1
|
Maseko KH, Regnier T, Bartels P, Meiring B. Mushroom mycelia as sustainable alternative proteins for the production of hybrid cell-cultured meat: A review. J Food Sci 2025; 90:e70060. [PMID: 39921300 PMCID: PMC11806284 DOI: 10.1111/1750-3841.70060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/08/2025] [Accepted: 01/26/2025] [Indexed: 02/10/2025]
Abstract
World agriculture endures an immense challenge in feeding the world's growing population in the face of several productivity and environmental threats. Yet, the demand for alternative protein sources is rapidly increasing as a result of population growth, including health and ethical concerns associated with meat consumption. Edible mushroom species contain a high composition of protein, fiber, vitamins, and a variety of minerals, and are regarded as sufficient sources of food products. Pleurotus genus is one of the most extensively studied edible fungi due to its exceptional physical, chemical, biological, and enzymatic properties. The assessment on the effects of the in vitro culture media composition, including carbon and nitrogen sources, pH, and temperature are all necessary for enhancing mushroom mycelial biomass growth and production. Mycoprotein as a fungal-derived protein source has been identified as a more sustainable and healthier meat substitute due to its fibrous structure, high nutritional value, and unique functional profile. Its distinctive production method results in a much lower carbon and water footprint than traditional farming methods. A systemic transition from traditional agriculture to more sustainable cellular agriculture using cell-cultivation methods to create animal products has been proposed and initiated. This review can provide an overview on the various processes involved in the production and usage of mycelium as an alternative protein source in hybrid cell-cultured meat production.
Collapse
Affiliation(s)
- Kayise Hypercia Maseko
- Department of Biotechnology and Food TechnologyTshwane University of TechnologyPretoriaRepublic of South Africa
| | - Thierry Regnier
- Department of Biotechnology and Food TechnologyTshwane University of TechnologyPretoriaRepublic of South Africa
| | | | - Belinda Meiring
- Department of Biotechnology and Food TechnologyTshwane University of TechnologyPretoriaRepublic of South Africa
| |
Collapse
|
2
|
Lee DY, Mariano E, Choi Y, Park JM, Han D, Kim JS, Park JW, Namkung S, Li Q, Li X, Venter C, Hur SJ. Environmental Impact of Meat Protein Substitutes: A Mini-Review. Food Sci Anim Resour 2025; 45:62-80. [PMID: 39840250 PMCID: PMC11743834 DOI: 10.5851/kosfa.2024.e109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 01/23/2025] Open
Abstract
The expansion of alternative food industries, including cultured meat, is often promoted as a strategy to reduce environmental pollution, particularly greenhouse gas emissions. However, comprehensive data on the environmental impacts of these industries remains limited. This study examines the environmental impacts of traditional meat and meat substitute production, highlighting their respective advantages and disadvantages. Our findings indicate that meat substitute production generally has a lower environmental impact compared to traditional livestock farming. However, it is challenging to quantify the extent to which meat substitutes can reduce the environmental impacts of traditional livestock products, as both sectors produce different pollution measurements depending on the criteria used. Moreover, the growth of the meat substitute market has been significantly smaller compared to that of the traditional livestock products market, limiting the availability of accurate data on the environmental impacts of meat substitute production. Therefore, assumptions that the meat substitute market will eventually surpass the traditional livestock market and reduce environmental pollution require caution. Continuous and in-depth research is crucial to fully understand the long-term environmental impacts of meat substitutes. Furthermore, enhancing the quality of alternative meat substitutes should be prioritized to increase their overall acceptability and facilitate technological advancements in alternative protein production before it becomes a sustainable food production system.
