1
|
Ren D, Ren C, Ren J, Li S, Yang X, Li F. Changes in functional activities and volatile flavor compounds of fermented mung beans, cowpeas, and quinoa started with Bacillus amyloliquefaciens SY07. Food Res Int 2025; 201:115636. [PMID: 39849731 DOI: 10.1016/j.foodres.2024.115636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/11/2024] [Accepted: 12/28/2024] [Indexed: 01/25/2025]
Abstract
In this work, the functional activities including α-glucosidase, α-amylase, angiotensin converting enzyme (ACE) inhibitory activity, and antioxidant activity of mixed grains (mung beans, cowpeas, and quinoa) fermented with Bacillus amyloliquefaciens SY07 were investigated. The volatile flavor of the mixed grains collected every 12 h during 72 h-fermentation were further detected as well. The inhibition on α-glucosidase and α-amylase reached up to 89.34 % and 50.03 % with the sample concentration of 5.17 and 9.38 mg/mL, respectively. Moreover, the ACE inhibitory activity reached to 93.66 % with the sample concentration of 0.59 mg/mL. The antioxidant capacity of the mixed grains, evaluated by ABTS and DPPH radical scavenging capacities and ferric ion reducing power, was also significantly improved (p < 0.05) during fermentation. The maximum of ABTS and DPPH radical scavenging capacities increased to 8.64 and 3.21 mg TE/g DW, respectively, and the maximum ferric ion reducing power reached to 5.73 mg TE/g DW. Twenty-one volatile flavor compounds with odor activity values (OAVs) ≥ 1 were detected, and six key volatile flavor substances were identified by OPLS-DA analysis, namely, isovaleric acid, acetoin, phenylacetic acid, (Z)-2-nonenol, 1-hexanol, and 1-octen-3-ol, with overall strong creamy, sweet, baked-potato, and cocoa flavors upon fermentation. These findings revealed a favorable pathway for B. amyloliquefaciens SY07 to be used to improve the functional and flavor properties of fermented grains, which would also be of great value for further elucidating the mechanism of the formation of the volatile flavor differences and developing novel quality cereal-based products.
Collapse
Affiliation(s)
- Dirong Ren
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457 PR China
| | - Chenghuan Ren
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457 PR China
| | - Jiamin Ren
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457 PR China
| | - Shuwen Li
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457 PR China
| | - Xiya Yang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457 PR China
| | - Fengjuan Li
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457 PR China.
| |
Collapse
|
2
|
Vasarri M, Bergonzi MC, Ivanova Stojcheva E, Bilia AR, Degl’Innocenti D. Olea europaea L. Leaves as a Source of Anti-Glycation Compounds. Molecules 2024; 29:4368. [PMID: 39339362 PMCID: PMC11434099 DOI: 10.3390/molecules29184368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/04/2024] [Accepted: 09/08/2024] [Indexed: 09/30/2024] Open
Abstract
High concentrations of advanced glycation end products (AGEs) have been linked to diseases, including diabetic complications. The pathophysiological effects of AGEs are mainly due to oxidative stress and inflammatory processes. Among the proteins most affected by glycation are albumin, the most abundant circulating protein, and collagen, which has a long biological half-life and is abundant in the extracellular matrix. The potential cellular damage caused by AGEs underscores the importance of identifying and developing natural AGE inhibitors. Indeed, despite initial promise, many synthetic inhibitors have been withdrawn from clinical trials due to issues such as cytotoxicity and poor pharmacokinetics. In contrast, natural products have shown significant potential in inhibiting AGE formation. Olea europaea L. leaves, rich in bioactive compounds like oleuropein and triterpenoids, have attracted scientific interest, emphasizing the potential of olive leaf extracts in health applications. This study investigates the anti-glycation properties of two polyphenol-rich extracts (OPA40 and OPA70) and a triterpene-enriched extract (TTP70) from olive leaves. Using in vitro protein glycation methods with bovine serum albumin (BSA)-glucose and gelatin-glucose systems, this study assesses AGE formation inhibition by these extracts through native polyacrylamide gel electrophoresis (N-PAGE) and autofluorescence detection. OPA40 and OPA70 exhibited strong, dose-dependent anti-glycation effects. These effects were corroborated by electrophoresis and further supported by similar results in a gelatin-glucose system. Additionally, TTP70 showed moderate anti-glycation activity, with a synergistic effect of its components. The results support the real possibility of using olive leaf bioproducts in ameliorating diabetic complications, contributing to sustainable bio-economy practices.
