1
|
Kulapichitr F, Cadwallader K, Obenland D. Characterization of Changes in Key Odorants in Blueberries During Simulated Commercial Storage and Marketing by Sensory-Directed Flavor Analysis and Determination of Differences in Overall Perceived Aroma. Foods 2025; 14:1244. [PMID: 40238556 PMCID: PMC11988591 DOI: 10.3390/foods14071244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 03/26/2025] [Accepted: 03/30/2025] [Indexed: 04/18/2025] Open
Abstract
To preserve quality and extend shelf-life, blueberries need to be maintained at low temperatures and high relative humidity during storage; however, during marketing, temperatures are considerably higher than what is optimal. The full impact of this varied temperature regime on flavor is unclear. Blueberries were stored at 1 °C for three weeks, followed by one week at 10 °C, and then two days at 20 °C, to simulate commercial conditions, and the aroma active compounds were evaluated. Gas chromatography-olfactometry combined with aroma extract dilution analysis and stable isotope dilution coupled with gas chromatography-mass spectrometry revealed that the key odorants of blueberries were affected by storage conditions, including 1-octen-3-ol, 1-octen-3-one, (Z)-3-hexenal, (E,Z)-2,6-nonadienal, and linalool. Extended storage at 1 °C resulted in a decrease in concentrations and odor activity values of most key odorants followed by their recovery as temperature increased. The perceived aroma from sensory testing confirmed the difference in the aroma of blueberries stored at 1 °C versus the control. The results indicated that commercial storage does not reduce blueberry aroma because blueberries are marketed at warmer temperatures and that blueberries should not be directly sold to consumers from cold storage.
Collapse
Affiliation(s)
- Fareeya Kulapichitr
- USDA, Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, 9611 South Riverbend Avenue, Parlier, CA 93648, USA;
| | - Keith Cadwallader
- Department of Food Science and Human Nutrition, University of Illinois at Champaign-Urbana, 1302 West Pennsylvania Avenue, Urbana, IL 61801, USA;
| | - David Obenland
- USDA, Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, 9611 South Riverbend Avenue, Parlier, CA 93648, USA;
| |
Collapse
|
2
|
Bezerra M, Ribeiro M, Cosme F, Nunes FM. Overview of the distinctive characteristics of strawberry, raspberry, and blueberry in berries, berry wines, and berry spirits. Compr Rev Food Sci Food Saf 2024; 23:e13354. [PMID: 38682687 DOI: 10.1111/1541-4337.13354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/30/2024] [Accepted: 04/03/2024] [Indexed: 05/01/2024]
Abstract
Red berries have gained popularity as functional and nutritious food due to their health benefits, leading to increased consumer demand and higher production, totaling over 11,000 ktons for strawberries, raspberries, and blueberries combined in 2021. Nutritionally, strawberries, raspberries, and blueberries present high levels of vitamin C (9.7-58.8 mg/100 g dry weight [dw]), folates (6-24 µg/100 g dw), and minerals (96-228 mg/100 g dw). Due to their perishable nature, producers have utilized alcoholic fermentation to extend their shelf life, not only increasing the lifespan of red berries but also attracting consumers through the production of novel beverages. Strawberry, blueberry, and raspberry wines possess low alcohol (5.5-11.1% v/v), high acidity (3.2-17.6 g/L), and interesting bioactive molecules such as phenolic compounds, carotenoids, polysaccharides, and melatonin. Distillation holds tremendous potential for reducing food waste by creating red berry spirits of exceptional quality. Although research on red berry spirits is still in the early stages, future studies should focus on their production and characterization. By incorporating these factors, the production chain would become more sustainable, profitable, and efficient by reducing food waste, capitalizing on consumer acceptance, and leveraging the natural health-promoting characteristics of these products. Therefore, this review aims to provide a comprehensive overview of the characteristics of strawberry, blueberry, and red raspberry in berries, wines, and spirits, with a focus on their chemical composition and production methods.