Collapse
Affiliation(s)
- Da Young Lee
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Ermie Mariano
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Yeongwoo Choi
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Jin Mo Park
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Dahee Han
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Jin Soo Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Ji Won Park
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Seok Namkung
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Qiang Li
- Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Department of Animal Science, Yanbian University, Yanji 133002, China
| | - Xiangzi Li
- Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Department of Animal Science, Yanbian University, Yanji 133002, China
| | - Colin Venter
- Department Physiological Sciences, Stellenbosch University, Matieland 7602, South Africa
| | - Sun Jin Hur
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| |
Collapse
|
3
|
You XY, Ding Y, Bu QY, Wang QH, Zhao GP. Nutritional, Textural, and Sensory Attributes of Protein Bars Formulated with Mycoproteins. Foods 2024; 13:671. [PMID: 38472784 DOI: 10.3390/foods13050671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Research accumulated over the past decades has shown that mycoprotein could serve as a healthy and safe alternative protein source, offering a viable substitute for animal- and plant-derived proteins. This study evaluated the impact of substituting whey protein with fungal-derived mycoprotein at different levels (10%, 20%, and 30%) on the quality of high-protein nutrition bars (HPNBs). It focused on nutritional content, textural changes over storage, and sensory properties. Initially, all bars displayed similar hardness, but storage time significantly affected textural properties. In the early storage period (0-5 days), hardness increased at a modest rate of 0.206 N/day to 0.403 N/day. This rate dramatically escalated from 1.13 N/day to 1.36 N/day after 5 days, indicating a substantial textural deterioration over time. Bars with lower mycoprotein levels (10%) exhibited slower hardening rates compared with those with higher substitution levels (20% and 30%), pointing to a correlation between mycoprotein content and increased bar hardness during storage. Protein digestibility was assessed through in vitro gastric and intestinal phases. Bars with no or low-to-medium levels of mycoprotein substitution (PB00, PB10, and PB20) showed significantly higher digestibility (40.3~43.8%) compared with those with the highest mycoprotein content (PB30, 32.9%). However, digestibility rates for all mycoprotein-enriched bars were lower than those observed for whey-protein-only bars (PB00, 84.5%), especially by the end of the intestinal digestion phase. The introduction of mycoprotein enriched the bars' dietary fiber content and improved their odor, attributing a fresh mushroom-like smell. These findings suggest that modest levels of mycoprotein can enhance nutritional value and maintain sensory quality, although higher substitution levels adversely affect texture and protein digestibility. This study underscores the potential of mycoprotein as a functional ingredient in HPNBs, balancing nutritional enhancement with sensory acceptability, while also highlighting the challenges of textural deterioration and reduced protein digestibility at higher substitution levels.
Collapse
Affiliation(s)
- Xiao-Yan You
- Henan Engineering Research Center of Food Microbiology, College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Yue Ding
- Henan Engineering Research Center of Food Microbiology, College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Qing-Yun Bu
- Henan Engineering Research Center of Food Microbiology, College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Haihe Laboratory of Synthetic Biology, Tianjin 300308, China
| | - Qin-Hong Wang
- National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Guo-Ping Zhao
- National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
4
|
Holt RR, Munafo JP, Salmen J, Keen CL, Mistry BS, Whiteley JM, Schmitz HH. Mycelium: A Nutrient-Dense Food To Help Address World Hunger, Promote Health, and Support a Regenerative Food System. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2697-2707. [PMID: 38054424 PMCID: PMC10853969 DOI: 10.1021/acs.jafc.3c03307] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 11/14/2023] [Accepted: 11/16/2023] [Indexed: 12/07/2023]
Abstract
There is a need for transformational innovation within the existing food system to achieve United Nations Sustainable Development Goal 2 of ending hunger within a sustainable agricultural system by 2030. Mycelium, the vegetative growth form of filamentous fungi, may represent a convergence of several features crucial for the development of food products that are nutritious, desirable, scalable, affordable, and environmentally sustainable. Mycelium has gained interest as technology advances demonstrate its ability to provide scalable biomass for food production delivering good flavor and quality protein, fiber, and essential micronutrients urgently needed to improve public health. We review the potential of mycelium as an environmentally sustainable food to address malnutrition and undernutrition, driven by food insecurity and caloric dense diets with less than optimal macro- and micronutrient density.
