Food Engineering, University of Campinas – UNICAMP Campinas São Paulo Brazil
| | - Rosiane L. Cunha
- Department of Food Engineering and Technology School of Food Engineering, University of Campinas – UNICAMP Campinas São Paulo Brazil
| | | |
Collapse
|
38
|
Asyrul-Izhar AB, Bakar J, Sazili AQ, Meng GY, Ismail-Fitry MR. Incorporation of Different Physical Forms of Fat Replacers in the Production of Low-Fat/ Reduced-Fat Meat Products: Which is More Practical? FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2108439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Abu Bakar Asyrul-Izhar
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Malaysia
| | - Jamilah Bakar
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Malaysia
| | - Awis Qurni Sazili
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Malaysia
| | - Goh Yong Meng
- Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Malaysia
| | | |
Collapse
|
39
|
Tarjuelo L, Pardo JE, Álvarez-Ortí M, Pardo-Giménez A, Millán C, Rabadán A. Development of Seed-Oil Based Dried Sausages, Considering Physicochemical and Nutritional Quality and the Role of Food Neophobia. Nutrients 2022; 14:3106. [PMID: 35956283 PMCID: PMC9370214 DOI: 10.3390/nu14153106] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/21/2022] [Accepted: 07/27/2022] [Indexed: 02/05/2023] Open
Abstract
A growing number of consumers now consider the consumption of processed meat products to be an essentially unhealthy habit. Hence, the reformulation of meat products is crucial. In this regard, the aim of this study is to reformulate "fuet", a traditional Spanish dried sausage, by replacing the pork fat with emulsified seed oils (50-50%, 25-75% and 0-100%). Four seed oils were evaluated, including commercial seeds (poppy and chia) and other seeds considered subproducts (melon and pumpkin). Physical parameters, nutritional quality and consumer evaluation of the reformulated dried sausages were analyzed. Additionally, we considered the effects of food neophobia on consumer evaluation. The resulting fuets had a higher concentration of linoleic and linolenic acids, which varied according to the oil used. In the sensory analysis, non-neophobic consumers showed higher preference for the reformulated fuets, while all consumers gave their highest ratings to the fuets produced with pumpkin seed oil.
Collapse
Affiliation(s)
- Laura Tarjuelo
- E.T.S.I. Agrónomos y de Montes, University of Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain; (L.T.); (J.E.P.); (M.Á.-O.); (C.M.)
| | - José Emilio Pardo
- E.T.S.I. Agrónomos y de Montes, University of Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain; (L.T.); (J.E.P.); (M.Á.-O.); (C.M.)
| | - Manuel Álvarez-Ortí
- E.T.S.I. Agrónomos y de Montes, University of Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain; (L.T.); (J.E.P.); (M.Á.-O.); (C.M.)
| | - Arturo Pardo-Giménez
- Centro de Investigación, Experimentación y Servicios del Champiñón (CIES), C/Peñicas s/n, Apdo. 63, Quintanar del Rey, 16220 Cuenca, Spain;
| | - Cristina Millán
- E.T.S.I. Agrónomos y de Montes, University of Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain; (L.T.); (J.E.P.); (M.Á.-O.); (C.M.)
| | - Adrián Rabadán
- E.T.S.I. Agrónomos y de Montes, University of Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain; (L.T.); (J.E.P.); (M.Á.-O.); (C.M.)
| |
Collapse
|
40
|
Ren Y, Huang L, Zhang Y, Li H, Zhao D, Cao J, Liu X. Application of Emulsion Gels as Fat Substitutes in Meat Products. Foods 2022; 11:foods11131950. [PMID: 35804763 PMCID: PMC9265990 DOI: 10.3390/foods11131950] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/25/2022] [Accepted: 06/28/2022] [Indexed: 01/27/2023] Open
Abstract
Although traditional meat products are highly popular with consumers, the high levels of unsaturated fatty acids and cholesterol present significant health concerns. However, simply using plant oil rich in unsaturated fatty acids to replace animal fat in meat products causes a decline in product quality, such as lower levels of juiciness and hardness. Therefore, it is necessary to develop a fat substitute that can ensure the sensory quality of the product while reducing its fat content. Consequently, using emulsion gels to produce structured oils or introducing functional ingredients has attracted substantial attention for replacing the fat in meat products. This paper delineated emulsion gels into protein, polysaccharide, and protein–polysaccharide compound according to the matrix. The preparation methods and the application of the three emulsion gels as fat substitutes in meat products were reviewed. Since it displayed a unique separation structure, the double emulsion was highly suitable for encapsulating bioactive substances, such as functional oils, flavor components, and functional factors, while it also exhibited significant potential for developing low-fat or functional healthy meat products. This paper summarized the studies involving the utilization of double emulsion and gelled double emulsion as fat replacement agents to provide a theoretical basis for related research and new insight into the development of low-fat meat products.
