1
|
Madacussengua O, Mendes AR, Almeida AM, Lordelo M. Effects of using microalgae in poultry diets on the production and quality of meat and eggs: a review. Br Poult Sci 2025:1-17. [PMID: 39813074 DOI: 10.1080/00071668.2024.2420330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/09/2024] [Indexed: 01/16/2025]
Abstract
1. This review was conducted to examine the nutritional composition of microalgae and their effects as a feed ingredient in poultry diets, delving into their influence on the production and quality of meat and eggs. Data collection focused on peer-reviewed scientific articles, with no limitation on the temporal horizon.2. Regarding nutritional composition, the collected papers indicated that certain microalgae species have a rich nutritional composition, with approximately 50% of their biomass composed of proteins. They contain a high concentration of EPA and DHA, important fatty acids that are found in low concentrations in conventional feedstuffs, and the presence of carotenoids such as beta-carotene.3. Incorporating microalgae into the diet of poultry can improve performance variables, such as mortality, live weight and feed conversion rate. It promotes benefits in meat and egg quality, with reduced cholesterol, increased EPA and DHA, intensified colour and higher concentration of carotenoids.
Collapse
Affiliation(s)
| | | | - A M Almeida
- LEAF- Linking Landscape, Environment, Agriculture and Food Research Center, Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, Lisboa, Portugal
| | | |
Collapse
|
2
|
Shafaghat Z, Najafi F, Khavari-Nejad RA, Mohammadi M, Enferadi ST. Phytohormone-induced changes in growth, physiology, and biochemistry of Aurantiochytrium sp. for sustainable bioproduction. BIORESOURCE TECHNOLOGY 2024; 410:131249. [PMID: 39153693 DOI: 10.1016/j.biortech.2024.131249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/29/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024]
Abstract
The study aimed to assess the effects of nine combinations of phytohormones, salicylic acid (SA), gibberellic acid (GA), and jasmonic acid (JA) on the growth, physiology, and biochemistry of Aurantiochytrium sp. Parameters like optical density (OD), biomass, protein content, hydrogen peroxide (H2O2), malondialdehyde (MDA), catalase activity (CAT), and gene expression (malic enzyme (ME) and acetyl-CoA carboxylase (ACCase)) were assessed at various cultivation stages (24, 48, 72, and 96 h). The research also analyzed fatty acid composition, unsaturated fatty acids (UFA), saturated fatty acids (SFA), and the UFA to SFA ratio (USS) to understand the biochemical changes induced by phytohormones. Results demonstrated that modifying phytohormone concentrations significantly affected the characteristics of the microalgae, particularly in correlation with different growth stages, emphasizing the necessity of precise control of phytohormone levels for optimizing cultivation conditions and enhancing bioactive compound production in Aurantiochytrium sp.
Collapse
Affiliation(s)
- Zahra Shafaghat
- Department of Plant Sciences, Faculty of Biological Sciences, Kharazmi University, P.O. Box: 15719-14911, Tehran, Iran
| | - Farzaneh Najafi
- Department of Plant Sciences, Faculty of Biological Sciences, Kharazmi University, P.O. Box: 15719-14911, Tehran, Iran.