Collapse
Affiliation(s)
- Roberta R. Holt
- Department
of Nutrition, University of California,
Davis, Davis, California 95616, United States
| | - John P. Munafo
- Department
of Food Science, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Julie Salmen
- Nutritious
Ideas, LLC, Saint John, Indiana 46373, United States
| | - Carl L. Keen
- Department
of Nutrition, University of California,
Davis, Davis, California 95616, United States
| | - Behroze S. Mistry
- Meati
Foods, 6880 Winchester
Cir Unit D, Boulder, Colorado 80301, United States
| | - Justin M. Whiteley
- Meati
Foods, 6880 Winchester
Cir Unit D, Boulder, Colorado 80301, United States
| | - Harold H. Schmitz
- March
Capital US, LLC, Davis, California 95616, United States
- T.O.P.,
LLC, Davis, California 95616, United States
- Graduate
School of Management, University of California,
Davis, Davis, California 95616, United States
| |
Collapse
|
5
|
Bedsaul-Fryer JR, Monroy-Gomez J, van Zutphen-Küffer KG, Kraemer K. An Introduction to Traditional and Novel Alternative Proteins for Low- and Middle-Income Countries. Curr Dev Nutr 2024; 8:102014. [PMID: 38476724 PMCID: PMC10926120 DOI: 10.1016/j.cdnut.2023.102014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 10/02/2023] [Indexed: 03/14/2024] Open
Affiliation(s)
| | | | - Kesso G. van Zutphen-Küffer
- Sight and Life, Basel, Switzerland
- Department of Human Nutrition & Health, Wageningen University & Research, Wageningen, The Netherlands
| | - Klaus Kraemer
- Sight and Life, Basel, Switzerland
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| |
Collapse
|
6
|
De Cianni R, Pippinato L, Mancuso T. A systematic review on drivers influencing consumption of edible mushrooms and innovative mushroom-containing products. Appetite 2023; 182:106454. [PMID: 36623772 DOI: 10.1016/j.appet.2023.106454] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 01/01/2023] [Accepted: 01/05/2023] [Indexed: 01/09/2023]
Abstract
Edible mushrooms are attractive for their low calorie content, high-quality protein, low lipid levels, and therapeutic properties; furthermore, mushroom-containing products are gaining interest in light of the world's increasing need for protein source diversification to meet the global protein demand. At present, there is a strong heterogeneity worldwide in terms of mushroom consumption and, to date, few surveys exist on the factors influencing this. This review, through the PICo and PRISMA statements, identified and analysed 31 papers to answer the question: What are the determinants that drive consumers towards the consumption and purchase of edible mushrooms and novel products containing mushrooms? The expected outcome is to provide an overview of key research issues used thus far, identify current research gaps, and discuss implications for industries and policy-makers. Consumer attitude - including fear of poisoning - towards innovative mushroom-containing products has been poorly analysed in Europe and USA; what we do know is that processed mushrooms appeared more attractive to European and American mainlanders. Few studies have considered the ethnicity of participants, which is an important factor since mushrooms and their culinary applications appear to be known mainly thanks to family tradition. New strategies are needed to increase people's familiarity with these products and to contrast neophobic phenomena. If mushroom price is an obstacle for both companies and purchasers, intrinsic characteristics such as umami taste and positive health and sustainability benefits are strengths to consider in the development of the supply chain, public education, and information initiatives. This should be useful in directing consumer preferences towards meat alternatives containing mushrooms.
Collapse
Affiliation(s)
- Rachele De Cianni
- Department of Agricultural, Forest, and Food Sciences, University of Turin, Largo Paolo Braccini 2, Grugliasco, 10095, Italy
| | - Liam Pippinato
- Department of Agricultural, Forest, and Food Sciences, University of Turin, Largo Paolo Braccini 2, Grugliasco, 10095, Italy.
| | - Teresina Mancuso
- Department of Agricultural, Forest, and Food Sciences, University of Turin, Largo Paolo Braccini 2, Grugliasco, 10095, Italy
| |
Collapse
|
7
|
Derbyshire EJ, Theobald H, Wall BT, Stephens F. Food for our future: the nutritional science behind the sustainable fungal protein - mycoprotein. A symposium review. J Nutr Sci 2023; 12:e44. [PMID: 37123388 PMCID: PMC10131050 DOI: 10.1017/jns.2023.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 05/02/2023] Open
Abstract
Mycoprotein is a well-established and sustainably produced, protein-rich, high-fibre, whole food source derived from the fermentation of fungus. The present publication is based on a symposium held during the Nutrition Society Summer Conference 2022 in Sheffield that explored 'Food for our Future: The Science Behind Sustainable Fungal Proteins'. A growing body of science links mycoprotein consumption with muscle/myofibrillar protein synthesis and improved cardiometabolic (principally lipid) markers. As described at this event, given the accumulating health and sustainability credentials of mycoprotein, there is great scope for fungal-derived mycoprotein to sit more prominently within future, updated food-based dietary guidelines.