Collapse
Affiliation(s)
- Marzia Vasarri
- Department of Chemistry, University of Florence, Via Ugo Schiff 6, 50139 Sesto Fiorentino, Italy; (M.V.); (A.R.B.)
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy;
| | - Maria Camilla Bergonzi
- Department of Chemistry, University of Florence, Via Ugo Schiff 6, 50139 Sesto Fiorentino, Italy; (M.V.); (A.R.B.)
| | | | - Anna Rita Bilia
- Department of Chemistry, University of Florence, Via Ugo Schiff 6, 50139 Sesto Fiorentino, Italy; (M.V.); (A.R.B.)
| | - Donatella Degl’Innocenti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy;
| |
Collapse
|
3
|
Alves Teixeira da Rocha F, Helena Meller da Silva L, Manoel da Cruz Rodrigues A. Bacuri (Platonia insignis Mart.): Nutritional values, volatile compounds, rheological properties, health benefits, and potential products. Food Chem 2024; 436:137528. [PMID: 37847960 DOI: 10.1016/j.foodchem.2023.137528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 09/11/2023] [Accepted: 09/16/2023] [Indexed: 10/19/2023]
Abstract
The bacuri is one of the main Amazonian fruits, which is greatly appreciated by local inhabitants due to its characteristic flavor. It offers numerous potential applications in products such as juices, sweets, jams, and yogurts. This review discusses the nutritional values, physicochemical composition, volatile compounds, rheological properties, health benefits, and potential food products obtained from the pulp of bacuri, which contains considerable amounts of bioactive compounds, dietary fibers, minerals, amino acids, among other nutrients, as well as a potential for hypoglycemic compounds. The bacuri has an essentially floral aroma with fruity notes and an attractive exotic flavor. Its major aromatic compounds are linalool, cis-linalool, trans-linalool oxide, and hotrienol. Bacuri pulp presents itself as a non-Newtonian fluid of the pseudoplastic type. The bacuri fruit has not yet attained economic importance due to the lack of studies aimed at expanding the possibilities of post-harvest processing and commercialization.
Collapse
Affiliation(s)
- Fátima Alves Teixeira da Rocha
- Universidade Federal do Pará (UFPA), Programa de Pós-Graduação em Ciência e Tecnologia de Alimentos (PPGCTA) [Graduate Program in Science and Food Technology], Belém, Pará, Brazil
| | - Luiza Helena Meller da Silva
- Universidade Federal do Pará (UFPA), Programa de Pós-Graduação em Ciência e Tecnologia de Alimentos (PPGCTA) [Graduate Program in Science and Food Technology], Belém, Pará, Brazil.
| | - Antonio Manoel da Cruz Rodrigues
- Universidade Federal do Pará (UFPA), Programa de Pós-Graduação em Ciência e Tecnologia de Alimentos (PPGCTA) [Graduate Program in Science and Food Technology], Belém, Pará, Brazil
| |
Collapse
|
4
|
Galarce-Bustos O, Obregón C, Vallejos-Almirall A, Folch C, Acevedo F. Application of effect-directed analysis using TLC-bioautography for rapid isolation and identification of antidiabetic compounds from the leaves of Annona cherimola Mill. PHYTOCHEMICAL ANALYSIS : PCA 2023; 34:970-983. [PMID: 37488746 DOI: 10.1002/pca.3265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/26/2023]
Abstract
INTRODUCTION Type 2 diabetes mellitus is a globally prevalent chronic disease characterised by hyperglycaemia and oxidative stress. The search for new natural bioactive compounds that contribute to controlling this condition and the application of analytical methodologies that facilitate rapid detection and identification are important challenges for science. Annona cherimola Mill. is an important source of aporphine alkaloids with many bioactivities. OBJECTIVE The aim of this study is to isolate and identify antidiabetic compounds from alkaloid extracts with α-glucosidase and α-amylase inhibitory activity from A. cherimola Mill. leaves using an effect-directed analysis by thin-layer chromatography (TLC)-bioautography. METHODOLOGY Guided fractionation for α-glucosidase and α-amylase inhibitors in leaf extracts was done using TLC-bioassays. The micro-preparative TLC was used to isolate the active compounds, and the identification was performed by mass spectrometry associated with web-based molecular networks. Additionally, in vitro estimation of the inhibitory activity and antioxidant capacity was performed in the isolated compounds. RESULTS Five alkaloids (liriodenine, dicentrinone, N-methylnuciferine, anonaine, and moupinamide) and two non-alkaloid compounds (3-methoxybenzenepropanoic acid and methylferulate) with inhibitory activity were isolated and identified using a combination of simple methodologies. Anonaine, moupinamide, and methylferulate showed promising results with an outstanding inhibitory activity against both enzymes and antioxidant capacity that could contribute to controlling redox imbalance. CONCLUSIONS These high-throughput methodologies enabled a rapid isolation and identification of seven compounds with potential antidiabetic activity. To our knowledge, the estimated inhibitory activity of dicentrinone, N-methylnuciferine, and anonaine against α-glucosidase and α-amylase is reported here for the first time.