| | - Ramazan-Ali Khavari-Nejad
- Department of Plant Sciences, Faculty of Biological Sciences, Kharazmi University, P.O. Box: 15719-14911, Tehran, Iran
| | - Mehdi Mohammadi
- Department of Biotechnology, Persian Gulf Research Institute, Persian Gulf University, 75169 Bushehr, Iran
| | - Sattar Tahmasebi Enferadi
- Department of Plant Molecular Biotechnology, Institute of Agricultural Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| |
Collapse
|
3
|
Abdel Haleem MI, Khater HF, Edris SN, Taie HAA, Abdel Gawad SM, Hassan NA, El-Far AH, Magdy Y, Elbasuni SS. Bioefficacy of dietary inclusion of Nannochloropsis oculata on Eimeria spp. challenged chicks: clinical approaches, meat quality, and molecular docking. Avian Pathol 2024; 53:199-217. [PMID: 38285881 DOI: 10.1080/03079457.2024.2312133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/20/2024] [Indexed: 01/31/2024]
Abstract
Although anticoccidial drugs have been used to treat avian coccidiosis for nearly a century, resistance, bird harm, and food residues have caused health concerns. Thus, Nannochloropsis oculata was investigated as a possible coccidiosis treatment for broilers. A total of 150 1-day-old male Cobb broiler chicks were treated as follows: G1-Ng: fed a basal diet; G2-Ps: challenged with Eimeria spp. oocysts and fed basal diet; G3-Clo: challenged and fed basal diet with clopidol; G4-NOa: challenged and fed 0.1% N. oculata in diet, and G5-NOb: challenged and fed 0.2% N. oculata. Compared to G2-Ps, N. oculata in the diet significantly (P < 0.05) decreased dropping scores, lesion scores, and oocyst shedding. Without affecting breast meat colour metrics, N. oculata improved meat quality characters. At 28 days of age, birds received 0.2% N. oculata had significantly (P < 0.05) higher serum levels of MDA, T-SOD, HDL, and LDL cholesterol compared to G2-Ps. Serum AST, ALT, and urea levels were all decreased when N. oculata (0.2%) was used as opposed to G2-Ps. Histopathological alterations and the number of developmental and degenerative stages of Eimeria spp. in the intestinal epithelium were dramatically reduced by 0.2% N. oculata compared to G2-Ps. Molecular docking revealed a higher binding affinity of N. oculata for E. tenella aldolase, EtAMA1, and EtMIC3, which hindered glucose metabolism, host cell adhesion, and invasion of Eimeria. Finally, N. oculata (0.2%) can be used in broiler diets to mitigate the deleterious effects of coccidiosis.
Collapse
Affiliation(s)
- Marwa I Abdel Haleem
- Department of Avian and Rabbit Diseases, Faculty of Veterinary Medicine, Benha University, Benha, Egypt
| | - Hanem F Khater
- Department of Parasitology, Faculty of Veterinary Medicine, Benha University, Benha, Egypt
| | - Shimaa N Edris
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Benha University, Benha, Egypt
| | - Hanan A A Taie
- Plant Biochemistry Department, National Research Centre, Dokki, Egypt
| | - Samah M Abdel Gawad
- Department of Parasitology, Faculty of Veterinary Medicine, Benha University, Benha, Egypt
| | - Nibal A Hassan
- Department of Biology, Animal Reproduction Research Institute, Pathology Department, Giza, Egypt
- College of Science, Taif University, Taif, Saudi Arabia
| | - Ali H El-Far
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Yasmeen Magdy
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Benha University, Benha, Egypt
| | - Sawsan S Elbasuni
- Department of Avian and Rabbit Diseases, Faculty of Veterinary Medicine, Benha University, Benha, Egypt
| |
Collapse
|
4
|
Nutritional quality of meat from hen fed diet with full-fat black soldier fly (Hermetia illucens) larvae meal as a substitute to fish meal. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
5
|
Yoshimi T, Hashimoto S, Kubo Y, Takeuchi M, Morimoto D, Nakagawa S, Sawayama S. Improvement of Astaxanthin Production in Aurantiochytrium limacinum by Overexpression of the Beta-Carotene Hydroxylase Gene. Appl Biochem Biotechnol 2023; 195:1255-1267. [PMID: 36346562 DOI: 10.1007/s12010-022-04172-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2022] [Indexed: 11/11/2022]
Abstract
Aurantiochytrium limacinum is a heterotrophic eukaryotic microorganism that can accumulate high levels of commercial products such as astaxanthin and docosahexaenoic acid. Due to its rapid growth and relatively simple extraction method, A. limacinum is considered a promising astaxanthin resource to replace the conventional microalgal production. However, the astaxanthin biosynthetic process in A. limacinum remains incompletely understood, especially in those catalysed by β-carotene hydroxylase (CrtZ) and ketolase. In this study, we overexpressed a crtZ candidate gene to increase astaxanthin production and expand our understanding of the conversion from beta-carotene to astaxanthin. The resultant transformant AlcrtZ#10 cultivated for 5 days showed a significant increase in astaxanthin production per culture (2.8-fold) and per cell (4.5-fold) compared with that of the wild-type strain. Strikingly, longer light exposure increased astaxanthin production and decreased the beta-carotene content in the wild-type strain, suggesting that light exposure duration is important for astaxanthin production in A. limacinum. Among several predicted intermediates, furthermore, the cantaxanthin produced from β-carotene by ketolase activity were enhanced in the transformant AlcrtZ#10. Although the further investigation is needed, this result suggested that the main route of astaxanthin was via cantaxanthin. Thus, our findings will be valuable not only for its application, but also for understanding the astaxanthin biosynthetic process in A. limacinum.