Collapse
Affiliation(s)
- Emma J. Derbyshire
- Nutritional Insight, Surrey, UK
- Corresponding author: Emma Derbyshire, email
| | | | | | | |
Collapse
|
8
|
Bell V, Silva CRPG, Guina J, Fernandes TH. Mushrooms as future generation healthy foods. Front Nutr 2022; 9:1050099. [PMID: 36562045 PMCID: PMC9763630 DOI: 10.3389/fnut.2022.1050099] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/08/2022] [Indexed: 12/12/2022] Open
Abstract
The potential of edible mushrooms as an unexploited treasure trove, although rarely included in known food guidelines, is highlighted. Their role in shielding people against the side effects of an unhealthy stylish diet is reviewed. Mushrooms complement the human diet with various bioactive molecules not identified or deficient in foodstuffs of plant and animal sources, being considered a functional food for the prevention of several human diseases. Mushrooms have been widely used as medicinal products for more than 2,000 years, but globally the potential field of use of wild mushrooms has been untapped. There is a broad range of edible mushrooms which remain poorly identified or even unreported which is a valuable pool as sources of bioactive compounds for biopharma utilization and new dietary supplements. Some unique elements of mushrooms and their role in preventative healthcare are emphasized, through their positive impact on the immune system. The potential of mushrooms as antiviral, anti-inflammatory, anti-neoplastic, and other health concerns is discussed. Mushrooms incorporate top sources of non-digestible oligosaccharides, and ergothioneine, which humans are unable to synthesize, the later a unique antioxidant, cytoprotective, and anti-inflammatory element, with therapeutic potential, approved by world food agencies. The prebiotic activity of mushrooms beneficially affects gut homeostasis performance and the balance of gut microbiota is enhanced. Several recent studies on neurological impact and contribution to the growth of nerve and brain cells are mentioned. Indeed, mushrooms as functional foods' nutraceuticals are presently regarded as next-generation foods, supporting health and wellness, and are promising prophylactic or therapeutic agents.
Collapse
Affiliation(s)
- V. Bell
- Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Coimbra, Portugal
| | - C. R. P. G. Silva
- Department of Health and Social Care, School of Health and Care Management, Arden University, Coventry, United Kingdom
| | - J. Guina
- Instituto Superior de Estudos Universitários de Nampula (ISEUNA), Universidade a Politécnica, Nampula, Mozambique
| | - T. H. Fernandes
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Lisbon, Lisbon, Portugal
- Centro de Estudos Interdisciplinares Lurio (CEIL), Lúrio University, Nampula, Mozambique
| |
Collapse
|
9
|
Mapook A, Hyde KD, Hassan K, Kemkuignou BM, Čmoková A, Surup F, Kuhnert E, Paomephan P, Cheng T, de Hoog S, Song Y, Jayawardena RS, Al-Hatmi AMS, Mahmoudi T, Ponts N, Studt-Reinhold L, Richard-Forget F, Chethana KWT, Harishchandra DL, Mortimer PE, Li H, Lumyong S, Aiduang W, Kumla J, Suwannarach N, Bhunjun CS, Yu FM, Zhao Q, Schaefer D, Stadler M. Ten decadal advances in fungal biology leading towards human well-being. FUNGAL DIVERS 2022; 116:547-614. [PMID: 36123995 PMCID: PMC9476466 DOI: 10.1007/s13225-022-00510-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 07/28/2022] [Indexed: 11/04/2022]
Abstract
Fungi are an understudied resource possessing huge potential for developing products that can greatly improve human well-being. In the current paper, we highlight some important discoveries and developments in applied mycology and interdisciplinary Life Science research. These examples concern recently introduced drugs for the treatment of infections and neurological diseases; application of -OMICS techniques and genetic tools in medical mycology and the regulation of mycotoxin production; as well as some highlights of mushroom cultivaton in Asia. Examples for new diagnostic tools in medical mycology and the exploitation of new candidates for therapeutic drugs, are also given. In addition, two entries illustrating the latest developments in the use of fungi for biodegradation and fungal biomaterial production are provided. Some other areas where there have been and/or will be significant developments are also included. It is our hope that this paper will help realise the importance of fungi as a potential industrial resource and see the next two decades bring forward many new fungal and fungus-derived products.