Collapse
Affiliation(s)
- Mário Bezerra
- Chemistry Research Centre-Vila Real (CQ-VR), Food and Wine Chemistry Laboratory, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Miguel Ribeiro
- Chemistry Research Centre-Vila Real (CQ-VR), Food and Wine Chemistry Laboratory, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
- Genetics and Biotechnology Department, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Fernanda Cosme
- Chemistry Research Centre-Vila Real (CQ-VR), Food and Wine Chemistry Laboratory, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
- Biology and Environment Department, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Fernando M Nunes
- Chemistry Research Centre-Vila Real (CQ-VR), Food and Wine Chemistry Laboratory, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
- Chemistry Department, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| |
Collapse
|
3
|
Wang J, Wei BC, Zhai YR, Li KX, Wang CY. Non-volatile and volatile compound changes in blueberry juice inoculated with different lactic acid bacteria strains. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:2587-2596. [PMID: 37984850 DOI: 10.1002/jsfa.13142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 10/07/2023] [Accepted: 11/20/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND Lactic acid bacteria (LABs) are widely present in foods and affect the flavour of fermented cultures. This study investigates the effects of fermentation with Lactobacillus acidophilus JYLA-16 (La), Lactobacillus plantarum JYLP-375 (Lp), and Lactobacillus rhamnosus JYLR-005 (Lr) on the flavour profile of blueberry juice. RESULTS This study showed that all LABs strains preferentially used glucose rather than fructose as the carbon source during fermentation. Lactic acid was the main fermentation product, reaching 7.76 g L-1 in La-fermented blueberry juice, 5.86 g L-1 in Lp-fermented blueberry juice, and 6.41 g L-1 in Lr-fermented blueberry juice. These strains extensively metabolized quinic acid, whereas oxalic acid metabolism was almost unaffected. Sixty-four volatile compounds were identified using gas chromatography-ion mobility spectrometry (GC-IMS). All fermented blueberry juices exhibited decreased aldehyde levels. Furthermore, fermentation with La was dominated by alcohols, Lp was dominated by esters, and Lr was dominated by ketones. Linear discriminant analysis of the electronic nose and principal component analysis of the GC-IMS data effectively differentiated between unfermented and fermented blueberry juices. CONCLUSION This study informs LABs selection for producing desirable flavours in fermented blueberry juice and provides a theoretical framework for flavour detection. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jun Wang
- School of Biology, Food and Environment, Hefei University, Hefei, China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Bo-Cheng Wei
- School of Biology, Food and Environment, Hefei University, Hefei, China
| | - Yan-Rong Zhai
- School of Biology, Food and Environment, Hefei University, Hefei, China
| | - Ke-Xin Li
- School of Biology, Food and Environment, Hefei University, Hefei, China
| | - Chu-Yan Wang
- School of Biology, Food and Environment, Hefei University, Hefei, China
| |
Collapse
|
4
|
Li H, Wang S, Zhai L, Cui Y, Tang G, Huo J, Li X, Bian S. The miR156/SPL12 module orchestrates fruit colour change through directly regulating ethylene production pathway in blueberry. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:386-400. [PMID: 37797061 PMCID: PMC10826998 DOI: 10.1111/pbi.14193] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/26/2023] [Accepted: 09/23/2023] [Indexed: 10/07/2023]
Abstract
Colour change is an important event during fruit ripening in blueberry. It is well known that miR156/SPLs act as regulatory modules mediating anthocyanin biosynthesis and ethylene plays critical roles during colour change, but the intrinsic connections between the two pathways remain poorly understood. Previously, we demonstrated that blueberry VcMIR156a/VcSPL12 affects the accumulation of anthocyanins and chlorophylls in tomato and Arabidopsis. In this study, we first showed that VcMIR156a overexpression in blueberry led to enhanced anthocyanin biosynthesis, decreased chlorophyll accumulation, and, intriguingly, concomitant elevation in the expression of ethylene biosynthesis genes and the level of the ethylene precursor ACC. Conversely, VcSPL12 enhanced chlorophyll accumulation and suppressed anthocyanin biosynthesis and ACC synthesis in fruits. Moreover, the treatment with ethylene substitutes and inhibitors attenuated the effects of VcMIR156a and VcSPL12 on pigment accumulation. Protein-DNA interaction assays indicated that VcSPL12 could specifically bind to the promoters and inhibit the activities of the ethylene biosynthetic genes VcACS1 and VcACO6. Collectively, our results show that VcMIR156a/VcSPL12 alters ethylene production through targeting VcACS1 and VcACO6, therefore governing fruit colour change. Additionally, VcSPL12 may directly interact with the promoter region of the chlorophyll biosynthetic gene VcDVR, thereby activating its expression. These findings established an intrinsic connection between the miR156/SPL regulatory module and ethylene pathway.