Collapse
Affiliation(s)
- Toru Yoshimi
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Sakiko Hashimoto
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Yuki Kubo
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Masato Takeuchi
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Daichi Morimoto
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan.
| | - Satoshi Nakagawa
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Shigeki Sawayama
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| |
Collapse
|
6
|
Untea AE, Turcu RP, Saracila M, Vlaicu PA, Panaite TD, Oancea AG. Broiler meat fatty acids composition, lipid metabolism, and oxidative stability parameters as affected by cranberry leaves and walnut meal supplemented diets. Sci Rep 2022; 12:21618. [PMID: 36517513 PMCID: PMC9750998 DOI: 10.1038/s41598-022-25866-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
A randomized complete block with a 2 × 3 factorial arrangement was used to design a nutrition experiment conducted for the evaluation of the relation between walnut meal (WM-6% inclusion rate) and cranberry leaves (CL-1% and 2% inclusion rate) supplements and their effects on tissue lipid profile, lipid metabolism indices and oxidative stability of meat. Semi-intensive system conditions were simulated for 240 Ross 308 broilers and the animals were reared on permanent shave litter in boxes of 3 m2 (40 broilers / each group, housed in a single box). The current study results showed that the diets enriched in linolenic acid (LNA) (WM diets) led to broilers meat enriched in LNA, but the synthesis of long-chain omega-3 polyunsaturated fatty acids (LC n-3 PUFA) was stimulated when the diets were supplemented with a natural antioxidants source (CL diets). The CL diet also exhibited the most powerful effect in counteracting the oxidative processes of meat.
Collapse
Affiliation(s)
- Arabela Elena Untea
- Feed and Food Quality Department, National Research and Development Institute for Biology and Animal Nutrition, Calea Bucharest, No. 1, 077015, Balotesti, Ilfov, Romania.
