1
|
Tkaczyńska A, Sendra E, Jiménez-Redondo N, Rytel E. Studying the Stability of Anthocyanin Pigments Isolated from Juices of Colored-Fleshed Potatoes. Int J Mol Sci 2024; 25:11116. [PMID: 39456898 PMCID: PMC11507568 DOI: 10.3390/ijms252011116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
The aim of this study was to obtain extracts of anthocyanin pigments from red and purple-fleshed potato juices characterized by stable color. For this purpose, potato juices were pasteurized at different temperatures or fruit and vegetable concentrates were added to them. Color stability tests of the obtained pigments were carried out in model pH and temperature conditions and after adding to natural yogurt. Both the pasteurization process and the addition of fruit and vegetable concentrates to the potato juices positively affected their color and its stability in time. However, the pasteurization of the potato juices had a negative effect on the content of biologically active compounds, in contrast to the juices stabilized with the addition of fruit and vegetable concentrates. Anthocyanin pigments from red-fleshed potato juices were more stable than those isolated from the purple-fleshed potato juices. The results of model tests of the anthocyanin pigment concentrates from the colored-flesh potatoes and natural yoghurts with their addition confirmed the high stability of the tested concentrates.
Collapse
Affiliation(s)
- Agnieszka Tkaczyńska
- Department of Food Storage and Technology, Wrocław University of Environmental and Life Sciences, 37 Chełmońskiego Str., 51-630 Wrocław, Poland
| | - Esther Sendra
- Institute on Agrofood and Agroenvironmental Research and Innovation (CIAGRO-UMH), Miguel Hernandez University of Elche, Carretera de Beniel, km 3.2, 03312 Orihuela, Spain; (E.S.); (N.J.-R.)
| | - Nuria Jiménez-Redondo
- Institute on Agrofood and Agroenvironmental Research and Innovation (CIAGRO-UMH), Miguel Hernandez University of Elche, Carretera de Beniel, km 3.2, 03312 Orihuela, Spain; (E.S.); (N.J.-R.)
| | - Elżbieta Rytel
- Department of Food Storage and Technology, Wrocław University of Environmental and Life Sciences, 37 Chełmońskiego Str., 51-630 Wrocław, Poland
| |
Collapse
|
2
|
Mahomud MS, Islam MN, Hossen D, Wazed MA, Yasmin S, Sarker MSH. Innovative probiotic yogurt: Leveraging green banana peel for enhanced quality, functionality, and sensory attributes. Heliyon 2024; 10:e38781. [PMID: 39421385 PMCID: PMC11483293 DOI: 10.1016/j.heliyon.2024.e38781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/29/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024] Open
Abstract
Yogurt, a popular dairy product renowned for its nutritional benefits and probiotic content, serves as a functional food with potential health-promoting properties. The objective of this study was to investigate whether incorporating green banana peel polyphenol extract (GBPPE) into yogurt formulations enhances the viability and functionality of probiotics while also potentially improving the overall quality and health-promoting properties of the yogurts. GBPPE was extracted and added to the yogurt formulation at 0.0 %, 0.5 %, 1 %, and 2 %. Various physico-chemical properties of GBPPE as well as a range of physical, biochemical, sensory, and microbial assessments of formulated yogurts were carried out. Compared to the control, yogurt containing GBPPE improves functional characteristics by increasing antioxidant activity while having no detrimental impact on physicochemical and organoleptic properties. In terms of antioxidant capabilities, all fortified yogurts showed significantly (p < 0.05) higher total phenolic, flavonoid contents and antioxidant activities than the control yogurt. The addition of GBPPE also affected (p < 0.05) pH, titratable acidity, viscosity, water-binding capacity, syneresis, and total soluble solids, while no significant differences in the color parameters were detected in both control and all fortified yogurts with reduced brightness (L∗) and increased redness (a∗) of the product. The initial viable counts of all yogurt samples were almost similar, and the maximum and minimum viability loss of probiotics were observed in control and 2 % GBPPE fortified samples, respectively. Sensory assessment revealed that yogurt with 0.5 % banana peel extract outperformed all other treatments except the control. These findings support the sustainable use of GBPPE to create probiotic yogurt with improved physicochemical, microbiological, and sensory qualities.