Collapse
Affiliation(s)
- Oscar Galarce-Bustos
- Laboratorio de Farmacognosia, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile
| | - Camilo Obregón
- Laboratorio de Farmacognosia, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile
| | - Alejandro Vallejos-Almirall
- Grupo Interdisciplinario de Biotecnología Marina (GIBMAR), Centro de Biotecnología, Universidad de Concepción, Concepción, Chile
| | - Christian Folch
- Departamento de Agroindustrias, Facultad de Ingeniería Agrícola, Universidad de Concepción, Chillán, Chile
| | - Francisca Acevedo
- Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco, Chile
- Center of Excellence translational Medicine, Scientific and Technological Bioresource Nucleus, BIOREN, Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
5
|
Yang S, Fan L, Tan P, Lei W, Liang J, Gao Z. Effects of Eurotium cristatum on chemical constituents and α-glucosidase activity of mulberry leaf tea. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
|
6
|
Younis IY, Ibrahim RM, El-Halawany A, Hegazy MEF, Efferth T, Mohsen E. Chemometric discrimination of Hylocereus undulatus from different geographical origins via their metabolic profiling and antidiabetic activity. Food Chem 2023; 404:134650. [DOI: 10.1016/j.foodchem.2022.134650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 10/02/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022]
|
7
|
Periferakis A, Periferakis K, Badarau IA, Petran EM, Popa DC, Caruntu A, Costache RS, Scheau C, Caruntu C, Costache DO. Kaempferol: Antimicrobial Properties, Sources, Clinical, and Traditional Applications. Int J Mol Sci 2022; 23:ijms232315054. [PMID: 36499380 PMCID: PMC9740324 DOI: 10.3390/ijms232315054] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/23/2022] [Accepted: 11/26/2022] [Indexed: 12/03/2022] Open
Abstract
Flavonoids are a category of plant-derived compounds which exhibit a large number of health-related effects. One of the most well-known and studied flavonoids is kaempferol, which can be found in a wide variety of herbs and plant families. Apart from their anticarcinogenic and anti-inflammatory effects, kaempferol and its associated compounds also exhibit antibacterial, antifungal, and antiprotozoal activities. The development of drugs and treatment schemes based on these compounds is becoming increasingly important in the face of emerging resistance of numerous pathogens as well as complex molecular interactions between various drug therapies. In addition, many of the kaempferol-containing plants are used in traditional systems all over the world for centuries to treat numerous conditions. Due to its variety of sources and associated compounds, some molecular mechanisms of kaempferol antimicrobial activity are well known while others are still under analysis. This paper thoroughly documents the vegetal and food sources of kaempferol as well as the most recent and significant studies regarding its antimicrobial applications.
Collapse
Affiliation(s)
- Argyrios Periferakis
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Akadimia of Ancient Greek and Traditional Chinese Medicine, 16675 Athens, Greece
| | - Konstantinos Periferakis
- Akadimia of Ancient Greek and Traditional Chinese Medicine, 16675 Athens, Greece
- Pan-Hellenic Organization of Educational Programs (P.O.E.P), 17236 Athens, Greece
- Orasis Acupuncture Institute, 11526 Athens, Greece
| | - Ioana Anca Badarau
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Elena Madalina Petran
- Department of Biochemistry, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Toxicology, Grigore Alexandrescu Emergency Children’s Hospital, 011743 Bucharest, Romania
| | - Delia Codruta Popa
- Department of Biochemistry, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Hematology, Fundeni Clinical Institute, 022328 Bucharest, Romania
- Correspondence: (D.C.P.); (C.S.)
| | - Ana Caruntu
- Department of Oral and Maxillofacial Surgery, ‘Dr. Carol Davila’ Central Military Emergency Hospital, 010825 Bucharest, Romania
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, ‘Titu Maiorescu’ University, 031593 Bucharest, Romania
| | - Raluca Simona Costache
- Department of Gastroenterology, Gastroenterology and Internal Medicine Clinic, ‘Dr. Carol Davila’ Central Military Emergency Hospital, 010825 Bucharest, Romania
- Department of Internal Medicine and Gastroenterology, ‘Carol Davila’ University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Cristian Scheau
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Correspondence: (D.C.P.); (C.S.)
