1
|
Joshi A, Kathuria D, Paul M, Singh N. An overview on the potential application of nanotechnology in enhancing the therapeutic efficacy of phytoestrogens. Food Chem 2025; 464:141779. [PMID: 39481307 DOI: 10.1016/j.foodchem.2024.141779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/20/2024] [Accepted: 10/23/2024] [Indexed: 11/02/2024]
Abstract
Phytoestrogens, derived from plants possesses structural similarity with 17 β-estradiol found in mammals. It is abundantly present in soybean along with red clove, alfalfa as well as other legumes, nuts, vegetables and seeds. It is used as hormone replacement therapy and exhibits both anti-estrogenic and estrogenic properties that linked to therapeutic benefits as well as plays active role in sports nutrition. Despite the potential benefits of phytoestrogens, their low solubility, bioavailability, and stability make it challenging to target them effectively. Recent advancements in nanotechnology have paved in facilitating target delivery. Scaling at nano level offered greater surface area, improved solubility, and bioavailability of phytoestrogens which has ultimately reduced the required medication dosage, and enhanced cost-effectiveness, particularly for expensive bioactive substances where precise dosages are recommended. The present article discussed about the potential application of nanotechnology in enhancing therapeutic benefits of phytoestrogens while minimizing their potential side effects.
Collapse
Affiliation(s)
- Aroma Joshi
- Department of Food Science and Technology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand 248002, India
| | - Deepika Kathuria
- Department of Food Science and Technology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand 248002, India
| | - Maman Paul
- Department of Physiotherapy, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Narpinder Singh
- Department of Food Science and Technology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand 248002, India.
| |
Collapse
|
2
|
Milinčić DD, Kostić AŽ, Lević S, Gašić UM, Božić DD, Suručić R, Ilić TD, Nedović VA, Vidović BB, Pešić MB. Goat's Milk Powder Enriched with Red ( Lycium barbarum L.) and Black ( Lycium ruthenicum Murray) Goji Berry Extracts: Chemical Characterization, Antioxidant Properties, and Prebiotic Activity. Foods 2024; 14:62. [PMID: 39796352 PMCID: PMC11719583 DOI: 10.3390/foods14010062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/22/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025] Open
Abstract
The current trend in food innovations includes developing products containing plant ingredients or extracts rich in bioactive compounds. This study aimed to prepare and characterize skimmed thermally treated goat's milk powders enriched with lyophilized fruit extracts of Lycium ruthenicum Murray (GMLR) and Lycium barbarum L. (GMLB). Proximate analysis, ultra-high performance liquid chromatography with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS), Fourier transform infrared spectroscopy using attenuated total reflection (FTIR-ATR), and electrophoretic analysis were assessed. Total phenolic content (TPC), total protein content, and antioxidant properties of enriched goat milk powders were determined spectrophotometrically, and prebiotic potential was evaluated by the broth microdilution method. A total of 25 phenolic compounds and 18 phenylamides were detected in the enriched goat milk powders. Electrophoretic analysis showed the absence of proteolysis in the prepared powders. The GMLR showed the highest TPC and displayed a ferric ion-reducing power, probably contributed by anthocyanins and some phenylamides. GMLR and GMLB had higher ABTS radical scavenging activity but lower ferrous ion-chelating capacity than control goat's milk powder. GMLB and GMLR in a dose-dependent manner (0.3-5 mg/mL) showed a growth-promoting effect on probiotic strains. In summary, prepared goji/goat milk powders, primarily GMLR, might be used as prebiotic supplements or functional food additives.