Collapse
Affiliation(s)
- Md. Sultan Mahomud
- Department of Food Engineering and Technology, Hajee Mohammad Danesh Science and Technology University, Dinajpur, 5200, Bangladesh
| | - Md. Nahidul Islam
- Department of Agro-Processing, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
- Institute of Food Safety and Processing, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Diloar Hossen
- Department of Food Engineering and Technology, Hajee Mohammad Danesh Science and Technology University, Dinajpur, 5200, Bangladesh
| | - Md. Abdul Wazed
- Department of Food Engineering and Technology, Hajee Mohammad Danesh Science and Technology University, Dinajpur, 5200, Bangladesh
| | - Sabina Yasmin
- Department of Food Engineering and Technology, Hajee Mohammad Danesh Science and Technology University, Dinajpur, 5200, Bangladesh
| | - Md. Sazzat Hossain Sarker
- Department of Food Engineering and Technology, Hajee Mohammad Danesh Science and Technology University, Dinajpur, 5200, Bangladesh
| |
Collapse
|
3
|
Gao F, Zhang W, Cao M, Liu X, Han T, He W, Shi B, Gu Z. Maternal supplementation with konjac glucomannan improves maternal microbiota for healthier offspring during lactation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:3736-3748. [PMID: 38234014 DOI: 10.1002/jsfa.13258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/19/2023] [Accepted: 01/01/2024] [Indexed: 01/19/2024]
Abstract
BACKGROUND The maternal diet during gestation and lactation affects the health of the offspring. Konjac glucomannan (KGM) is a significantly functional polysaccharide in food research, possessing both antioxidant and prebiotic properties. However, the mechanisms of how KGM regulates maternal nutrition remain insufficient and limited. This study aimed to investigate maternal supplementation with KGM during late gestation and lactation to benefit both maternal and offspring generations. RESULTS Our findings indicate that KGM improves serum low density lipoprotein cholesterol (LDL-C) and antioxidant capacity. Furthermore, the KGM group displayed a significant increase in the feed intake-related hormones neuropeptide tyrosine (NPY), Ghrelin, and adenosine monophosphate-activated kinase (AMPK) levels. KGM modified the relative abundance of Clostridium, Candidatus Saccharimonas, unclassified Firmicutes, and unclassified Christensenellaceae in sow feces. Acetate, valerate, and isobutyrate were also improved in the feces of sows in the KGM group. These are potential target bacterial genera that may modulate the host's health. Furthermore, Spearman's correlation analysis unveiled significant correlations between the altered bacteria genus and feed intake-related hormones. More importantly, KGM reduced interleukin-6 (IL-6) levels in milk, further improved IL-10 levels, and reduced zonulin levels in the serum of offspring. CONCLUSION In conclusion, maternal dietary supplementation with KGM during late gestation and lactation improves maternal nutritional status by modifying maternal microbial and increasing lactation feed intake, which benefits the anti-inflammatory capacity of the offspring serum. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Feng Gao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Wentao Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Mingming Cao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Xinyu Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Tingting Han
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Wei He
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Baoming Shi
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Zhigang Gu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| |
Collapse
|
4
|
Bankole AO, Irondi EA, Awoyale W, Ajani EO. Application of natural and modified additives in yogurt formulation: types, production, and rheological and nutraceutical benefits. Front Nutr 2023; 10:1257439. [PMID: 38024362 PMCID: PMC10646222 DOI: 10.3389/fnut.2023.1257439] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/06/2023] [Indexed: 12/01/2023] Open
Abstract
Yogurt, a popular fermented dairy product, is of different types and known for its nutritional and nutraceutical benefits. However, incorporating additives into yogurt has been adopted to improve its functionality and nutraceutical properties. Additives incorporated in yogurt may be natural or modified. The incorporation of diverse natural additives in yogurt formulation, such as moringa, date palm, grape seeds and argel leaf extracts, cornelian cherry paste, mulberry fruit and leaf powder, lentil flour, different types of fibers, lemongrass and spearmint essential oils, and honey, has been reported. Similarly, modified additives, such as β-glucan, pectin, inulin, sodium alginate, and gelatin, are also added to enhance the physicochemical, textural, sensory, and rheological properties of yogurt. Although additives are traditionally added for their technological impact on the yogurt, studies have shown that they influence the nutritional and nutraceutical properties of yogurt, when added. Hence, yogurts enriched with functional additives, especially natural additives, have been reported to possess an improved nutritional quality and impart several health benefits to consumers. These benefits include reducing the risk of cardiovascular disease, cancer, osteoporosis, oxidative stress, and hyperglycemia. This current review highlights the common types of yogurt, the production process, and the rheological and nutraceutical benefits of incorporating natural and modified additives into yogurt.
Collapse
Affiliation(s)
| | | | - Wasiu Awoyale
- Department of Food Science and Technology, Kwara State University, Ilorin, Nigeria
| | | |
Collapse
|
5
|
Waszkiewicz M, Sokół-Łętowska A, Pałczyńska A, Kucharska AZ. Fruit Smoothies Enriched in a Honeysuckle Berry Extract-An Innovative Product with Health-Promoting Properties. Foods 2023; 12:3667. [PMID: 37835320 PMCID: PMC10572983 DOI: 10.3390/foods12193667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Smoothies are claimed to be an effective way of promoting fruit and vegetable consumption. They are a rich source of bioactive compounds and provide numerous health benefits. Strawberries and apples are among the most popular smoothie ingredients. Additionally, chokeberry presents antibacterial, antiviral and anti-inflammatory properties. Another interesting fruit with a wide range of health benefits is the honeysuckle berry. In this study, a dry extract from the mentioned fruit was combined to produce a smoothie enriched in bioactive compounds of unique health-promoting properties. The smoothies were rich in anthocyanins, flavonols, phenolic acids, flavan-3-ols and iridoids. Smoothies with higher concentrations of a polyphenol-iridoid honeysuckle berry extract (0.50%) were the products of a greater content of bioactive compounds and higher antioxidant activity compared to those with no extract or a lower amount (0.25%). However, the sensory evaluation showed that, according to customers, the least attractive smoothies are those with the greatest amounts of the honeysuckle berry extract. Therefore, the correct balance between taste and bioactivity should be sought in order to obtain an innovative product showing characteristics of functional food.
Collapse
Affiliation(s)
- Marta Waszkiewicz
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, Wrocław University of Environmental and Life Sciences, Chełmońskiego 37, 51-630 Wrocław, Poland
| | | | | | | |
Collapse
|
6
|
Li G, Yan N, Li G, Wang J. Optimization of the Process for Green Jujube Vinegar and Organic Acid and Volatile Compound Analysis during Brewing. Foods 2023; 12:3168. [PMID: 37685101 PMCID: PMC10486836 DOI: 10.3390/foods12173168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Healthy fruit vinegar has become very popular recently in China. This study aimed to produce fruit vinegar with a good taste, high nutritional value, and strong functional properties from green jujube. This study investigated the optimization of the process for green jujube vinegar using response surface methodology. The optimum fermentation parameters for green jujube vinegar were determined as follows: initial alcoholicity 6%, acetobacter 8%, fermentation temperature 32 °C, and time 7 d. The organic acids of the optimized sample were evaluated by HPLC, and the volatile substances were identified and analyzed by HS-SPME and GC-MS during the fermentation and aging of the green jujube vinegar. The results showed that the variation trends of the different organic acids during the making of the green jujube vinegar were significantly different. Organic acids are the key flavor compounds of green jujube vinegar, and their changes were mainly attributed to microbial metabolism. In particular, the green jujube vinegar stood out in terms of volatile aroma compounds, including a total of 61 volatile compounds whose major components were acetic acid, isoamyl acetate, ethyl acetate, 3-hydroxy-2-butanone, methyl palmitate, and ethanol. The results can provide theoretical support for the production of green jujube vinegar.