| | - Raluca Paula Turcu
- Feed and Food Quality Department, National Research and Development Institute for Biology and Animal Nutrition, Calea Bucharest, No. 1, 077015, Balotesti, Ilfov, Romania
| | - Mihaela Saracila
- Feed and Food Quality Department, National Research and Development Institute for Biology and Animal Nutrition, Calea Bucharest, No. 1, 077015, Balotesti, Ilfov, Romania
| | - Petru Alexandru Vlaicu
- Feed and Food Quality Department, National Research and Development Institute for Biology and Animal Nutrition, Calea Bucharest, No. 1, 077015, Balotesti, Ilfov, Romania
| | - Tatiana Dumitra Panaite
- Nutrition Physiology Department, National Research and Development Institute for Biology and Animal Nutrition, Calea Bucharest, No. 1, 077015, Balotesti, Ilfov, Romania
| | - Alexandra Gabriela Oancea
- Feed and Food Quality Department, National Research and Development Institute for Biology and Animal Nutrition, Calea Bucharest, No. 1, 077015, Balotesti, Ilfov, Romania
| |
Collapse
|
7
|
Liu J, Zhao L, Zhao Z, Wu Y, Cao J, Cai H, Yang P, Wen Z. Rubber (Hevea brasiliensis) seed oil supplementation attenuates immunological stress and inflammatory response in lipopolysaccharide-challenged laying hens. Poult Sci 2022; 101:102040. [PMID: 35917674 PMCID: PMC9352553 DOI: 10.1016/j.psj.2022.102040] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/15/2022] [Accepted: 06/25/2022] [Indexed: 11/30/2022] Open
Abstract
This study was conducted to investigate the effect of PUFA-enriched rubber (Hevea brasiliensis) seed oil (RSO) supplementation in diets on the productive performance, plasma biochemical parameters, immune response, and inflammation in lipopolysaccharide (LPS)-challenged laying hens. Two hundred and forty 25-wk-old Lohmann Brown laying hens were randomly divided into 5 treatments, each including 4 replicates with 12 birds per replicate. The control group and LPS-challenged group were fed a corn-soybean-basal diet; 3 RSO-supplemented groups were fed experimental diets containing 1, 2, and 4% RSO for a feeding period of 4 wk. On the 15, 18, 21, 24, and 27 d of the RSO supplementation period of 4 wk, hens were injected intraperitoneally with LPS at 1 mg/kg body weight (challenge group and RSO-supplemented groups) or with the same amount of saline (control group). The results showed that the addition of RSO promoted laying performance by increasing egg production, total egg weight, daily egg mass, and feed intake in comparison to the LPS-challenged laying hens (P < 0.05). In addition, compared with laying hens stimulated with LPS, the analysis of blood cell and plasma parameters revealed that hens in RSO-supplemented groups had significantly lower levels (P < 0.05) of white blood cells (WBC), lymphocytes (LYM), aspartate aminotransferase (AST) activity, immunoglobulin A (IgA), triiodothyronine (T3), interleukin-2 (IL-2), and tumor necrosis factor-α (TNF-α). Further, RSO supplementation significantly reduced the mRNA expression of toll-like receptor 4 (TLR4), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), interleukin-6 (IL-6), and interleukin-1β (IL-1β) of the ileum, spleen, and liver in LPS-challenged laying hens (P < 0.05), suggesting that the anti-inflammatory mechanism of RSO is related to the TLR4/NF-κB signaling pathway. In conclusion, RSO supplementation in diets could improve laying performance, attenuate immunological stress, and inhibit the inflammatory response in LPS-challenged laying hens, especially at the dietary inclusion of 4% RSO. This study will provide an insight into the application of RSO to positively contribute to overall health and welfare in laying hens.
Collapse
Affiliation(s)
- Jing Liu
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lulu Zhao
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zitao Zhao
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yongbao Wu
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Junting Cao
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hongying Cai
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Peilong Yang
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhiguo Wen
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
8
|
Hac İsa M, Metin C, Ercan E, Alparslan Y. Effect of different cell disruption methods on lipid yield of
Schizochytrium
sp. J AM OIL CHEM SOC 2022. [DOI: 10.1002/aocs.12551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Mustafa Hac İsa
- Faculty of Fisheries Muğla Sıtkı Koçman University Kötekli Muğla Turkey
| | - Cansu Metin
- Faculty of Fisheries Muğla Sıtkı Koçman University Kötekli Muğla Turkey
| | - Ertan Ercan