Collapse
Affiliation(s)
- Yuqing Ren
- National Soybean Processing Industry Technology Innovation Center, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China; (Y.R.); (L.H.); (Y.Z.); (D.Z.)
| | - Lu Huang
- National Soybean Processing Industry Technology Innovation Center, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China; (Y.R.); (L.H.); (Y.Z.); (D.Z.)
| | - Yinxiao Zhang
- National Soybean Processing Industry Technology Innovation Center, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China; (Y.R.); (L.H.); (Y.Z.); (D.Z.)
| | - He Li
- National Soybean Processing Industry Technology Innovation Center, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China; (Y.R.); (L.H.); (Y.Z.); (D.Z.)
- Correspondence: (H.L.); (X.L.)
| | - Di Zhao
- National Soybean Processing Industry Technology Innovation Center, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China; (Y.R.); (L.H.); (Y.Z.); (D.Z.)
| | - Jinnuo Cao
- Plant Meat (Hangzhou) Health Technology Limited Company, Hangzhou 310000, China;
| | - Xinqi Liu
- National Soybean Processing Industry Technology Innovation Center, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China; (Y.R.); (L.H.); (Y.Z.); (D.Z.)
- Plant Meat (Hangzhou) Health Technology Limited Company, Hangzhou 310000, China;
- Correspondence: (H.L.); (X.L.)
| |
Collapse
|
41
|
Kim YJ, Shin DM, Yune JH, Jung HS, Kwon HC, Lee KW, Oh JW, Kim BG, Han SG. Development of β-Cyclodextrin/Konjac-Based Emulsion Gel for a Pork Backfat Substitute in Emulsion-Type Sausage. Gels 2022; 8:gels8060369. [PMID: 35735713 PMCID: PMC9222623 DOI: 10.3390/gels8060369] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/06/2022] [Accepted: 06/09/2022] [Indexed: 12/04/2022] Open
Abstract
Emulsion gel has been used to replace animal fats in meat products. Konjac is a widely used gelling agent; however, its low emulsion stability limits its use in meat products. This study aimed to examine the quality characteristics of β-cyclodextrin (CD)-supplemented konjac-based emulsion gel (KEG) (CD-KEG) and its application as a fat substitute in emulsion-type sausages. The supplementation of CD increased hydrogen bonds and hydrophobic interactions with konjac and oil in the gels, respectively. Additionally, CD increased the structural complexity and strength of KEG. Since adding more than 6% of CD to KEG did not increase the gel strength, 6% CD-added KEG was adopted to substitute for pork backfat in manufacturing low-fat emulsion-type sausages. The following formulations of the sausages were prepared: pork backfat 20% (PF20); pork backfat 10% + KEG 10% (KEG10); KEG 20% (KEG20); pork backfat 10% + CD-KEG 10% (CD-KEG10); CD-KEG 20% (CD-KEG20); and pork backfat 5% (PF5). The CD-KEG20 formulation exhibited higher viscosity and viscoelasticity than KEG20, which suggested that CD improves the rheological properties and the thermal stability of meat batter. Additionally, CD-KEG20 showed similar emulsion stability, cooking yield and texture parameters compared with PF20. Therefore, 6% CD-added KEG is a suitable fat substitute for preparing low-fat emulsion-type sausages.
Collapse
Affiliation(s)
- Yea-Ji Kim
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea; (Y.-J.K.); (D.-M.S.); (J.-H.Y.); (H.-S.J.); (H.-C.K.)
| | - Dong-Min Shin
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea; (Y.-J.K.); (D.-M.S.); (J.-H.Y.); (H.-S.J.); (H.-C.K.)
| | - Jong-Hyeok Yune
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea; (Y.-J.K.); (D.-M.S.); (J.-H.Y.); (H.-S.J.); (H.-C.K.)
| | - Hyun-Su Jung
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea; (Y.-J.K.); (D.-M.S.); (J.-H.Y.); (H.-S.J.); (H.-C.K.)
| | - Hyuk-Cheol Kwon
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea; (Y.-J.K.); (D.-M.S.); (J.-H.Y.); (H.-S.J.); (H.-C.K.)
| | - Kyung-Woo Lee
- Department of Animal Science and Technology, Konkuk University, Seoul 05029, Korea; (K.-W.L.); (B.-G.K.)
| | - Jae-Wook Oh
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea;
| | - Beob-Gyun Kim
- Department of Animal Science and Technology, Konkuk University, Seoul 05029, Korea; (K.-W.L.); (B.-G.K.)
| | - Sung-Gu Han
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea; (Y.-J.K.); (D.-M.S.); (J.-H.Y.); (H.-S.J.); (H.-C.K.)