Collapse
Affiliation(s)
- Danijel D. Milinčić
- Department of Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (D.D.M.); (A.Ž.K.); (S.L.); (V.A.N.)
| | - Aleksandar Ž. Kostić
- Department of Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (D.D.M.); (A.Ž.K.); (S.L.); (V.A.N.)
| | - Steva Lević
- Department of Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (D.D.M.); (A.Ž.K.); (S.L.); (V.A.N.)
| | - Uroš M. Gašić
- Department of Plant Physiology, Institute for Biological Research Siniša Stanković-National Institute of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia;
| | - Dragana D. Božić
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia;
| | - Relja Suručić
- Department of Pharmacognosy, Faculty of Medicine, University of Banja Luka, 78000 Banja Luka, Bosnia and Herzegovina;
| | - Tijana D. Ilić
- Department of Bromatology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia;
| | - Viktor A. Nedović
- Department of Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (D.D.M.); (A.Ž.K.); (S.L.); (V.A.N.)
| | - Bojana B. Vidović
- Department of Bromatology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia;
| | - Mirjana B. Pešić
- Department of Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (D.D.M.); (A.Ž.K.); (S.L.); (V.A.N.)
| |
Collapse
|
3
|
Hu C, Shen W, Xia Y, Yang H, Chen X. Lactoferrin: Current situation and future prospects. FOOD BIOSCI 2024; 62:105183. [DOI: 10.1016/j.fbio.2024.105183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
4
|
Tian M, Cheng J, Guo M. Stability, Digestion, and Cellular Transport of Soy Isoflavones Nanoparticles Stabilized by Polymerized Goat Milk Whey Protein. Antioxidants (Basel) 2024; 13:567. [PMID: 38790672 PMCID: PMC11117734 DOI: 10.3390/antiox13050567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024] Open
Abstract
Soy isoflavones (SIF) are bioactive compounds with low bioavailability due to their poor water solubility. In this study, we utilized polymerized goat milk whey protein (PGWP) as a carrier to encapsulate SIF with encapsulation efficiency of 89%, particle size of 135.53 nm, and zeta potential of -35.16 mV. The PGWP-SIF nanoparticles were evaluated for their stability and in vitro digestion properties, and their ability to transport SIF was assessed using a Caco-2 cell monolayer model. The nanoparticles were resistant to aggregation when subjected to pH changes (pH 2.0 to 8.0), sodium chloride addition (0-200 mM), temperature fluctuations (4 °C, 25 °C, and 37 °C), and long-term storage (4 °C, 25 °C, and 37 °C for 30 days), which was mainly attributed to the repulsion generated by steric hindrance effects. During gastric digestion, only 5.93% of encapsulated SIF was released, highlighting the nanoparticles' resistance to enzymatic digestion in the stomach. However, a significant increase in SIF release to 56.61% was observed during intestinal digestion, indicating the efficient transport of SIF into the small intestine for absorption. Cytotoxicity assessments via the MTT assay showed no adverse effects on Caco-2 cell lines after encapsulation. The PGWP-stabilized SIF nanoparticles improved the apparent permeability coefficient (Papp) of Caco-2 cells for SIF by 11.8-fold. The results indicated that using PGWP to encapsulate SIF was an effective approach for delivering SIF, while enhancing its bioavailability and transcellular transport.
Collapse
Affiliation(s)
- Mu Tian
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China;
- Key Laboratory of Dairy Science, Northeast Agricultural University, Harbin 150030, China;
| | - Jianjun Cheng
- Key Laboratory of Dairy Science, Northeast Agricultural University, Harbin 150030, China;
| | - Mingruo Guo
- Department of Nutrition and Food Sciences, College of Agriculture and Life Sciences, University of Vermont, Burlington, VT 05405, USA
| |
Collapse
|
5
|
Liang L, Cao W, Li L, Liu W, Wei X, Chen J, Ren G, Duan X. Effect of gum arabic and thermal modification of whey protein isolate on the characteristics of Cornus officinalis flavonoid microcapsules. J Food Sci 2024; 89:1012-1021. [PMID: 38174800 DOI: 10.1111/1750-3841.16897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024]
Abstract
Whey protein isolates (WPIs) were treated at 50, 60, 70, and 80°C to obtain thermally modified WPI. Gum arabic (GA) and thermal modification of WPI were used as novel wall materials to improve the quality of Cornus officinalis flavonoid (COF) microcapsules using microwave freeze-drying technique in this study. Results showed that all the thermal modification treatment decreased emulsifying activity index of WPI, whereas the solubility and emulsifying stability index (ESI) of WPI gradually increased with the increase of heating temperature. Compared to the untreated protein, the thermal modification treatment at 70°C increased the solubility and ESI of WPI by 14.91% ± 0.71% and 26.70% ± 0.94%, respectively. The microcapsules prepared with the modified protein at 60°C had the highest encapsulation efficiency (95.13% ± 2.36%), the lowest moisture content (1.42% ± 0.34%), and the highest solubility (84.41% ± 0.91). Scanning electron microscopy images showed that COF microcapsules were uniformly spherical, and the sizes of the microcapsules were in the following order: 12.42 ± 0.37 µm (80°C) > 11.7 ± 0.23 µm (untreated group) > 9.44 ± 0.33 µm (60°C) > 9.24 ± 0.14 µm (50°C) > 7.69 ± 0.29 µm (70°C). In the simulated in vitro digestion experiments, the release rate of COF microcapsules in the gastric digestion phase was less than that in the intestinal digestion phase, and it reached 66.46% at intestinal digestion phase. These results suggested that heated WPI and GA could be an effective nanocarrier to enhance the stability of COF.