Collapse
Affiliation(s)
- Ausana Mapook
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Kevin D. Hyde
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan China
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, 50200 Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
- Innovative Institute of Plant Health, Zhongkai University of Agriculture and Engineering, Haizhu District, Guangzhou, 510225 China
| | - Khadija Hassan
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), and German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Brunswick, Germany
| | - Blondelle Matio Kemkuignou
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), and German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Brunswick, Germany
| | - Adéla Čmoková
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Frank Surup
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), and German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Brunswick, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Brunswick, Germany
| | - Eric Kuhnert
- Centre of Biomolecular Drug Research (BMWZ), Institute for Organic Chemistry, Leibniz University Hannover, Schneiderberg 38, 30167 Hannover, Germany
| | - Pathompong Paomephan
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), and German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Brunswick, Germany
- Department of Biotechnology, Faculty of Science, Mahidol University, 272 Rama VI Road, Ratchathewi, Bangkok, 10400 Thailand
| | - Tian Cheng
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), and German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Brunswick, Germany
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Sybren de Hoog
- Center of Expertise in Mycology, Radboud University Medical Center / Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Guizhou Medical University, Guiyang, China
- Microbiology, Parasitology and Pathology Graduate Program, Federal University of Paraná, Curitiba, Brazil
| | - Yinggai Song
- Department of Dermatology, Peking University First Hospital, Peking University, Beijing, China
| | - Ruvishika S. Jayawardena
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Abdullah M. S. Al-Hatmi
- Center of Expertise in Mycology, Radboud University Medical Center / Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Tokameh Mahmoudi
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Nadia Ponts
- INRAE, UR1264 Mycology and Food Safety (MycSA), 33882 Villenave d’Ornon, France
| | - Lena Studt-Reinhold
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln an der Donau, Austria
| | | | - K. W. Thilini Chethana
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Dulanjalee L. Harishchandra
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097 China
| | - Peter E. Mortimer
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan China
- Centre for Mountain Futures (CMF), Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201 Yunnan China
| | - Huili Li
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan China
- Centre for Mountain Futures (CMF), Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201 Yunnan China
| | - Saisamorm Lumyong
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, 50200 Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
- Academy of Science, The Royal Society of Thailand, Bangkok, 10300 Thailand
| | - Worawoot Aiduang
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Jaturong Kumla
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, 50200 Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Nakarin Suwannarach
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, 50200 Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Chitrabhanu S. Bhunjun
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Feng-Ming Yu
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Yunnan Key Laboratory of Fungal Diversity and Green Development, Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan China
| | - Qi Zhao
- Yunnan Key Laboratory of Fungal Diversity and Green Development, Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan China
| | - Doug Schaefer
- Centre for Mountain Futures (CMF), Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201 Yunnan China
| | - Marc Stadler
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), and German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Brunswick, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Brunswick, Germany
| |
Collapse
|
10
|
Chezan D, Flannery O, Patel A. Factors affecting consumer attitudes to fungi-based protein: A pilot study. Appetite 2022; 175:106043. [PMID: 35487309 DOI: 10.1016/j.appet.2022.106043] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/03/2022] [Accepted: 04/06/2022] [Indexed: 12/25/2022]
Abstract
Meat substitutes using alternative proteins can facilitate sustainable diets without compromising animal welfare. The fungal protein, also called mycoprotein is the biomass that results from the fermentation of a filamentous fungus. This paper reports the results of a consumer acceptance study of fungal protein-based meat substitutes using a mixed-method design with a web-based survey and a series of semi-structured interviews amongst European participants. Based on the description provided in the survey, 56% of participants were not directly familiar with fungal proteins but they understood its potential societal benefits. The overall Food Technology Neophobia Score (FTNS) of the sample was moderate (M = 40.0, range = 19-62), with more neophilic participants (52.9%) than neophobic (47.1%). FTN was a significant but weak predictor of Perceived Benefits (PB) and Purchase Intentions (PI). Younger participants perceived fungal proteins more positively, and city-dwellers had higher PI than rural dwellers. Reducetarians were more likely to purchase fungal proteins, compared to unrestricted omnivores. Participants with lower acceptance of fungal proteins' association with mould had significantly lower PI than those who were comfortable with it. In turn, familiarity with fungal protein was positively associated with mould acceptance. The qualitative data suggested that the sensory attributes were the most important factor in the acceptance of meat substitutes. The participants also valued clean label products which were perceived as healthier. Familiarity with other products containing mould seemed to assuage concerns and drive acceptance of fungal protein. The findings suggest that the overall acceptance of fungal protein is still rather low. This may be attributed to the perceived low appeal and tastiness of available fungal protein products.