- Faculty of Fisheries Muğla Sıtkı Koçman University Kötekli Muğla Turkey
| | - Yunus Alparslan
- Faculty of Fisheries Muğla Sıtkı Koçman University Kötekli Muğla Turkey
| |
Collapse
|
9
|
BARAĆ M, VUČIĆ T, ŠPIROVIĆ-TRIFUNOVIĆ B, BARAĆ N, SMILJANIĆ M. Protein and fatty acid profiles of Kajmak ripened at two different temperatures. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.63322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Cultivation and Biorefinery of Microalgae (Chlorella sp.) for Producing Biofuels and Other Byproducts: A Review. SUSTAINABILITY 2021. [DOI: 10.3390/su132313480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Microalgae-based carbon dioxide (CO2) biofixation and biorefinery are the most efficient methods of biological CO2 reduction and reutilization. The diversification and high-value byproducts of microalgal biomass, known as microalgae-based biorefinery, are considered the most promising platforms for the sustainable development of energy and the environment, in addition to the improvement and integration of microalgal cultivation, scale-up, harvest, and extraction technologies. In this review, the factors influencing CO2 biofixation by microalgae, including microalgal strains, flue gas, wastewater, light, pH, temperature, and microalgae cultivation systems are summarized. Moreover, the biorefinery of Chlorella biomass for producing biofuels and its byproducts, such as fine chemicals, feed additives, and high-value products, are also discussed. The technical and economic assessments (TEAs) and life cycle assessments (LCAs) are introduced to evaluate the sustainability of microalgae CO2 fixation technology. This review provides detailed insights on the adjusted factors of microalgal cultivation to establish sustainable biological CO2 fixation technology, and the diversified applications of microalgal biomass in biorefinery. The economic and environmental sustainability, and the limitations and needs of microalgal CO2 fixation, are discussed. Finally, future research directions are provided for CO2 reduction by microalgae.
Collapse
|
11
|
Vlaicu PA, Panaite TD, Turcu RP. Enriching laying hens eggs by feeding diets with different fatty acid composition and antioxidants. Sci Rep 2021; 11:20707. [PMID: 34667227 PMCID: PMC8526598 DOI: 10.1038/s41598-021-00343-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 10/11/2021] [Indexed: 11/11/2022] Open
Abstract
The current study was conducted to evaluate egg quality, egg yolk fatty acids, health-related indices and antioxidants from laying hens' eggs fed different combined vegetable by-products, rich in fatty acids and antioxidants. One hundred twenty 50 weeks-old Tetra SL laying hens were divided into three groups. They were given daily a standard diet (Control, C), a diet containing 9% rapeseed meal with 3% grapeseed meal (T1 diet), or a diet containing 9% flaxseed meal and 3% sea buckthorn meal (T2 diet). Hen production performances, egg quality, egg yolk fatty acids total polyphenols content and antioxidant capacity were determined. The T1 diet significantly reduced the egg yolk content of palmitic acid from 76.615 mg (C) to 46.843 mg (T1) and that of oleic acid from 788.13 mg (C) to 682.83 mg (T1). Feeding flaxseed and sea buckthorn meals significantly increased the egg yolk content of α-linolenic acid in T2 yolks (35.297 mg) compared with C yolks (4.752 mg) and that of docosahexaenoic acid (DHA) from 16.282 mg (C) to 74.918 mg (T2). The atherogenicity indices (AI) were not significantly affected, whereas the thrombogenicity indices (TI) decreased significantly (p < 0.0007) from 0.72 (C) to 0.60 (T1) and 0.66 (T2), respectively. Adding this combination of meals to the hens' diets, increased the total polyphenol content and antioxidant capacity in T1 and T2 eggs compared to C eggs. The significant enrichment of eggs with n-3 fatty acids and antioxidant capacity, as well on the health-related indices especially from T2 eggs, represents a potential functional feed ingredient in poultry feeding, to obtain eggs as functional food.
Collapse
Affiliation(s)
- Petru Alexandru Vlaicu
- Department of Chemistry and Animal Nutrition Physiology, National Research and Development Institute for Animal Biology and Nutrition, Balotesti, Romania.
| | - Tatiana Dumitra Panaite
- Department of Chemistry and Animal Nutrition Physiology, National Research and Development Institute for Animal Biology and Nutrition, Balotesti, Romania
| | - Raluca Paula Turcu
- Department of Chemistry and Animal Nutrition Physiology, National Research and Development Institute for Animal Biology and Nutrition, Balotesti, Romania
| |
Collapse
|