Collapse
Affiliation(s)
- Guifeng Li
- College of Food Science, Shanxi Normal University, Taiyuan 030031, China
| | - Ni Yan
- College of Food Science, Shanxi Normal University, Taiyuan 030031, China
| | - Guoqin Li
- College of Food Science, Shanxi Normal University, Taiyuan 030031, China
| | - Jing Wang
- Modern College of Humanities and Sciences, Shanxi Normal University, Linfen 041000, China
| |
Collapse
|
7
|
Petcu CD, Tăpăloagă D, Mihai OD, Gheorghe-Irimia RA, Negoiță C, Georgescu IM, Tăpăloagă PR, Borda C, Ghimpețeanu OM. Harnessing Natural Antioxidants for Enhancing Food Shelf Life: Exploring Sources and Applications in the Food Industry. Foods 2023; 12:3176. [PMID: 37685108 PMCID: PMC10486681 DOI: 10.3390/foods12173176] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Consumers are increasingly showing in maintaining a healthy dietary regimen, while food manufacturers are striving to develop products that possess an extended shelf-life to meet the demands of the market. Numerous studies have been conducted to identify natural sources that contribute to the preservation of perishable food derived from animals and plants, thereby prolonging its shelf life. Hence, the present study focuses on the identification of both natural sources of antioxidants and their applications in the development of novel food products, as well as their potential for enhancing product shelf-life. The origins of antioxidants in nature encompass a diverse range of products, including propolis, beebread, and extracts derived through various physical-chemical processes. Currently, there is a growing body of research being conducted to evaluate the effectiveness of natural antioxidants in the processing and preservation of various food products, including meat and meat products, milk and dairy products, bakery products, and bee products. The prioritization of discovering novel sources of natural antioxidants is a crucial concern for the meat, milk, and other food industries. Additionally, the development of effective methods for applying these natural antioxidants is a significant objective in the food industry.
Collapse
Affiliation(s)
- Carmen Daniela Petcu
- Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 105 Blvd, Splaiul Independentei, 050097 Bucharest, Romania; (C.D.P.); (O.D.M.); (R.-A.G.-I.); (C.N.); (O.M.G.)
| | - Dana Tăpăloagă
- Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 105 Blvd, Splaiul Independentei, 050097 Bucharest, Romania; (C.D.P.); (O.D.M.); (R.-A.G.-I.); (C.N.); (O.M.G.)
| | - Oana Diana Mihai
- Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 105 Blvd, Splaiul Independentei, 050097 Bucharest, Romania; (C.D.P.); (O.D.M.); (R.-A.G.-I.); (C.N.); (O.M.G.)
| | - Raluca-Aniela Gheorghe-Irimia
- Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 105 Blvd, Splaiul Independentei, 050097 Bucharest, Romania; (C.D.P.); (O.D.M.); (R.-A.G.-I.); (C.N.); (O.M.G.)
| | - Carmen Negoiță
- Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 105 Blvd, Splaiul Independentei, 050097 Bucharest, Romania; (C.D.P.); (O.D.M.); (R.-A.G.-I.); (C.N.); (O.M.G.)
| | - Ioana Mădălina Georgescu
- Sanitary Veterinary and Food Safety Directorate Bucharest, Ilioara Street No. 16Y, District 3, 032125 Bucharest, Romania;
| | - Paul Rodian Tăpăloagă
- Faculty of Animal Productions Engineering and Management, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 011464 Bucharest, Romania;
| | - Cristin Borda
- Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3-5 Mânăștur St., 400372 Cluj-Napoca, Romania
| | - Oana Mărgărita Ghimpețeanu
- Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 105 Blvd, Splaiul Independentei, 050097 Bucharest, Romania; (C.D.P.); (O.D.M.); (R.-A.G.-I.); (C.N.); (O.M.G.)
| |
Collapse
|
8
|
Optimization of Supercritical Carbon Dioxide Extraction of Polyphenols from Black Rosehip and Their Bioaccessibility Using an In Vitro Digestion/Caco-2 Cell Model. Foods 2023; 12:foods12040781. [PMID: 36832856 PMCID: PMC9957028 DOI: 10.3390/foods12040781] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
The fruits of Rosa pimpinellifolia are rich sources of (poly)phenols, however they are underutilized due to the limited information available. The influence of the pressure, temperature, and co-solvent concentration (aqueous ethanol) of the supercritical carbon dioxide extraction (SCO2-aqEtOH) on the extraction yield, total phenolic-, total anthocyanin-, catechin-, cyanidin-3-O-glucoside contents, and total antioxidant activity of black rosehip was investigated simultaneously. The maximum obtained total phenolic and total anthocyanin contents under the optimized extraction conditions (280 bar, 60 °C and 25% ethanol, v/v) were 76.58 ± 4.25 mg gallic acid equivalent and 10.89 ± 1.56 mg cyanidin-3-O-glucoside equivalent per g of the dry fruits, respectively. The optimal extract obtained by SCO2-aqEtOH was compared to two other extraction procedures: ultrasonication using ethanol as solvent (UA-EtOH) and pressurized hot water extraction (PH-H2O). The bioaccessibility and cellular metabolism of the phenolic compounds in the different black rosehip extracts were assessed using an in vitro digestion coupled with a human intestinal Caco-2 cell model. The in vitro digestive stability and cellular uptake of the phenolic compounds had no significant difference among the different extraction methods. The results of this study confirm the efficiency of SCO2-aqEtOH extraction for phenolic compounds and, in particular, for anthocyanins, and could be used to produce new functional food ingredients from black rosehip with high antioxidant power containing both hydrophilic and lipophilic compounds.