Collapse
Affiliation(s)
- Hongxue Li
- College of Plant ScienceJilin UniversityChangchunChina
| | - Shouwen Wang
- College of Plant ScienceJilin UniversityChangchunChina
| | - Lulu Zhai
- College of Plant ScienceJilin UniversityChangchunChina
| | - Yuhai Cui
- Agriculture and Agri‐Food Canada, London Research and Development CentreLondonONCanada
- Department of BiologyWestern UniversityLondonONCanada
| | - Guiliang Tang
- Department of Biological Sciences, Life Science and Technology InstituteMichigan Technological UniversityHoughtonMIUSA
| | - Junwei Huo
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural AffairsNortheast Agricultural UniversityHarbinChina
| | - Xuyan Li
- College of Plant ScienceJilin UniversityChangchunChina
| | - Shaomin Bian
- College of Plant ScienceJilin UniversityChangchunChina
| |
Collapse
|
5
|
Wang J, Shi C, Fang D, Che J, Wu W, Lyu L, Li W. The Impact of Storage Temperature on the Development of Microbial Communities on the Surface of Blueberry Fruit. Foods 2023; 12:foods12081611. [PMID: 37107406 PMCID: PMC10137657 DOI: 10.3390/foods12081611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/21/2023] [Accepted: 04/02/2023] [Indexed: 04/29/2023] Open
Abstract
Microbial contamination is one of the main reasons for the quality deterioration of postharvest blueberries during storage. In this study, we investigated the surface microbiota of blueberry fruits stored at different temperatures via high-throughput sequencing of the 16S and ITS rRNA genes. The results indicated that the α-diversity of the microbial communities in samples stored at 4 °C was much higher than that in samples stored at 25 °C. The composition of the bacterial and fungal communities on the surface of the blueberry fruits varied at different storage temperatures. Ascomycota, Basidiomycota, Anthophyta, Chlorophyta, Proteobacteria, and Cyanobacteria were the most abundant phyla in the bacterial community. Furthermore, five preservation quality indices were measured, and the influence on the α-diversity of the bacterial community was found to be significantly weaker than that of the fungal community. Based on the prediction of the bacterial flora function, the change in blueberry quality during storage was closely related to its surface microbial effect. This study provides a theoretical basis for an understanding of the microbiota on the surface of blueberry fruits to cause fruit spoilage, and the development of a targeted inhibition technology to preserve blueberry fruits under different storage and transportation environments.