Collapse
Affiliation(s)
- Dana Chezan
- Manchester Metropolitan University, Department of Health Professions, Manchester, M15 6BH, United Kingdom.
| | - Orla Flannery
- Manchester Metropolitan University, Department of Health Professions, Manchester, M15 6BH, United Kingdom.
| | - Ajay Patel
- Manchester Metropolitan University, Department of Health Professions, Manchester, M15 6BH, United Kingdom.
| |
Collapse
|
11
|
Derbyshire E. Fungal-Derived Mycoprotein and Health across the Lifespan: A Narrative Review. J Fungi (Basel) 2022; 8:jof8070653. [PMID: 35887410 PMCID: PMC9320140 DOI: 10.3390/jof8070653] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 02/04/2023] Open
Abstract
Mycoprotein is a filamentous fungal protein that was first identified in the 1960s. A growing number of publications have investigated inter-relationships between mycoprotein intakes and aspects of human health. A narrative review was undertaken focusing on evidence from randomized controlled trials, clinical trials, intervention, and observational studies. Fifteen key publications were identified and undertaken in early/young adulthood, adulthood (mid-life) or older/advanced age. Main findings showed that fungal mycoprotein could contribute to an array of health benefits across the lifespan including improved lipid profiles, glycaemic markers, dietary fibre intakes, satiety effects and muscle/myofibrillar protein synthesis. Continued research is needed which would be worthwhile at both ends of the lifespan spectrum and specific population sub-groups.
Collapse
|
12
|
Kurek MA, Onopiuk A, Pogorzelska-Nowicka E, Szpicer A, Zalewska M, Półtorak A. Novel Protein Sources for Applications in Meat-Alternative Products—Insight and Challenges. Foods 2022; 11:foods11070957. [PMID: 35407043 PMCID: PMC8997880 DOI: 10.3390/foods11070957] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/14/2022] [Accepted: 03/24/2022] [Indexed: 01/01/2023] Open
Abstract
Many people are increasingly interested in a vegetarian or vegan diet. Looking at the research and the available options in the market, there are two generations of products based on typical proteins, such as soy or gluten, and newer generation proteins, such as peas or faba beans, or even proteins based on previously used feed proteins. In the review, we present the characteristics of several proteins that can be consumed as alternatives to first-generation proteins used in vegan foods. In the following part of the work, we describe the research in which novel protein sources were used in terms of the product they are used for. The paper describes protein sources such as cereal proteins, oilseeds proteins coming from the cakes after oil pressing, and novel sources such as algae, insects, and fungus for use in meat analog products. Technological processes that can make non-animal proteins similar to meat are also discussed, as well as the challenges faced by technologists working in the field of vegan products.
Collapse
|
13
|
Assemie A, Abaya G. The Effect of Edible Mushroom on Health and Their Biochemistry. Int J Microbiol 2022; 2022:8744788. [PMID: 35369040 PMCID: PMC8967584 DOI: 10.1155/2022/8744788] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/08/2022] [Accepted: 03/11/2022] [Indexed: 02/07/2023] Open
Abstract
Edible mushrooms are fungi that can be seen with the naked eye and are relatively easy to gather by hand. This review article highlights the health benefit and the biochemistry of several mushroom species. Agaricus bisporus, Pleurotus species. Lentinus edodes, and Volvariella species are the most acceptable varieties among the cultivated mushroom. Various biochemical methods such as methanol, ethanol, and water extract of different parts of the edible mushroom in the laboratory have been applied to determine and/or quantify the presence and effectiveness of their chemical compounds, food value, and medicinal properties. They contain varying amounts of carbohydrates, proteins, nucleic acids, lipids, minerals, terpenoids, phenolic compounds, steroids, and lectins and vitamins, as well as lowering cholesterol levels in the body. Due to the presence of those vital nutrients, mushrooms are the best food item with high nutritional value. These compounds have a wide range of therapeutic effects and can act as immunomodulatory, anticarcinogenic, antiviral, antioxidant, and anti-inflammatory agents. Routine consumption of edible mushrooms would give adequate protection due to the presence of all the necessary nutrients from them. Therefore, edible mushrooms are herbal antibiotics to many diseases as well as various cancers of humans.