Collapse
|
9
|
Thakur M, Modi VK. Biocolorants in food: Sources, extraction, applications and future prospects. Crit Rev Food Sci Nutr 2022; 64:4674-4713. [PMID: 36503345 DOI: 10.1080/10408398.2022.2144997] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Color of a food is one of the major factors influencing its acceptance by consumers. At presently synthetic dyes are the most commonly used food colorant in food industry by providing more esthetically appearance and as a means to quality control. However, the growing concern about health and environmental due to associated toxicity with synthetic food colorants has accelerated the global efforts to replace them with safer and healthy food colorants obtained from natural resources (plants, microorganisms, and animals). Further, many of these biocolorants not only provide myriad of colors to the food but also exert biological properties, thus they can be used as nutraceuticals in foods and beverages. In order to understand the importance of nature-derived pigments as food colorants, this review provides a thorough discussion on the natural origin of food colorants. Following this, different extraction methods for isolating biocolorants from plants and microbes were also discussed. Many of these biocolorants not only provide color, but also have many health promoting properties, for this reason their physicochemical and biological properties were also reviewed. Finally, current trends on the use of biocolorants in foods, and the challenges faced by the biocolorants in their effective utilization by food industry and possible solutions to these challenges were discussed.
Collapse
Affiliation(s)
- Monika Thakur
- Amity Institute of Food Technology, Amity University, Noida, Uttar Pradesh, India
| | - V K Modi
- Amity Institute of Food Technology, Amity University, Noida, Uttar Pradesh, India
| |
Collapse
|
10
|
Naibaho J, Jonuzi E, Butula N, Korzeniowska M, Föste M, Sinamo KN, Chodaczek G, Yang B. Fortification of milk-based yogurt with protein hydrolysates from brewers' spent grain: Evaluation on microstructural properties, lactic acid bacteria profile, lactic acid forming capability and its physical behavior. Curr Res Food Sci 2022; 5:1955-1964. [PMID: 36312882 PMCID: PMC9596745 DOI: 10.1016/j.crfs.2022.10.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/06/2022] [Accepted: 10/11/2022] [Indexed: 11/21/2022] Open
Abstract
Current study aimed to evaluate the utilization of protein from brewers' spent grain (BSGP) on microstructural formation as well as rheological behavior, acidity and lactic acid bacteria (LAB) profile during the refrigerated storage. Three different BSGPs were provided including BSGP-C (extracted without enzymatic hydrolysis), BSGP-P (with protease), and BSGP-PF (with protease co-incubated with flavourzyme). The results demonstrated that BSGPs improved lactic acid forming capability in yogurt production to a higher level than milk-protein based enrichment. BSGPs improved the growth and survival of lactic acid bacteria (LAB), particularly BSGP-P in improving the survival rate of L. bulgaricus. Confocal laser scanning microscopy showed that BSGP-P generated a denser, softer and more homogenous surface appearance as well as showed the tendency to form more compact networks; had a weaker initial gel forming, increased and preserved the consistency of the yogurt during the storage. In conclusion, BSGPs in yogurt improved and preserved the textural properties, consistency, acidity and lactic acid bacteria. Protease-extracted preserve the flow behavior of yogurt Protease-extracted soften the microstructural surface of the matrices BSG protein-rich extracts improve the survival of lactic acid bacteria
Collapse
Affiliation(s)
- Joncer Naibaho
- Department of Functional Food Products Development, Faculty of Biotechnology and Food Science, Wroclaw University of Environmental and Life Sciences, 51-630, Wroclaw, Poland,Corresponding author.
| | - Emir Jonuzi
- Department of Chemistry, Faculty of Natural Sciences and Mathematics, State University of Tetova, 1200, Tetovo, Macedonia
| | - Nika Butula
- Department of Food Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, 10000, Croatia
| | - Małgorzata Korzeniowska
- Department of Functional Food Products Development, Faculty of Biotechnology and Food Science, Wroclaw University of Environmental and Life Sciences, 51-630, Wroclaw, Poland,Corresponding author.
| | - Maike Föste
- Fraunhofer Institute for Process Engineering and Packaging IVV, Freising, Germany
| | - Karina Nola Sinamo
- Department of Food Science and Technology, Faculty of Agriculture, Universitas Sumatera Utara, 20155, Medan, Indonesia
| | - Grzegorz Chodaczek
- Bioimaging Laboratory, Łukasiewicz Research Network-PORT Polish Center for Technology Development, 54-066, Wroclaw, Poland
| | - Baoru Yang
- Food Chemistry and Food Development, Department of Life Technologies, University of Turku, 20014, Turku, Finland
| |
Collapse
|
11
|
Kumari P, Raju DVS, Prasad KV, Saha S, Panwar S, Paul S, Banyal N, Bains A, Chawla P, Fogarasi M, Fogarasi S. Characterization of Anthocyanins and Their Antioxidant Activities in Indian Rose Varieties ( Rosa × hybrida) Using HPLC. Antioxidants (Basel) 2022; 11:antiox11102032. [PMID: 36290755 PMCID: PMC9598279 DOI: 10.3390/antiox11102032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/10/2022] [Accepted: 10/10/2022] [Indexed: 11/21/2022] Open
Abstract
The present study was designed to explore the anthocyanin profile and antioxidant activities in Indian rose varieties (Rosa × hybrida). Among fifty varieties, Ashwini recorded the highest total phenolic content (427.59 ± 3.47 mg GAE/100 g) along with the highest FRAP (397.15 ± 0.82 µmol trolox/g) and DPPH free radical scavenging activity (93.47 ± 0.19%) on a fresh weight basis. A significant positive correlation was observed between total anthocyanin content, total phenolic content, and antioxidant activities. Four distinct clusters were formed according to total anthocyanins, total phenols, and antioxidant activities; white- and yellow-colored varieties were most distant from red ones. Principal component analysis revealed that variable total anthocyanin content contributed to the maximum variation among the fifty rose varieties studied. Highly anthocyanin-rich rose varieties were characterized by high-performance liquid chromatography coupled with a photodiode array detector (HPLC-PAD), which identified two major components of anthocyanins, i.e., cyanidin 3,5-di-O-glucoside and pelargonidin 3,5-di-O-glucoside. Cyanidin 3,5-di-O-glucoside was the predominant anthocyanin in red- and pink-colored varieties, whereas pelargonidin 3,5-di-O-glucoside was the major one in the orange variety. The maximum cyanidin 3,5-di-O-glucoside content was recorded in variety Ashwini (497.79 mg/100 g), whereas the maximum pelargonidin 3,5-di-O-glucoside content was recorded in Suryakiran (185.43 mg/100 g). It is suggested that the rose varieties with high anthocyanin content and antioxidant activity can be exploited as a potential source of nutraceuticals in the food industry.