Collapse
Affiliation(s)
- Junying Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, Forestry College, Nanjing Forestry University, Nanjing 210037, China
- College of Food Engineering, Anhui Science and Technology University, Chuzhou 233100, China
| | - Chong Shi
- Co-Innovation Center for Sustainable Forestry in Southern China, Forestry College, Nanjing Forestry University, Nanjing 210037, China
| | - Donglu Fang
- Co-Innovation Center for Sustainable Forestry in Southern China, Forestry College, Nanjing Forestry University, Nanjing 210037, China
| | - Jilu Che
- Co-Innovation Center for Sustainable Forestry in Southern China, Forestry College, Nanjing Forestry University, Nanjing 210037, China
| | - Wenlong Wu
- Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Lianfei Lyu
- Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Weilin Li
- Co-Innovation Center for Sustainable Forestry in Southern China, Forestry College, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
6
|
Wang YW, Acharya TP, Malladi A, Tsai HJ, NeSmith DS, Doyle JW, Nambeesan SU. Atypical Climacteric and Functional Ethylene Metabolism and Signaling During Fruit Ripening in Blueberry ( Vaccinium sp.). FRONTIERS IN PLANT SCIENCE 2022; 13:932642. [PMID: 35812961 PMCID: PMC9260287 DOI: 10.3389/fpls.2022.932642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Climacteric fruits display an increase in respiration and ethylene production during the onset of ripening, while such changes are minimal in non-climacteric fruits. Ethylene is a primary regulator of ripening in climacteric fruits. The ripening behavior and role of ethylene in blueberry (Vaccinium sp.) ripening is controversial. This work aimed to clarify the fruit ripening behavior and the associated role of ethylene in blueberry. Southern highbush (Vaccinium corymbosum hybrids) and rabbiteye (Vaccinium ashei) blueberry displayed an increase in the rate of respiration and ethylene evolution, both reaching a maxima around the Pink and Ripe stages of fruit development, consistent with climacteric fruit ripening behavior. Increase in ethylene evolution was associated with increases in transcript abundance of its biosynthesis genes, AMINOCYCLOPROPANE CARBOXYLATE (ACC) SYNTHASE1 (ACS1) and ACC OXIDASE2 (ACO2), implicating them in developmental ethylene production during ripening. Blueberry fruit did not display autocatalytic system 2 ethylene during ripening as ACS transcript abundance and ACC concentration were not enhanced upon treatment with an ethylene-releasing compound (ethephon). However, ACO transcript abundance was enhanced in response to ethephon, suggesting that ACO was not rate-limiting. Transcript abundance of multiple genes associated with ethylene signal transduction was upregulated concomitant with developmental increase in ethylene evolution, and in response to exogenous ethylene. As these changes require ethylene signal transduction, fruit ripening in blueberry appears to involve functional ethylene signaling. Together, these data indicate that blueberry fruit display atypical climacteric ripening, characterized by a respiratory climacteric, developmentally regulated but non-autocatalytic increase in ethylene evolution, and functional ethylene signaling.
Collapse
Affiliation(s)
- Yi-Wen Wang
- Department of Horticulture, University of Georgia, Athens, GA, United States
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, United States
| | - Tej P. Acharya
- Department of Horticulture, University of Georgia, Athens, GA, United States
| | - Anish Malladi
- Department of Horticulture, University of Georgia, Athens, GA, United States
| | - Hsuan-Ju Tsai
- Department of Horticulture, University of Georgia, Athens, GA, United States
- Taiwan Agricultural Research Institute Council of Agriculture, Taichung, Taiwan
| | - D. Scott NeSmith
- Department of Horticulture, University of Georgia, Griffin, GA, United States
| | - John W. Doyle
- Department of Horticulture, University of Georgia, Athens, GA, United States
| | | |
Collapse
|
7
|
Pico J, Gerbrandt EM, Castellarin SD. Optimization and validation of a SPME-GC/MS method for the determination of volatile compounds, including enantiomeric analysis, in northern highbush blueberries (Vaccinium corymbosum L.). Food Chem 2022; 368:130812. [PMID: 34419800 DOI: 10.1016/j.foodchem.2021.130812] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/25/2021] [Accepted: 08/05/2021] [Indexed: 11/17/2022]
Abstract
Blueberry aroma is one of the most important quality traits that influences consumer purchasing decisions. This study aimed to optimize and validate a solid-phase microextraction-gas chromatography/mass spectrometry (SPME-GC/MS) method for the quantification of 73 volatile compounds in northern highbush blueberries. A SPME extraction of blueberries with water and specific proportions of sodium chloride, citric acid, and ascorbic acid, for 60 min at 50 °C using a divinylbenzene/carboxen/polydimethylsiloxane (DVB/CAR/PDMS) fiber was optimal. The method was validated for sensitivity, reproducibility, linearity, and accuracy, and used to quantify volatile compounds through matrix-matched calibration curves in six blueberry cultivars ('Duke', 'Draper', 'Bluecrop', 'Calypso', 'Elliott', and 'Last Call'). Terpenes represented the most abundant volatile fraction, followed by aldehydes and alcohols. Linalool and 2-(E)-hexenal were key compounds that differentiated blueberry cultivars via Principal Component Analysis (PCA). Enantiomeric analyses revealed an excess of (-)-limonene, (-)-α-pinene, and (+)-linalool for all cultivars with potential impacts on the blueberry aroma.