Collapse
Affiliation(s)
- Luodan Liang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan, China
| | - Weiwei Cao
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan, China
| | - Linlin Li
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan, China
| | - Wenchao Liu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan, China
| | - Xinyu Wei
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan, China
| | - Junliang Chen
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan, China
| | - Guangyue Ren
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan, China
| | - Xu Duan
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan, China
| |
Collapse
|
6
|
Tian M, Sun X, Cheng J, Guo M. Physicochemical and Functional Properties of Thermal-Induced Polymerized Goat Milk Whey Protein. Foods 2023; 12:3626. [PMID: 37835278 PMCID: PMC10572621 DOI: 10.3390/foods12193626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 09/23/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Goat milk whey protein products are a hard-to-source commodity. Whey protein concentrate was directly prepared from fresh goat milk. The effects of the heating temperature (69-78 °C), time (15-30 min), and pH (7.5-7.9) on the physicochemical and functional properties of the goat milk whey protein were investigated. The results showed that the particle size of the samples significantly increased (p < 0.05) after heat treatment. The zeta potential of polymerized goat milk whey protein (PGWP) was lower than that of native goat milk whey protein. The content of the free sulfhydryl groups of PGWP decreased with increasing heating temperature and time, while an increase in surface hydrophobicity and apparent viscosity of PGWP were observed after heat treatment. Fourier Transform Infrared Spectroscopy analysis indicated that heat treatment and pH had considerable impacts on the secondary structure of goat milk whey protein. Transmission electron microscope images revealed that heat induced the formation of a large and uniform protein network. Additionally, the changes in the physicochemical and structural properties contributed to the improvement of the emulsifying and foaming properties of goat milk whey protein after heat treatment. The results may provide a theoretical basis for the applications of polymerized goat milk whey protein in related products.
Collapse
Affiliation(s)
- Mu Tian
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China;
- Key Laboratory of Dairy Science, Northeast Agricultural University, Harbin 150030, China; (X.S.); (J.C.)
| | - Xiaomeng Sun
- Key Laboratory of Dairy Science, Northeast Agricultural University, Harbin 150030, China; (X.S.); (J.C.)
| | - Jianjun Cheng
- Key Laboratory of Dairy Science, Northeast Agricultural University, Harbin 150030, China; (X.S.); (J.C.)