Collapse
Affiliation(s)
- Poonam Kumari
- ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
- Division of Agrotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India
- Correspondence: (P.K.); (P.C.); (M.F.)
| | - D. V. S. Raju
- ICAR-Directorate of Floricultural Research, Pune 411005, Maharashtra, India
| | - K. V. Prasad
- ICAR-Directorate of Floricultural Research, Pune 411005, Maharashtra, India
| | - Supradip Saha
- ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Sapna Panwar
- ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Surinder Paul
- ICAR-National Bureau of Agriculturally Important Microorganisms, Kushmaur, Maunath Bhanjan 275101, Uttar Pradesh, India
- ICAR-Indian Grassland and Fodder Research Institute, Himachal Pasturelands, Palampur 176061, Himachal Pradesh, India
| | - Namita Banyal
- ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Aarti Bains
- Department of Microbiology, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Prince Chawla
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, Punjab, India
- Correspondence: (P.K.); (P.C.); (M.F.)
| | - Melinda Fogarasi
- Department of Food Engineering, University of Agricultural Sciences and Veterinary Medicine of Cluj Napoca, Calea Mănăstur 3–5, 400372 Cluj-Napoca, Romania
- Correspondence: (P.K.); (P.C.); (M.F.)
| | - Szabolcs Fogarasi
- Department of Chemical Engineering, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, 11 Arany Janos Street, 400028 Cluj-Napoca, Romania
- Interdisciplinary Research Institute on Bio-Nano-Sciences, Babeş-Bolyai University, 42 Treboniu Laurian Street, 400271 Cluj-Napoca, Romania
| |
Collapse
|
12
|
Kasapoğlu KN, Demircan E, Gültekin-Özgüven M, Kruger J, Frank J, Arslaner A, Özçelik B. Recovery of Polyphenols Using Pressurized Hot Water Extraction (PHWE) from Black Rosehip Followed by Encapsulation for Increased Bioaccessibility and Antioxidant Activity. Molecules 2022; 27:molecules27206807. [PMID: 36296399 PMCID: PMC9610414 DOI: 10.3390/molecules27206807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/07/2022] [Accepted: 10/08/2022] [Indexed: 11/16/2022] Open
Abstract
In this work, pressurized hot water extraction (PHWE) of hydrophilic polyphenols from black rosehip fruit was maximized using response surface methodology for simultaneous optimization in terms of extraction yield, total antioxidant capacity, total (poly)phenols, catechin, total monomeric anthocyanins, and cyanidin-3-O-glucoside. Extraction parameters, including temperature (X1: 40–80 °C) and the solvent-to-solid ratio (X2: 10–40 mL/g), were investigated as independent variables. Experimentally obtained values were fitted to a second-order polynomial model, and optimal conditions were determined using multiple regression analysis and analysis of variance. The black rosehip extract (BRE) obtained at optimized PHWE conditions was further encapsulated in biopolymer-coated liposomes and spray dried to enhance its processing and digestive stability. After reconstitution, the fabricated particles had an average size of 247–380 nm and a zeta-potential of 15–45 mV. Moreover, encapsulation provided remarkable protection of the phenolics under in vitro gastrointestinal digestion conditions, resulting in up to a 5.6-fold more phenolics in the bioaccessible fraction, which also had 2.9–8.6-fold higher antioxidant activity compared to the nonencapsulated BRE. In conclusion, PHWE in combination with a biopolymer coating is a potent method for the production of stable and safe edible natural extracts for the delivery of (poly)phenolic compounds in food and dietary supplements.
Collapse
Affiliation(s)
- Kadriye Nur Kasapoğlu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Istanbul, Turkey
| | - Evren Demircan
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Istanbul, Turkey
| | - Mine Gültekin-Özgüven
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Istanbul, Turkey
| | - Johanita Kruger
- Institute of Nutritional Sciences, University of Hohenheim, Garbenstraße 28, 70599 Stuttgart, Germany
| | - Jan Frank
- Institute of Nutritional Sciences, University of Hohenheim, Garbenstraße 28, 70599 Stuttgart, Germany
| | - Ayla Arslaner
- Department of Food Engineering, Faculty of Engineering, Bayburt University, 69000 Bayburt, Turkey
| | - Beraat Özçelik
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Istanbul, Turkey
| |
Collapse
|
13
|
Functional and Healthy Yogurts Fortified with Probiotics and Fruit Peel Powders. FERMENTATION 2022. [DOI: 10.3390/fermentation8090469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The application of processing waste by-products along with probiotics is an interesting choice to confer potential functional aspects to food products. This study was designed to investigate the nutritional capacity of freeze-dried mango peel powder (MPP) and banana peel powder (BPP) in the presence of a mixture of three probiotic species (1% of each of three probiotics (Lacticaseibacillus casei (431®), Lacticaseibacillus rhamnosus (LGG®) and Bifidobacterium subsp. Lactis (Bb-12®)) as sources of additional nutrients and prebiotics in fresh and rehydrated freeze-dried (RFD) yogurts for 28 days of refrigerated storage. The net count of probiotics in yogurt fortified with MPP and BPP increased by at least 1 log CFU/g after 4 weeks of refrigerated storage. Adding fruit peel powder (FPP) significantly (p < 0.05) increased fat, ash, and protein contents in both fresh and RFD yogurts in comparison with the control yogurt. Similarly, the total phenolic contents (TPC) and antioxidant activity (AOA) was enhanced significantly (p < 0.05). The TPC reached 2.27 ± 0.18 and 2.73 ± 0.11 mg GAE/g in RFD enriched with BPP and MPP compared to a TPC of 0.31 ± 0.07 mg GAE/g in the control. Additionally, yogurt samples enriched with BPP (Y-5) and MPP (Y-6) demonstrated 12% more sugar contents than non-fortified yogurts (Y-1). Higher titratable acidity and lower pH values were also recorded in the RFD yogurt. Significant differences (p < 0.05) in the color parameters were detected in both fresh and RFD yogurts with reduced brightness (L*) and increased redness (a*) of the product. These findings demonstrated the suitability of MPP and BPP in yogurt formulations to optimize the advantages of such synbiotic products with higher availability of phenolic compounds.