Collapse
Affiliation(s)
- Joana Pico
- Wine Research Centre, The University of British Columbia, 2205 East Mall, Vancouver, BC V6T 1Z4, Canada.
| | - Eric M Gerbrandt
- British Columbia Blueberry Council, #275-32160 S Fraser Way, Abbotsford, BC V2T 1W5, Canada
| | - Simone D Castellarin
- Wine Research Centre, The University of British Columbia, 2205 East Mall, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
8
|
Martínez S, Carballo J. Physicochemical, Sensory and Nutritional Properties of Foods Affected by Processing and Storage. Foods 2021; 10:foods10122970. [PMID: 34945521 PMCID: PMC8701254 DOI: 10.3390/foods10122970] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 11/29/2021] [Indexed: 01/26/2023] Open
|
9
|
Mostafa M, Ibn Amor A, Admane N, Anfora G, Bubici G, Verrastro V, Scarano L, El Moujabber M, Baser N. Reduction of Post-Harvest Injuries Caused by Drosophila suzukii in Some Cultivars of Sweet Cherries Using a High Carbon Dioxide Level and Cold Storage. INSECTS 2021; 12:insects12111009. [PMID: 34821808 PMCID: PMC8619616 DOI: 10.3390/insects12111009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/03/2021] [Accepted: 11/07/2021] [Indexed: 11/16/2022]
Abstract
Efficient strategies are required in sweet cherry fruits to control the spotted wing drosophila (SWD), Drosophila suzukii, due to its adverse economic effect on farmers. Cold storage (CS) and storage with elevated carbon dioxide (CO2) are environmentally safe approaches for the pest control of stored fresh fruit. These strategies are effective in controlling a wide variety of insect species, without allowing toxic compounds to accumulate. The purpose of this study was to assess the effectiveness of a post-harvest application of CO2 treatment at 50%, cold treatment at 4 °C (CT), and a combination of both (CO2-CT) in controlling the early stages of SWD within four cultivars of freshly harvested cherry fruit, namely "Burlat-Bigarreau", "Giorgia", "Ferrovia", and "Lapins". In addition, an evaluation of the quality attributes of the cherries (skin firmness, berry firmness, strong soluble material, and titratable acidity) was carried out at harvest and after 10 and 20 days of storage. All treatments significantly reduced the rate of emergence of SWD when compared to the control (untreated cherry at 24 °C), and 100% SWD mortality was obtained in Burlat-Bigarreau (CO2-CT). In addition, over the entire storage time, the quality parameters were preserved in the samples stored at 4 °C and in the samples with combined treatments in comparison with the control.
Collapse
Affiliation(s)
- Manal Mostafa
- CIHEAM-IAMB—International Centre for Advanced Mediterranean Agronomic Studies, 70010 Bari, Italy; (M.M.); (A.I.A.); (N.A.); (V.V.); (M.E.M.)
| | - Abir Ibn Amor
- CIHEAM-IAMB—International Centre for Advanced Mediterranean Agronomic Studies, 70010 Bari, Italy; (M.M.); (A.I.A.); (N.A.); (V.V.); (M.E.M.)
| | - Naouel Admane
- CIHEAM-IAMB—International Centre for Advanced Mediterranean Agronomic Studies, 70010 Bari, Italy; (M.M.); (A.I.A.); (N.A.); (V.V.); (M.E.M.)