| | - Mingruo Guo
- Department of Nutrition and Food Sciences, College of Agriculture and Life Sciences, University of Vermont, Burlington, VT 05405, USA
| |
Collapse
|
7
|
Mo H, Chen X, Cui B, Chen Y, Chen M, Xu Z, Wen L, Cheng Y, Jiao Y. Formation and Characterization of Self-Assembled Rice Protein Hydrolysate Nanoparticles as Soy Isoflavone Delivery Systems. Foods 2023; 12:foods12071523. [PMID: 37048344 PMCID: PMC10094372 DOI: 10.3390/foods12071523] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/25/2023] [Accepted: 03/29/2023] [Indexed: 04/07/2023] Open
Abstract
In this study, soy isoflavones-loaded nanoparticles were prepared using rice proteins (RPs) hydrolyzed by four types of enzyme (alcalase, neutrase, trypsin, and flavorzyme). After optimizing the preparation conditions, the encapsulation efficiency (EE) of the nanoparticles ranged from 61.16% ± 0.92% to 90.65% ± 0.19%. The RPs that were hydrolyzed by flavorzyme with a molecular weight of <5 KDa showed better characters on the formation of nanoparticles, and the formed nanoparticles had the highest EE and loading capacity (9.06%), the smallest particle size (64.77 nm), the lowest polymer dispersity index (0.19), and the lowest zeta potential (−25.64 mV).The results of Fourier transform ion cyclotron resonance, X-ray diffraction, and fluorescence spectroscopy showed that the nanoparticles were successfully encapsulated. The study of interaction showed that the formation of nanoparticles may depend mainly on hydrogen bonds, but other interactions, such as hydrophobic interactions and electrostatic interactions, cannot be ignored. After encapsulation, the pH stability, temperature stability, ionic stability, and oxidation resistance of the nanoparticles were enhanced. Moreover, the in vitro release experiment showed that the encapsulated nanoparticles had a certain protective effect on soybean isoflavones. In summary, rice protein hydrolysates are promising carriers for soybean isoflavones.
Collapse
Affiliation(s)
- Haoran Mo
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Xiuwen Chen
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Bo Cui
- School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Yangling Chen
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Maolong Chen
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Zhou Xu
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Li Wen
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Yunhui Cheng
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China
- School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Ye Jiao
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China
| |
Collapse
|
8
|
Liu Q, Sun Y, Zhang J, Zhang M, Cheng J, Guo M. Physicochemical and in vitro digestion properties of soy isoflavones loaded whey protein nanoparticles using a pH-driven method. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
9
|
Lin X, Liu H, Tang L, Shi M, Xu M, Huang Y, Yi Z, Chen H. Interaction between laccase and diethylstilbestrol based on multispectral and chromatography analyses. J Mol Recognit 2022; 35:e2951. [PMID: 34981869 DOI: 10.1002/jmr.2951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/17/2021] [Accepted: 12/30/2021] [Indexed: 11/09/2022]
Abstract
Diethylstilbestrol (DES) is a synthetic form of oestrogen that does not easily degrade in the environment and can be harmful to human health. Herein, the mechanism of the interaction between laccase and DES was investigated by various spectroscopic means and high-performance liquid chromatography (HPLC). The results of fluorescence experiments showed that the quenching of intrinsic fluorescence of laccase by DES was due to a static quenching, forming a binding site. According to the Förster non-radiative energy transfer theory (FRET), the action distance R0 between DES and laccase was 4.708 nm, r was 5.81 nm, and the energy transfer efficiency E was 22.08%, respectively. Both UV-Vis absorption spectra and FT-IR spectra indicated changes in the conformation and surroundings of the enzyme and changed in the secondary structure of laccase. Multispectral synthesis showed that the interaction of laccase with DES caused a change in the secondary structure of laccase. The degradation experiments showed that laccase could degrade DES, and the DES content decreased with time. This study provides a new theoretical basis and experimental method for further research on the reaction mechanism of the laccase degradation of DES. It may also provide a reference basis for human biological and environmental safety evaluations.