Collapse
|
14
|
Naibaho J, Butula N, Jonuzi E, Korzeniowska M, Chodaczek G, Yang B. The roles of brewers' spent grain derivatives in coconut-based yogurt-alternatives: Microstructural characteristic and the evaluation of physico-chemical properties during the storage. Curr Res Food Sci 2022; 5:1195-1204. [PMID: 35992631 PMCID: PMC9382424 DOI: 10.1016/j.crfs.2022.07.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/16/2022] [Accepted: 07/18/2022] [Indexed: 12/15/2022] Open
Abstract
Water soluble coconut extract (WSCE) was reported as a suitable matrix for probiotic delivery as yogurt alternatives. The study aimed to evaluate the roles of brewers' spent grain (BSG) derivatives in enhancing the properties of WSCE-based yogurt alternatives. BSG flour (BSGF) and 3 different protein extracts (BSGPs) including protein control (BSGP-C), protamex treatment (BSGP-P), and protamex combined with flavourzyme treatment (BSGP-PF) were incorporated in WSCE-based yogurt alternatives. Confocal laser scanning microscopy showed that BSGPs prepared with protease treatment generated less dense fat distribution and more homogenous globules compared to that in WSCE control yogurt. It also resulted in a softer, denser and more homogenous matrix. The modification in microstructural properties was aligned with differences in several functional groups including ⍺-glycosidic bond and hydroxyl groups from polysaccharides, aliphatic ethers and acid functional groups as well as aromatic hydrocarbons of lignin, amide I, acetyl groups and amide III. BSGF and BSGPs increased the mechanical properties, viscosity and modified flow behaviour properties demonstrating its ability in maintaining textural and gel formation. After 14 days of storage, maintenance in flow behaviour, syneresis and mechanical properties was identified. Furthermore, BSG derivatives enhanced lactic acid production up to 3 folds. In conclusion, BSG derivatives maintained the microstructure and gel formation, improved the properties of WSCE-based yogurt alternatives and preserved its behaviour during 14 days of storage.
Collapse
Affiliation(s)
- Joncer Naibaho
- Department of Functional Food Products Development, Faculty of Biotechnology and Food Science, Wroclaw University of Environmental and Life Sciences, 51-630, Wroclaw, Poland
| | - Nika Butula
- Department of Food Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, 10000, Croatia
| | - Emir Jonuzi
- Department of Chemistry, Faculty of Natural Sciences and Mathematics, University of Tetova, 1200, Tetovo, Macedonia
| | - Małgorzata Korzeniowska
- Department of Functional Food Products Development, Faculty of Biotechnology and Food Science, Wroclaw University of Environmental and Life Sciences, 51-630, Wroclaw, Poland
| | - Grzegorz Chodaczek
- Bioimaging Laboratory, Łukasiewicz Research Network-PORT Polish Center for Technology Development, 54-066, Wroclaw, Poland
| | - Baoru Yang
- Food Chemistry and Food Development, Department of Life Technologies, University of Turku, 20014, Turku, Finland
| |
Collapse
|
15
|
Lactic Acid Bacteria—Ensuring a Safe, Healthy Food Supply for Humankind since the Dawn of Our Civilization. Foods 2022; 11:foods11111579. [PMID: 35681329 PMCID: PMC9180021 DOI: 10.3390/foods11111579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 05/20/2022] [Indexed: 11/29/2022] Open
|
16
|
Phenolic Content and Antioxidant Activity in Fruit of the Genus Rosa L. Antioxidants (Basel) 2022; 11:antiox11050912. [PMID: 35624776 PMCID: PMC9138066 DOI: 10.3390/antiox11050912] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 02/01/2023] Open
Abstract
Throughout history, people of different cultures have acknowledged the relationship between food properties and health. The pseudo-fruits of different Rosa species contain high levels of vitamin C and other beneficial biological active agents such as phenolics, and others. The purpose of the research was to determine the variability of the phenolic compound profiles in the fruit of different species of Rosa L. and to evaluate the antioxidant activity of fruit extracts in vitro. The total contents of phenolics, flavonoids, procyanidins, and hydroxycinnamic acid derivatives were performed using the spectrophotometric method. Qualitative and quantitative analysis of individual phenolics in rosehip samples was carried out by applying the HPLC method. The largest amounts of phenolic compounds 26.49 ± 1.32 mg GRE/g were found in rosehip samples of the Rosa pisocarpa species. (+)-Catechin was the predominant phenolic compound in rosehip fruit samples, and the highest content 522.48 ± 26.12 µg/g was found in rosehip samples of the Rosa subcanina species. A strong correlation was found between the total amount of phenolic compounds determined in rosehip extracts and the radical scavenging and reducing the activity of their extracts in vitro (r = 0.759 and 0.761, accordingly, p < 0.001).