| | - Gianfranco Anfora
- Centre Agriculture Food Environment, University of Trento, 38098 San Michele all’Adige, Italy;
- Research and Innovation Centre, Fondazione Edmund Mach, 38098 San Michele all’Adige, Italy
| | - Giovanni Bubici
- Consiglio Nazionale delle Ricerche, Istituto per la Protezione Sostenibile delle Piante, via Amendola 165/A, 70126 Bari, Italy;
| | - Vincenzo Verrastro
- CIHEAM-IAMB—International Centre for Advanced Mediterranean Agronomic Studies, 70010 Bari, Italy; (M.M.); (A.I.A.); (N.A.); (V.V.); (M.E.M.)
| | - Luciano Scarano
- Scuola di Scienze Agrarie SAFE, Università degli Studi della Basilicata, 85100 Potenza, Italy;
| | - Maroun El Moujabber
- CIHEAM-IAMB—International Centre for Advanced Mediterranean Agronomic Studies, 70010 Bari, Italy; (M.M.); (A.I.A.); (N.A.); (V.V.); (M.E.M.)
| | - Nuray Baser
- CIHEAM-IAMB—International Centre for Advanced Mediterranean Agronomic Studies, 70010 Bari, Italy; (M.M.); (A.I.A.); (N.A.); (V.V.); (M.E.M.)
- Correspondence: ; Tel.: +39-3200-175-5682
| |
Collapse
|
10
|
Zhu L, Liang X, Lu Y, Tian S, Chen J, Lin F, Fang S. Effect of Freeze-Thaw Cycles on Juice Properties, Volatile Compounds and Hot-Air Drying Kinetics of Blueberry. Foods 2021; 10:foods10102362. [PMID: 34681411 PMCID: PMC8535103 DOI: 10.3390/foods10102362] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 11/18/2022] Open
Abstract
This paper studied the effects of freeze-thaw (FT) cycles on the juice properties and aroma profiles, and the hot-air drying kinetics of frozen blueberry. After FT treatment, the juice yield increased while pH and total soluble solids of the juice keep unchanged. The total anthocyanins contents and DPPH antioxidant activities of the juice decreased by FT treatments. The electronic nose shows that FT treatments significantly change the aroma profiles of the juice. The four main volatile substances in the fresh juice are (E)-2-hexenal, α-terpineol, hexanal and linalyl formate, which account for 48.5 ± 0.1%, 17.6 ± 0.2%, 14.0 ± 1.5% and 7.8 ± 2.7% of relative proportions based on total ion chromatogram (TIC) peak areas. In the FT-treated samples, the amount of (E)-2-hexenal and hexanal decreased significantly while α-terpineol and linalyl formate remained almost unchanged. Repeated FT cycles increased the ethanol content and destroyed the original green leafy flavor. Finally, the drying kinetics of FT-treated blueberries was tested. One FT treatment can shorten the drying time by about 30% to achieve the same water content. The Deff values of the FT-treated sample are similar, which are about twice as large as the value of the fresh sample. The results will be beneficial for the processing of frozen blueberry into juice or dried fruits.
Collapse
Affiliation(s)
- Lin Zhu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Xuezheng Street No. 18, Hangzhou 310018, China; (L.Z.); (Y.L.); (S.T.); (J.C.); (F.L.)
| | - Xianrui Liang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China;
| | - Yushuang Lu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Xuezheng Street No. 18, Hangzhou 310018, China; (L.Z.); (Y.L.); (S.T.); (J.C.); (F.L.)
| | - Shiyi Tian
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Xuezheng Street No. 18, Hangzhou 310018, China; (L.Z.); (Y.L.); (S.T.); (J.C.); (F.L.)
| | - Jie Chen
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Xuezheng Street No. 18, Hangzhou 310018, China; (L.Z.); (Y.L.); (S.T.); (J.C.); (F.L.)
| | - Fubin Lin
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Xuezheng Street No. 18, Hangzhou 310018, China; (L.Z.); (Y.L.); (S.T.); (J.C.); (F.L.)
| | - Sheng Fang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Xuezheng Street No. 18, Hangzhou 310018, China; (L.Z.); (Y.L.); (S.T.); (J.C.); (F.L.)