Collapse
Affiliation(s)
- Xiaolian Lin
- The Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, Guilin, People's Republic of China.,College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, People's Republic of China
| | - Hongyan Liu
- The Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, Guilin, People's Republic of China.,College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, People's Republic of China
| | - Lin Tang
- The Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, Guilin, People's Republic of China.,College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, People's Republic of China
| | - Mengjie Shi
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, People's Republic of China.,South Asia Branch of National Engineering Center of Dairy for Maternal and Child Health, Guilin University of Technology, Guilin, People's Republic of China
| | - Minhua Xu
- The Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, Guilin, People's Republic of China.,College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, People's Republic of China
| | - Yipeng Huang
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, People's Republic of China
| | - Zhongsheng Yi
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, People's Republic of China
| | - Huiying Chen
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, People's Republic of China.,South Asia Branch of National Engineering Center of Dairy for Maternal and Child Health, Guilin University of Technology, Guilin, People's Republic of China
| |
Collapse
|
10
|
Physicochemical, Digestive, and Sensory Properties of Panax Notoginseng Saponins Encapsulated by Polymerized Whey Protein. Foods 2021; 10:foods10122942. [PMID: 34945493 PMCID: PMC8701336 DOI: 10.3390/foods10122942] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/17/2021] [Accepted: 11/25/2021] [Indexed: 12/25/2022] Open
Abstract
Panax Notoginseng Saponins (PNS) may be beneficial to human health due to their bioactive function. The application of PNS in functional foods was limited due to the bitter taste and low oral bioavailability. PNS were encapsulated by polymerized whey protein (PWP) nanoparticles. The physicochemical, digestive, and sensory properties of the nanoparticles were investigated. Results showed that the nanoparticles had a particle size of 55 nm, the zeta potential of -28 mV, and high PNS encapsulation efficiency (92.94%) when the mass ratio of PNS to PWP was 1:30. Differential Scanning Calorimetry (DSC) results revealed that PNS were successfully encapsulated by PWP. The mainly intermolecular forces between PNS and PWP were hydrogen bonding and electrostatic attraction confirmed by Fourier Transform Infrared Spectroscopy (FTIR). Results of simulated gastrointestinal digestion indicated that the PNS-PWP (1:30) nanoparticles had smaller average particle size (36 nm) after treatment with gastric fluids and increased particle size (75 nm) after treatment with intestinal fluids. Transmission Electron Microscopy (TEM) micrographs reflected that the nanoparticles had irregular spherical structures. The encapsulated PNS exhibited significantly (p < 0.05) decreased bitterness compared to the non-encapsulated PNS confirmed by the electronic tongue. The results indicated that encapsulation of PNS with PWP could facilitate their application in functional foods.
Collapse
|
11
|
Raychaudhuri R, Pandey A, Das S, Nannuri SH, Joseph A, George SD, Vincent AP, Mutalik S. Nanoparticle impregnated self-supporting protein gel for enhanced reduction in oxidative stress: A molecular dynamics insight for lactoferrin-polyphenol interaction. Int J Biol Macromol 2021; 189:100-113. [PMID: 34411613 DOI: 10.1016/j.ijbiomac.2021.08.089] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 08/05/2021] [Accepted: 08/10/2021] [Indexed: 12/01/2022]
Abstract
In the present work, lactoferrin (Lf) based nanoparticle incorporated self-supporting gel encapsulating a flavonoid, quercetin (Q), was developed. The complex formation between Lf and Q was assessed using molecular docking and dynamics simulation that lactoferrin and quercetin showed strong interaction and binding supporting hydrophobic interaction. The microscopic, spectroscopic, and x-ray techniques were used to characterize the gel extensively. In vitro drug release was studied to understand the release pattern of quercetin from the protein gel. The viscosity of the gel and its rheological characteristics were determined using a Brookfield viscometer. Ex vivo skin permeation studies using vertical diffusion cells were carried out to understand its skin permeation properties. The gel showed strong anti-oxidant activity using the DPPH scavenging assay. The enhanced effect of the Lf-Q complex on antioxidant enzyme activity (superoxide dismutase, catalase, and malondialdehyde), was supported by molecular dynamics, surface hydrophobicity, and in vitro studies. To investigate the effect of the gel on angiogenesis, the chorioallantoic membrane assay was performed and its compatibility with erythrocytes was also assessed. Suitability for topical administration was assessed using skin irritation studies performed on Sprague Dawley rats. The overall results suggest that the developed NiPG is suitable for cutaneous localization of quercetin with enhanced antioxidant activity.
Collapse
Affiliation(s)
- Ruchira Raychaudhuri
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Abhijeet Pandey
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Subham Das
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Shivanand H Nannuri
- Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Alex Joseph
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Sajan D George
- Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Anita P Vincent
- Department of Research and Development, Glanbia Nutritionals, Twin Falls, ID, USA
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India.
| |
Collapse
|
12
|
Chemical and Technological Characterization of Dairy Products. Foods 2020; 9:foods9101475. [PMID: 33081088 PMCID: PMC7602709 DOI: 10.3390/foods9101475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 10/13/2020] [Indexed: 11/25/2022] Open
|