Collapse
|
17
|
Naibaho J, Butula N, Jonuzi E, Korzeniowska M, Laaksonen O, Föste M, Kütt ML, Yang B. Potential of brewers’ spent grain in yogurt fermentation and evaluation of its impact in rheological behaviour, consistency, microstructural properties and acidity profile during the refrigerated storage. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107412] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
18
|
Stobiecka M, Król J, Brodziak A. Antioxidant Activity of Milk and Dairy Products. Animals (Basel) 2022; 12:245. [PMID: 35158569 PMCID: PMC8833589 DOI: 10.3390/ani12030245] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/30/2021] [Accepted: 01/16/2022] [Indexed: 02/06/2023] Open
Abstract
The aim of the study was to present a review of literature data on the antioxidant potential of raw milk and dairy products (milk, fermented products, and cheese) and the possibility to modify its level at the milk production and processing stage. Based on the available reports, it can be concluded that the consumption of products that are a rich source of bioactive components improves the antioxidant status of the organism and reduces the risk of development of many civilization diseases. Milk and dairy products are undoubtedly rich sources of antioxidant compounds. Various methods, in particular, ABTS, FRAP, and DPPH assays, are used for the measurement of the overall antioxidant activity of milk and dairy products. Research indicates differences in the total antioxidant capacity of milk between animal species, which result from the differences in the chemical compositions of their milk. The content of antioxidant components in milk and the antioxidant potential can be modified through animal nutrition (e.g., supplementation of animal diets with various natural additives (herbal mixtures, waste from fruit and vegetable processing)). The antioxidant potential of dairy products is associated with the quality of the raw material as well as the bacterial cultures and natural plant additives used. Antioxidant peptides released during milk fermentation increase the antioxidant capacity of dairy products, and the use of probiotic strains contributes its enhancement. Investigations have shown that the antioxidant activity of dairy products can be enhanced by the addition of plant raw materials or their extracts in the production process. Natural plant additives should therefore be widely used in animal nutrition or as functional additives to dairy products.
Collapse
Affiliation(s)
| | - Jolanta Król
- Department of Quality Assessment and Processing of Animal Products, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland; (M.S.); (A.B.)
| | | |
Collapse
|
19
|
Effect of Tamarillo Fortification and Fermentation Process on Physicochemical Properties and Nutrient and Volatiles Content of Yoghurt. Foods 2021; 11:foods11010079. [PMID: 35010204 PMCID: PMC8750935 DOI: 10.3390/foods11010079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 12/29/2022] Open
Abstract
Bright-red Laird’s Large tamarillo is a unique and under-utilised fruit that is a dietary source of carotenoids, vitamins C and E, and dietary fibre. The effects of the addition of freeze-dried tamarillo powder (5–15%) to milk and yoghurt starter either before (PRE) or after (POS) fermentation on physicochemical properties were examined. Using LC-MS and GG-MS, nutrient and volatile contents of tamarillo yoghurt were also examined. The addition of tamarillo prior to fermentation was associated with a more yellow colour and higher concentrations of tocopherol compared to when tamarillo was added after fermentation. Higher elastic modulus, PUFAs, pro-vitamin A content, and vitamin C retention were observed for POS than PRE. All tamarillo yoghurts showed improvement in syneresis, lower lactose content, and higher concentrations of antioxidant vitamins than the commercial premium-assorted fruits yoghurt from New Zealand Food Composition Data. Yoghurt fortified with tamarillo powder offers the potential for the development of a high-value nutritional product that could be a good source of vitamin C and a source of vitamin E and β-carotene, and maintain the volatiles that give tamarillo its distinctive flavour.
Collapse
|
20
|
Pashazadeh H, Özdemir N, Zannou O, Koca I. Antioxidant capacity, phytochemical compounds, and volatile compounds related to aromatic property of vinegar produced from black rosehip (Rosa pimpinellifolia L.) juice. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101318] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
21
|
Sik B, Székelyhidi R, Lakatos E, Kapcsándi V, Ajtony Z. Analytical procedures for determination of phenolics active herbal ingredients in fortified functional foods: an overview. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-021-03908-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
AbstractFortification of foods with phenolic compounds is becoming increasingly popular due to their beneficial physiological effects. The biological activities reported include antioxidant, anticancer, antidiabetic, anti-inflammatory, or neuroprotective effects. However, the analysis of polyphenols in functional food matrices is a difficult task because of the complexity of the matrix. The main challenge is that polyphenols can interact with other food components, such as carbohydrates, proteins, or lipids. The chemical reactions that occur during the baking technologies in the bakery and biscuit industry may also affect the results of measurements. The analysis of polyphenols found in fortified foods can be done by several techniques, such as liquid chromatography (HPLC and UPLC), gas chromatography (GC), or spectrophotometry (TPC, DPPH, FRAP assay etc.). This paper aims to review the available information on analytical methods to fortified foodstuffs while as presenting the advantages and limitations of each technique.
Collapse
|
22
|
Structure Characterization of Polysaccharide from Chinese Yam ( Dioscorea opposite Thunb.) and Its Growth-Promoting Effects on Streptococcus thermophilus. Foods 2021; 10:foods10112698. [PMID: 34828979 PMCID: PMC8624800 DOI: 10.3390/foods10112698] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/28/2021] [Accepted: 11/02/2021] [Indexed: 11/16/2022] Open
Abstract
To clarify the mechanisms underlying the growth-promoting effects of yam polysaccharide on Streptococcus thermophilus (S. thermophilus), the yam polysaccharide was extracted using a deep eutectic solvents (DESs) method and separated into four fractions by DEAE-cellulose 52. These fractions were used as the alternative carbon source to substitute lactose to compare their growth-promoting effects on S. thermophilus. Furthermore, their molecular weight, monosaccharide and functional groups' composition, microscopic forms and other basic structure characterizations were analyzed. The results showed that all the fractions could significantly promote S. thermophilus growth, and fractions exhibited significantly different growth-promoting effects, whose viable count increased by 6.14, 6.03, 11.48 and 11.29%, respectively, relative to those in the M17 broth medium. Structure-activity relationship analysis revealed that the high growth-promoting activity of yam polysaccharide might be more dependent on the higher molecular weight, the higher galacturonic acid content and its complex spatial configuration, and the existence of β-glycosides would make the yam polysaccharide have a better growth-promoting effect on S. thermophilus.