- Correspondence: ; Tel.: +86-13093752831
| |
Collapse
|
11
|
Romero-Román ME, Schoebitz M, Bastías RM, Fernández PS, García-Viguera C, López-Belchi MD. Native Species Facing Climate Changes: Response of Calafate Berries to Low Temperature and UV Radiation. Foods 2021; 10:foods10010196. [PMID: 33478067 PMCID: PMC7835903 DOI: 10.3390/foods10010196] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/11/2021] [Accepted: 01/15/2021] [Indexed: 12/19/2022] Open
Abstract
Calafate (Berberis microphylla G. Forst) is a wild bush plant widely distributed in the south of Argentina and Chile. Their blue colored fruits present particular flavor and health benefits attributed to high polyphenol contents biosynthesized by the plant under stress. Studies about correlation of abiotic conditions with anthocyanin profiles and physicochemical features of calafate beneath wild origin environment are not described yet. Hence, this research aimed to evaluate the physicochemical changes, antioxidant activity and anthocyanin content of calafate fruit in relationship to UV solar radiation (W.m−2) and air temperature (°C) environment condition during three consecutive years (2017, 2018, 2019). Variations in fruit anthocyanins were determined by comparison between high performance liquid chromatography (HPLC-DAD-ESI)/MSn and CIEL*a*b* colors parameters. Correlations were analyzed by principal component analysis (PCA). Radiation was negatively correlated with fruit size and weight. Physicochemical aspects such as pH, soluble solids, color, total anthocyanins, flavanols and other phenolic compounds were positively correlated with temperature changes. The quantities of monomeric anthocyanins were dependent on both low temperature and global radiation (reaching 20.01 mg g−1 FW in calafate fruit). These results constitute a valuable resource to understand the structural and physiological plasticity of calafate in facing climate changes for future domestication research as well as for agri-food industrial application.
Collapse
Affiliation(s)
- María Eugenia Romero-Román
- Departamento de Producción Vegetal, Facultad de Agronomía, Universidad de Concepción, Campus Chillán 3780000, Chile; (M.E.R.-R.); (R.M.B.)
- Food Engineering and Agricultural Equipment Department, Universidad Politécnica de Cartagena, 30203 Cartagena, Spain;
| | - Mauricio Schoebitz
- Departamento de Suelos y Recursos Naturales, Facultad de Agronomía, Universidad de Concepción, Concepción 4030000, Chile;
| | - Richard M. Bastías
- Departamento de Producción Vegetal, Facultad de Agronomía, Universidad de Concepción, Campus Chillán 3780000, Chile; (M.E.R.-R.); (R.M.B.)
| | - Pablo S. Fernández
- Food Engineering and Agricultural Equipment Department, Universidad Politécnica de Cartagena, 30203 Cartagena, Spain;
- Unidad Asociada de Calidad y Evaluación de Riesgos de Alimentos, CEBAS (CSIC)—UPCT, 30100 Murcia, Spain
| | - Cristina García-Viguera
- Phytochemistry Labaratoty Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS (CSIC), 30100 Campus University Espinardo, 30100 Murcia, Spain
- Unidad Asociada de Calidad y Evaluación de Riesgos de Alimentos, CEBAS (CSIC)—UPCT, 30100 Murcia, Spain
- Correspondence: (C.G.-V.); (M.D.L.-B.); Tel.: +34-649887777 (C.G.-V.); +56-995-177-972 (M.D.L.-B.)
| | - María Dolores López-Belchi
- Departamento de Producción Vegetal, Facultad de Agronomía, Universidad de Concepción, Campus Chillán 3780000, Chile; (M.E.R.-R.); (R.M.B.)
- Correspondence: (C.G.-V.); (M.D.L.-B.); Tel.: +34-649887777 (C.G.-V.); +56-995-177-972 (M.D.L.-B.)
| |
Collapse
|