1
|
Ruiz-Valdepeñas Montiel V, Garcia-Calvo E, Gamella M, García-García A, Rodríguez S, García T, Pingarrón JM, Martín R, Campuzano S. Electrochemical tracking of gluten in marketed foods by using a recombinant antibody fragment based-platform. Talanta 2025; 288:127747. [PMID: 39970804 DOI: 10.1016/j.talanta.2025.127747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 02/10/2025] [Accepted: 02/13/2025] [Indexed: 02/21/2025]
Abstract
The only treatment to effectively manage celiac disease is the avoidance of gluten containing foods. Therefore, and given its high prevalence, it is of utmost importance to have reliable and efficient methods for the detection of gluten to ensure the well-being and quality of life of celiacs. This work presents the development of an electrochemical immunoplatform exhibiting many practical advantages including simplicity, reduced cost and high sensitivity for the screening of gluten-containing products. The methodology exploited the unique features offered by a recombinant antibody fragment with high affinity towards gliadin together with the use of magnetic microcarriers (MμCs) as scaffolds for the implementation of an indirect competitive immunoassay. Using amperometric transduction on disposable electrodes and the horseradish peroxidase/hydrogen peroxide/hydroquinone system, a dynamic range between 7.3 and 1982 ng mL-1 was obtained for gliadin standards, with a limit of detection of 1.4 ng mL-1. The developed immunoplatform was successfully employed for the analysis of a variety of processed foodstuffs, demonstrating the ability to discriminate between gluten-free and gluten-containing foods according to the legislated threshold (20 mg kg-1 of gluten). The agreement with the results provided by the R5-based ELISA and qPCR methods confirmed the suitability of the bioplatform as a competitive tool in terms of assay time (results in just 60 min after gliadin extraction) sensitivity and applicability, even at the point of need.
Collapse
Affiliation(s)
| | - Eduardo Garcia-Calvo
- Departamento de Nutrición y Ciencia de Los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Maria Gamella
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Aina García-García
- Departamento de Nutrición y Ciencia de Los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040, Madrid, Spain.
| | - Santiago Rodríguez
- Departamento de Nutrición y Ciencia de Los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Teresa García
- Departamento de Nutrición y Ciencia de Los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - José M Pingarrón
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Rosario Martín
- Departamento de Nutrición y Ciencia de Los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Susana Campuzano
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, 28040, Madrid, Spain.
| |
Collapse
|
2
|
Rodríguez S, García-García A, Garcia-Calvo E, Esteban V, Pastor-Vargas C, Díaz-Perales A, García T, Martín R. Generation of an Ovomucoid-Immune scFv Library for the Development of Novel Immunoassays in Hen's Egg Detection. Foods 2023; 12:3831. [PMID: 37893724 PMCID: PMC10606182 DOI: 10.3390/foods12203831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Hen's egg allergy is the second most common food allergy among infants and young children. The possible presence of undeclared eggs in foods poses a significant risk to sensitized individuals. Therefore, reliable egg allergen detection methods are needed to ensure compliance with food labeling and improve consumer protection. This work describes for the first time the application of phage display technology for the generation of a recombinant antibody aimed at the specific detection of hen's ovomucoid. First, a single-chain variable fragment (scFv) library was constructed from mRNA isolated from the spleen of a rabbit immunized with ovomucoid. After rounds of biopanning, four binding clones were isolated and characterized. Based on the best ovomucoid-binding candidate SR-G1, an indirect phage enzyme-linked immunosorbent assay (phage-ELISA) was developed, reaching limits of detection and quantitation of 43 and 79 ng/mL of ovomucoid, respectively. The developed ELISA was applied to the analysis of a wide variety of food products, obtaining a good correlation with a commercial egg detection assay used as a reference. Finally, in silico modeling of the antigen-antibody complex revealed that the main interactions most likely occur between the scFv heavy chain and the ovomucoid domain-III, the most immunogenic region of this allergen.