Collapse
|
23
|
Szołtysik M, Kucharska AZ, Dąbrowska A, Zięba T, Bobak Ł, Chrzanowska J. Effect of Two Combined Functional Additives on Yoghurt Properties. Foods 2021; 10:1159. [PMID: 34064052 PMCID: PMC8224028 DOI: 10.3390/foods10061159] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/11/2021] [Accepted: 05/19/2021] [Indexed: 11/16/2022] Open
Abstract
The aim of the research was the analysis of yoghurts enriched with blue honeysuckle berries dry polyphenolic extract and new preparation of resistant starch. The additives were introduced individually at concentration 0.1% (w/v) and in mixture at final concentration of 0.1 and 0.2% of both components. Yogurt microflora, pH, and its physicochemical and antioxidant properties were examined over 14 days of storage under refrigerated conditions. Studies showed that both substances can be successfully used in yoghurt production. Yoghurt microflora es. S. thermophilus and Lb. delbrueckii subsp. bulgaricus counts appeared to be higher in samples supplemented with these additives comparing to control yoghurt by 3-8%. More stimulating effect on their growth, especially on S. thermophilus, revealed resistant starch. Addition of this polysaccharide improved also the rheological properties of yogurts, which showed higher viscosity than samples produced without it. Addition of honeysuckle berries preparation significantly influenced the yogurts' color, giving them deep purple color, and their antioxidant potential. During storage, contents of anthocyanin and iridoid compounds were decreasing, but antioxidant activity in the products remained stable.
Collapse
Affiliation(s)
- Marek Szołtysik
- Department of Functional Food Products Development, Wrocław University of Environmental and Life Sciences, Chełmońskiego Str. 37, 51-640 Wrocław, Poland; (A.D.); (Ł.B.); (J.C.)
| | - Alicja Z. Kucharska
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, Wrocław University of Environmental and Life Sciences, Chełmońskiego Str. 37, 51-640 Wrocław, Poland;
| | - Anna Dąbrowska
- Department of Functional Food Products Development, Wrocław University of Environmental and Life Sciences, Chełmońskiego Str. 37, 51-640 Wrocław, Poland; (A.D.); (Ł.B.); (J.C.)
| | - Tomasz Zięba
- Department of Food Storage and Technology, Wrocław University of Environmental and Life Sciences, Chełmońskiego Str. 37, 51-640 Wrocław, Poland;
| | - Łukasz Bobak
- Department of Functional Food Products Development, Wrocław University of Environmental and Life Sciences, Chełmońskiego Str. 37, 51-640 Wrocław, Poland; (A.D.); (Ł.B.); (J.C.)
| | - Józefa Chrzanowska
- Department of Functional Food Products Development, Wrocław University of Environmental and Life Sciences, Chełmońskiego Str. 37, 51-640 Wrocław, Poland; (A.D.); (Ł.B.); (J.C.)
| |
Collapse
|
24
|
Liaudanskas M, Noreikienė I, Zymonė K, Juodytė R, Žvikas V, Janulis V. Composition and Antioxidant Activity of Phenolic Compounds in Fruit of the Genus Rosa L. Antioxidants (Basel) 2021; 10:antiox10040545. [PMID: 33915934 PMCID: PMC8065802 DOI: 10.3390/antiox10040545] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/25/2021] [Accepted: 03/29/2021] [Indexed: 02/07/2023] Open
Abstract
We investigated the qualitative and quantitative composition of phenolic compounds in the fruit of Rosa L. cultivars grown in Lithuania. The highest total content of phenolic compounds (50.13 ± 4.17 mg GAE/g, p < 0.05) was determined in fruit samples of Rosa pimpinellifolia L. cultivar “Single Cherry”. The highest levels of hydroxycinnamic acid derivatives were determined in fruit samples of Rosa rugosa Thunb. cultivars “Dart’s Defender” and “Adam Chodun”. The highest flavonoid content was determined in fruit samples of Rosa multiflora Thunb. cultivar “Nana” and R. multiflora species. The strongest antioxidant activity evaluated by applying DPPH and FRAP assays was determined in fruit extracts of R. pimpinellifolia cultivar “Single Cherry” and R. rugosa cultivar “Adam Chodun”. Qualitative and quantitative analysis of phenolic compounds in Rosa L. fruit was performed by applying UHPLC. The following phenolic compounds were identified in fruit samples: caffeic acid, chlorogenic acid, quercetin, quercitrin, (+)-catechin, (−)-epicatechin, (−)-epicatechin gallate, rutin, phloridzin, and kaempferol-3-O-glycoside. A strong correlation was determined between the total amount of phenolic compounds determined in extracts of the fruit samples of Rosa L. cultivars and the radical scavenging and reducing activity of their extracts in vitro (R = 0.767 and 0.727, respectively, p < 0.05).
Collapse
Affiliation(s)
- Mindaugas Liaudanskas
- Department of Pharmacognosy, Lithuanian University of Health Sciences, Sukilėlių av. 13, LT-50162 Kaunas, Lithuania; (R.J.); (V.J.)
- Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Sukilėlių av. 13, LT-50162 Kaunas, Lithuania; (K.Z.); (V.Ž.)
- Correspondence: ; Tel.: +370-683-48794; Fax: +370-37-220733
| | - Irena Noreikienė
- Botanical Garden of Vilnius University, Kairėnų str. 43, LT-10239 Vilnius, Lithuania;
| | - Kristina Zymonė
- Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Sukilėlių av. 13, LT-50162 Kaunas, Lithuania; (K.Z.); (V.Ž.)
| | - Rugilė Juodytė
- Department of Pharmacognosy, Lithuanian University of Health Sciences, Sukilėlių av. 13, LT-50162 Kaunas, Lithuania; (R.J.); (V.J.)
| | - Vaidotas Žvikas
- Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Sukilėlių av. 13, LT-50162 Kaunas, Lithuania; (K.Z.); (V.Ž.)
| | - Valdimaras Janulis
- Department of Pharmacognosy, Lithuanian University of Health Sciences, Sukilėlių av. 13, LT-50162 Kaunas, Lithuania; (R.J.); (V.J.)
| |
Collapse
|