Collapse
Affiliation(s)
- Anmut Assemie
- Department of Biology, Wachemo University, PO Box 667, Hossana, Ethiopia
| | - Galana Abaya
- Department of Biotechnology, Wachemo University, PO Box 667, Hossana, Ethiopia
| |
Collapse
|
14
|
Derbyshire E. Food-Based Dietary Guidelines and Protein Quality Definitions—Time to Move Forward and Encompass Mycoprotein? Foods 2022; 11:foods11050647. [PMID: 35267280 PMCID: PMC8909067 DOI: 10.3390/foods11050647] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/09/2022] [Accepted: 02/16/2022] [Indexed: 02/04/2023] Open
Abstract
Food-Based Dietary Guidelines (FBDG) lack uniformity globally, with the integration of protein food sources being highly variable. Protein guidance tends to be dichotomous, e.g., animal versus plant with other categories such as fungal proteins being overlooked. In 2019 the EAT Lancet Food in the Anthropocene report was a chief driver questioning the need to supply healthy diets from sustainable food systems. Some countries are developing FBDG that integrate these aspects, but these are quite often protracted, too subtle or misaligned with other countries, diluting the effects of meaningful global change. Protein quality metrics also underpin the dissemination of dietary guidance. However, for protein, these remain based on a food’s essential amino acid profile and digestibility scores, thus are nutritionally and physiologically centric. It has been proposed that this definition is becoming increasingly myopic from a wider societal perspective. Updated indices should include contemporary issues such as protein diversity and environmental outcomes. Taken together, there is opportunity for renewed thinking about both FBDG and protein quality definitions, with scope to include both health and environmental outcomes and need to move towards the concept of protein diversification.
Collapse
|
15
|
Derbyshire EJ, Finnigan TJ. Mycoprotein: A futuristic portrayal. FUTURE FOODS 2022. [DOI: 10.1016/b978-0-323-91001-9.00037-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
16
|
Mushrooms make waves. FOOD SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1002/fsat.3502_10.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
17
|
Zięba P, Sękara A, Bernaś E, Krakowska A, Sułkowska-Ziaja K, Kunicki E, Suchanek M, Muszyńska B. Supplementation with Magnesium Salts-A Strategy to Increase Nutraceutical Value of Pleurotus djamor Fruiting Bodies. Molecules 2021; 26:molecules26113273. [PMID: 34071646 PMCID: PMC8198667 DOI: 10.3390/molecules26113273] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/21/2021] [Accepted: 05/26/2021] [Indexed: 12/05/2022] Open
Abstract
The use of substrates supplemented with minerals is a promising strategy for increasing the nutraceutical value of Pleurotus spp. The current research was performed to analyze the effect of substrate supplementation with magnesium (Mg) salts on the Mg content, biomass, and chemical composition of pink oyster mushroom (Pleurotus djamor) fruiting bodies. Before inoculation, substrate was supplemented with MgCl2 × 6 H2O and MgSO4, both salts were applied at three concentrations: 210, 420, and 4200 mg of Mg per 2 kg of substrate. The harvest period included three flushes. Substrate supplementation with 4200 mg of Mg caused the most significant decrease in mushroom productivity, of about 28% for both Mg salts. The dry matter content in fruiting bodies was significantly lower in the treatment in which 210 mg of Mg was applied as MgSO4 in comparison to the control. Supplementation effectively increased the Mg content in fruiting bodies of P. djamor by 19–85% depending on the treatment, and significantly affected the level of remaining bioelements and anions. One hundred grams of pink oyster fruiting bodies, supplemented with Mg salts, provides more than 20% of the Mg dietary value recommended by the Food and Drug Administration (FDA); thus, supplementation can be an effective technique for producing mushrooms that are rich in dietary Mg. Although P. djamor grown in supplemented substrate showed lower productivity, this was evident only in the fresh weight because the differences in dry weight were negligible. Mg supplementation increased the antioxidant activity of the fruiting bodies, phenolic compounds, and some amino acids, including L-tryptophan, and vitamins (thiamine and l-ascorbic acid).