Collapse
Affiliation(s)
- Santiago Rodríguez
- Departamento de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain; (S.R.); (E.G.-C.); (T.G.); (R.M.)
| | - Aina García-García
- Departamento de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain; (S.R.); (E.G.-C.); (T.G.); (R.M.)
| | - Eduardo Garcia-Calvo
- Departamento de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain; (S.R.); (E.G.-C.); (T.G.); (R.M.)
| | - Vanesa Esteban
- Departamento de Alergia e Inmunología, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid (UAM), 28040 Madrid, Spain;
| | - Carlos Pastor-Vargas
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain;
| | - Araceli Díaz-Perales
- Centro de Biotecnología Y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (CBGP, UPM-INIA), 28223 Madrid, Spain;
| | - Teresa García
- Departamento de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain; (S.R.); (E.G.-C.); (T.G.); (R.M.)
| | - Rosario Martín
- Departamento de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain; (S.R.); (E.G.-C.); (T.G.); (R.M.)
| |
Collapse
|
3
|
A novel single-tube nested real-time PCR method to quantify pistachio nut as an allergenic food: influence of food matrix. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.105042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
4
|
Soezi M, Piri-Gavgani S, Ghanei M, Omrani MD, Soltanmohammadi B, Bagheri KP, Cohan RA, Vaziri F, Siadat SD, Fateh A, Khatami S, Azizi M, Rahimi-Jamnani F. Identification of a novel fully human anti-toxic shock syndrome toxin (TSST)-1 single-chain variable fragment antibody averting TSST-1-induced mitogenesis and cytokine secretion. BMC Biotechnol 2022; 22:31. [PMID: 36307814 PMCID: PMC9617332 DOI: 10.1186/s12896-022-00760-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 08/18/2022] [Accepted: 10/07/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Staphylococcal superantigens are virulence factors that help the pathogen escape the immune system and develop an infection. Toxic shock syndrome toxin (TSST)-1 is one of the most studied superantigens whose role in toxic shock syndrome and some particular disorders have been demonstrated. Inhibiting TSST-1 production with antibiotics and targeting TSST-1 with monoclonal antibodies might be one of the best strategies to prevent TSST-1-induced cytokines storm followed by lethality. RESULTS A novel single-chain variable fragment (scFv), MS473, against TSST-1 was identified by selecting an scFv phage library on the TSST-1 protein. The MS473 scFv showed high affinity and specificity for TSST-1. Moreover, MS473 could significantly prevent TSST-1-induced mitogenicity (the IC50 value: 1.5 µM) and cytokine production. CONCLUSION Using traditional antibiotics with an anti-TSST-1 scFv as a safe and effective agent leads to deleting the infection source and preventing the detrimental effects of the toxin disseminated into the whole body.
Collapse
Affiliation(s)
- Mahdieh Soezi
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
- Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Somayeh Piri-Gavgani
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
- Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Mostafa Ghanei
- Chemical Injuries Research Center, Systems Biology and Poisoning Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mir Davood Omrani
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Behnoush Soltanmohammadi
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
- Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Kamran Pooshang Bagheri
- Venom and Biotherapeutics Molecules Lab, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Reza Ahangari Cohan
- Department of Nanobiotechnology, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran
| | - Farzam Vaziri
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
- Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Davar Siadat
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
- Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Abolfazl Fateh
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
- Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Shohreh Khatami
- Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran
| | - Masoumeh Azizi
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Fatemeh Rahimi-Jamnani
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.
- Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
5
|
New Research in Food Allergen Detection. Foods 2022; 11:foods11101520. [PMID: 35627088 PMCID: PMC9141938 DOI: 10.3390/foods11101520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 05/17/2022] [Accepted: 05/20/2022] [Indexed: 02/07/2023] Open
|
6
|
Production of a Recombinant Single-Domain Antibody for Gluten Detection in Foods Using the Pichia pastoris Expression System. Foods 2020; 9:foods9121838. [PMID: 33321826 PMCID: PMC7764234 DOI: 10.3390/foods9121838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/30/2020] [Accepted: 12/07/2020] [Indexed: 12/12/2022] Open
Abstract
The detection of gluten in foodstuffs has become a growing concern in food allergen management as a result of the high ratio of population sensitive to the main gluten-containing cereals. In this study, a promising single-domain antibody previously isolated by phage display (dAb8E) was produced in Pichia pastoris resulting in high levels of the antibody fragment expression (330 mg/L). The purified dAb8E was proved to specifically bind to gluten proteins from wheat, barley and rye, exhibiting no cross reaction to other heterologous species. The dynamic range of the sandwich enzyme-linked immunosorbent assay (ELISA) covered 0.1 to 10 µg/mL of gliadin, reaching a limit of detection of 0.12 µg/mL. When experimental binary mixtures of the target cereals were analyzed, the limit of detection was 0.13 mg/g, which would theoretically correspond to gluten concentrations of approximately 13 mg/kg. Finally, thirty commercially available food products were analyzed by means of the developed assay to further confirm the applicability of the dAb8E for gluten determination. The proposed methodology enabled the generation of a new gluten-specific nanobody which could be used to guarantee the appropriate labelling of gluten-free foods.
Collapse
|