- Correspondence: ; Tel.: +82-2-450-0526
| |
Collapse
|
42
|
Cui X, Saleh ASM, Yang S, Wang N, Wang P, Zhu M, Xiao Z. Oleogels as Animal Fat and Shortening Replacers: Research Advances and Application Challenges. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2062769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- XiaoTong Cui
- College of Food, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Ahmed. S. M. Saleh
- Department of Food Science and Technology, Faculty of Agriculture, Assiut University, Assiut, Egypt
| | - Shu Yang
- College of Life Science and Bioengineering, Shenyang University, Shenyang, Liaoning, China
| | - Na Wang
- Department of Food Science, College of Light Industry, Liaoning University, Shenyany, Liaoning, China
| | - Peng Wang
- College of Grain Science and Technology, Shenyang Normal University, Shenyang, Liaoning, China
| | - Minpeng Zhu
- College of Grain Science and Technology, Shenyang Normal University, Shenyang, Liaoning, China
| | - Zhigang Xiao
- College of Food, Shenyang Agricultural University, Shenyang, Liaoning, China
- College of Grain Science and Technology, Shenyang Normal University, Shenyang, Liaoning, China
| |
Collapse
|
43
|
Simunovic S, Đorđević VŽ, Rašeta M, Lukić M, Lorenzo JM, Djekic I, Tomašević I. Reformulation of Traditional Fermented Tea Sausage Utilizing Novel (Digital) Methods of Analysis. Foods 2022; 11:foods11081090. [PMID: 35454679 PMCID: PMC9032227 DOI: 10.3390/foods11081090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/01/2022] [Accepted: 04/06/2022] [Indexed: 11/16/2022] Open
Abstract
The main objective of this paper was to investigate the effect of fat reduction on different quality traits of tea sausage. This study also aimed to deploy the following digital methods of analysis: three-dimensional (3D) laser imaging, computer vision system and oral processing. Three batches of tea sausage with different amounts of pork back fat were manufactured: control (25%), medium fat (17.5%) and low fat (10%). Samples for the analyses were taken on the production day and after 7, 14, 21, 28 and 35 days of ripening. The fat level significantly influenced shrinkage, texture, pH, aw, moisture and ash contents, peroxide value, acid number, number of chewing strokes, consumption time, eating rate and fat intake rate. Oxidative stability, colour and microbiological parameters were not affected by fat reduction. The results of the sensory analysis showed that the fat level can be reduced to 17.5% without negatively affecting the quality and sensory properties of the product. The ripening time of the fat-reduced tea sausage should be reduced to 28 days. A strong correlation between shrinkage and weight loss suggests the possibility of using 3D laser imaging in predicting weight loss and moisture content of dry sausages.
Collapse
Affiliation(s)
- Stefan Simunovic
- Institute of Meat Hygiene and Technology, Kacanskog 13, 11040 Belgrade, Serbia; (V.Ž.Đ.); (M.R.); (M.L.)
- Department of Animal Source Food Technology, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia;
- Correspondence:
| | - Vesna Ž. Đorđević
- Institute of Meat Hygiene and Technology, Kacanskog 13, 11040 Belgrade, Serbia; (V.Ž.Đ.); (M.R.); (M.L.)
| | - Mladen Rašeta
- Institute of Meat Hygiene and Technology, Kacanskog 13, 11040 Belgrade, Serbia; (V.Ž.Đ.); (M.R.); (M.L.)
| | - Mirjana Lukić
- Institute of Meat Hygiene and Technology, Kacanskog 13, 11040 Belgrade, Serbia; (V.Ž.Đ.); (M.R.); (M.L.)
| | - José M. Lorenzo
- Fundación Centro Tecnolóxico da Carne, San Cibrao das Viñas, 32900 Ourense, Spain;
- Área de Tecnología de Losalimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain
| | - Ilija Djekic
- Department of Food Safety and Quality Management, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia;
| | - Igor Tomašević
- Department of Animal Source Food Technology, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia;
| |
Collapse
|
44
|
Delgado-Pando G, Pintado T. New Strategies for Innovative and Enhanced Meat and Meat Products. Foods 2022; 11:foods11050772. [PMID: 35267404 PMCID: PMC8909646 DOI: 10.3390/foods11050772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 02/27/2022] [Indexed: 01/21/2023] Open
Abstract
New strategies in the field of meat and meat product development are certainly needed in order to overcome not only the health-related problems these products might contribute to, but also from the perspectives of sustainability and the economy [...].