Collapse
Affiliation(s)
- Piotr Zięba
- Department of Horticulture, Faculty of Biotechnology and Horticulture, University of Agriculture in Kraków, 29 Listopada 54, 31-425 Kraków, Poland; (P.Z.); (E.K.)
| | - Agnieszka Sękara
- Department of Horticulture, Faculty of Biotechnology and Horticulture, University of Agriculture in Kraków, 29 Listopada 54, 31-425 Kraków, Poland; (P.Z.); (E.K.)
- Correspondence:
| | - Emilia Bernaś
- Department of Plant Product Technology and Nutrition Hygiene, Faculty of Food Technology, University of Agriculture in Krakow, 122 Balicka Street, 30-149 Kraków, Poland;
| | - Agata Krakowska
- Department of Inorganic and Analytical Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland;
| | - Katarzyna Sułkowska-Ziaja
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland; (K.S.-Z.); (B.M.)
| | - Edward Kunicki
- Department of Horticulture, Faculty of Biotechnology and Horticulture, University of Agriculture in Kraków, 29 Listopada 54, 31-425 Kraków, Poland; (P.Z.); (E.K.)
| | - Małgorzata Suchanek
- Department of Analytical Chemistry and Biochemistry, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland;
| | - Bożena Muszyńska
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland; (K.S.-Z.); (B.M.)
| |
Collapse
|
18
|
Mushroom Nutrition as Preventative Healthcare in Sub-Saharan Africa. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11094221] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The defining characteristics of the traditional Sub-Saharan Africa (SSA) cuisine have been the richness in indigenous foods and ingredients, herbs and spices, fermented foods and beverages, and healthy and whole ingredients used. It is crucial to safeguard the recognized benefits of mainstream traditional foods and ingredients, which gradually eroded in the last decades. Notwithstanding poverty, chronic hunger, malnutrition, and undernourishment in the region, traditional eating habits have been related to positive health outcomes and sustainability. The research prevailed dealing with food availability and access rather than the health, nutrition, and diet quality dimensions of food security based on what people consume per country and on the missing data related to nutrient composition of indigenous foods. As countries become more economically developed, they shift to “modern” occidental foods rich in saturated fats, salt, sugar, fizzy beverages, and sweeteners. As a result, there are increased incidences of previously unreported ailments due to an unbalanced diet. Protein-rich foods in dietary guidelines enhance only those of animal or plant sources, while rich protein sources such as mushrooms have been absent in these charts, even in developed countries. This article considers the valorization of traditional African foodstuffs and ingredients, enhancing the importance of establishing food-based dietary guidelines per country. The crux of this review highlights the potential of mushrooms, namely some underutilized in the SSA, which is the continent’s little exploited gold mine as one of the greatest untapped resources for feeding and providing income for Africa’s growing population, which could play a role in shielding Sub-Saharan Africans against the side effects of an unhealthy stylish diet.
Collapse
|
19
|
Derbyshire EJ, Delange J. Fungal Protein – What Is It and What Is the Health Evidence? A Systematic Review Focusing on Mycoprotein. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.581682] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Mycoprotein is a protein-rich fungal-derived sustainable food source that was first discovered in the early 1960's. Since then, a sizeable body of research has investigated the health benefits of mycelium protein. Given this, the present publication aims to systematically review the effects of mycoprotein on human health. A literature search of human studies was conducted using PubMed Central, ClinicalTrials.Gov, Google Scholar and a manual search. Sixteen controlled trials, totaling 432 participants were included – of these 5 studies reported total cholesterol, 5 reported on energy intake, 7 on insulin levels, 8 on glucose levels and 4 studied protein response. Risk of bias showed that 7 studies were good quality although heterogeneity was apparent between studies. Results showed that acute mycoprotein ingestion was associated with reduced total cholesterol levels, particularly amongst those with hyperlipidemia. Evidence was less conclusive for effects on blood glucose and insulin levels. Mycoprotein also appears to be a promising bioavailable source of essential amino acids that could induce muscle protein synthesis. Overall, given growing interest in sustainable proteins and accruing health evidence for mycoprotein, firmer embedment with food-based dietary guidelines is now worthy of consideration.
Collapse
|