Collapse
|
45
|
Zampouni K, Soniadis A, Dimakopoulou-Papazoglou D, Moschakis T, Biliaderis C, Katsanidis E. Modified fermented sausages with olive oil oleogel and NaCl–KCl substitution for improved nutritional quality. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
46
|
Wang Z, Chandrapala J, Truong T, Farahnaky A. Oleogels prepared with low molecular weight gelators: Texture, rheology and sensory properties, a review. Crit Rev Food Sci Nutr 2022; 63:6069-6113. [PMID: 35057682 DOI: 10.1080/10408398.2022.2027339] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
There is a growing need for healthier foods with no trans and reduced saturated fat. However, solid fats play critical roles in texture and sensory attributes of food products, making it challenging to eliminate them in foods. Recently, the concept of oleogelation as a novel oil structuring technique has received numerous attentions owing to their great potential to mimic the properties of solid fats. Understanding textural, rheological and sensory properties of oleogels helps predict the techno-functionalities of oleogels to replace solid fats in food products. This research critically reviews the textural and rheological properties of oleogels prepared by low molecular weight oleogelators (LMWGs) and functional characteristics of foods formulated by these oleogels. The mechanical properties of LMWG-containing oleogels are comprehensively discussed against conventional solid fats. The interactions between the oleogel and its surrounding food matrix are explained, and the sensory attributes of oleogel containing reformulated products are highlighted. Scientific insights into the texture and rheological properties of oleogels manufactured with a wide range of low molecular gelators and their related products are provided in order to boost their implication for creating healthier foods with high consumer acceptability. Future research opportunities on low molecular weight gelators are also discussed.
Collapse
Affiliation(s)
- Ziyu Wang
- Biosciences and Food Technology, School of Science, RMIT University, Melbourne, VIC, Australia
| | - Jayani Chandrapala
- Biosciences and Food Technology, School of Science, RMIT University, Melbourne, VIC, Australia
| | - Tuyen Truong
- Biosciences and Food Technology, School of Science, RMIT University, Melbourne, VIC, Australia
| | - Asgar Farahnaky
- Biosciences and Food Technology, School of Science, RMIT University, Melbourne, VIC, Australia
| |
Collapse
|
47
|
Zhang Y, Wang X, Chen H, Ren F, Liu Z, Wang P, Liu X. Application of gel‐in‐oil‐in‐water double emulsions as a pork oil replacer in emulsified sausage. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Yan Zhang
- College of Food Science and Engineering Gansu Agricultural University Lanzhou China
- Beijing Higher Institution Engineering Research Center of Animal Product China Agricultural University Beijing China
| | - Xu Wang
- Beijing Higher Institution Engineering Research Center of Animal Product China Agricultural University Beijing China
| | - Han Chen
- Beijing Higher Institution Engineering Research Center of Animal Product China Agricultural University Beijing China
| | - Fazheng Ren
- College of Food Science and Engineering Gansu Agricultural University Lanzhou China
- Beijing Higher Institution Engineering Research Center of Animal Product China Agricultural University Beijing China
- Department of Nutrition and Health China Agricultural University Beijing China
| | - Zuowen Liu
- Hebei Fucheng Wufeng Food Co., Ltd Sanhe China
| | - Pengjie Wang
- Beijing Higher Institution Engineering Research Center of Animal Product China Agricultural University Beijing China
- Department of Nutrition and Health China Agricultural University Beijing China
| | - Xiaofei Liu
- Department of Food and Bioengineering Beijing Vocational College of Agriculture Beijing China
| |
Collapse
|
48
|
Campagnol PCB, Lorenzo JM, Dos Santos BA, Cichoski AJ. Recent advances in the development of healthier meat products. ADVANCES IN FOOD AND NUTRITION RESEARCH 2022; 102:123-179. [PMID: 36064292 DOI: 10.1016/bs.afnr.2022.04.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Meat products are an excellent source of high biological value proteins, in addition to the high content of minerals, vitamins, and bioactive compounds. However, meat products contain compounds that can cause a variety of adverse health effects and pose a serious health threat to humans. In this sense, this chapter will address recent strategies to assist in the development of healthier meat products. The main advances about the reduction of sodium and animal fat in meat products will be presented. In addition, strategies to make the lipid profile of meat products more nutritionally advantageous for human health will also be discussed. Finally, the reduction of substances of safety concern in meat products will be addressed, including phosphates, nitrites, polycyclic aromatic hydrocarbons, heterocyclic aromatic amines, as well as products from lipid and protein oxidation.
Collapse
Affiliation(s)
| | - José Manuel Lorenzo
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, Ourense, Spain; Universidad de Vigo, Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Ourense, Spain
| | | | | |
Collapse
|
49
|
GRADINARSKA DN, VALKOVA-YORGOVA KI, DANOV KR. Effect of red wine in dry fermented sausages produced with a starter culture for improving their quality and safety. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.47722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
50
|
LIMA TLS, Costa GFD, ALVES RDN, ARAÚJO CDLD, SILVA GFGD, RIBEIRO NL, FIGUEIREDO CFVD, ANDRADE ROD. Vegetable oils in emulsified meat products: a new strategy to replace animal fat. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.103621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|