| | - Constantin Caruntu
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Dermatology, ‘Prof. N.C. Paulescu’ National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
| | - Daniel Octavian Costache
- Department of Dermatology, ‘Dr. Carol Davila’ Central Military Emergency Hospital, 010825 Bucharest, Romania
| |
Collapse
|
8
|
Traditional Uses, Phytochemistry and Pharmacological Activities of Annonacae. Molecules 2022; 27:molecules27113462. [PMID: 35684400 PMCID: PMC9182277 DOI: 10.3390/molecules27113462] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/17/2022] [Accepted: 05/23/2022] [Indexed: 12/02/2022] Open
Abstract
In 1789, the Annonaceae family was catalogued by de Jussieu. It encompasses tropical and subtropical plants which are widespread in distribution across various continents such as Asia, South and Central America, Australia and Africa. The genus of Annona is one of 120 genera of the Annonaceae family and contains more than 119 species of trees and shrubs. Most species are found in tropical America, where over 105 species have been identified. Due to its edible fruits and medicinal properties, Annona is the most studied genus of Annonaceae family. To date, only a limited number of these species have economic value, including A. squamosa L. (sugar apple), A. cherimola Mill. (Cherimoya), A. muricata L. (guanabana or soursop), A. atemoya Mabb. (atemoya), a hybrid between A. cherimola and A. squamosa, A. reticulata L. (custard apple), A. glabra L. (pond-apple) and A. macroprophyllata Donn. Sm. (ilama). Phytochemically, several classes of secondary metabolites, including acetogenins, essential oils, alkaloids, terpenoids and flavonoids. The pharmacological activities of Annona species leaves and seeds include antibacterial, anticancer, antidiabetic and anti-inflammatory properties.
Collapse
|
9
|
Abdallah HM, Kashegari AT, Shalabi AA, Darwish KM, El-Halawany AM, Algandaby MM, Ibrahim SRM, Mohamed GA, Abdel-Naim AB, Koshak AE, Proksch P, Elhady SS. Phenolics from Chrozophora oblongifolia Aerial Parts as Inhibitors of α-Glucosidases and Advanced Glycation End Products: In-Vitro Assessment, Molecular Docking and Dynamics Studies. BIOLOGY 2022; 11:biology11050762. [PMID: 35625490 PMCID: PMC9139161 DOI: 10.3390/biology11050762] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/13/2022] [Accepted: 05/15/2022] [Indexed: 11/23/2022]
Abstract
Simple Summary The chemical investigation of Chrozophora oblongifolia aerial parts resulted in the isolation of five phenolic compounds. The isolated metabolites were tested for their antioxidant and advanced glycation end-products (AGEs) formation, α-glucosidase, and lipase inhibitory activities. 1,3,6-Trigalloyl glucose exhibited the highest activity as an antioxidant and AGEs inhibitor as well as an α-glucosidase inhibitor. It showed promising binding affinity and stability towards the human intestinal maltase-glucoamylase α-glucosidases, as revealed through coupled molecular docking and dynamics studies that could encourage the utilization of this compound in the management of diabetes and its complications. Abstract Modern life is associated with low physical activity that leads to the accumulation of fats, gaining more weight, and obesity. Accumulation of fat in the abdomen region contributes to diabetes via insulin resistance and hyperglycemia. Polyphenols are major plant constituents that exert antidiabetic activity through different mechanisms, including radicle scavenging activity, regulation of glucose uptake, and inhibition of fat and polysaccharide hydrolysis in addition to their inhibitory role regarding the formation of advanced glycation end products (AGEs). Chemical investigation of C. oblongifolia aerial parts resulted in the isolation of five major compounds: apeginin-7-O-β-D-glucoside (1), quercetin-3-O-β-D-glucuronic acid (2), quercetin-3-O-β-D-galacturonic acid (3), rutin (4), and 1,3,6-trigalloyl glucose (5). The isolated compounds were tested for their antioxidant and AGEs formation, α-glucosidase, and lipase inhibitory activities. Compound 5 revealed the highest antioxidant and AGEs inhibitory activity in bovine serum albumin (BSA)-methylglyoxal, BSA-fructose, and arginine-methylglyoxal models. Moreover, it exhibited a potent inhibitory profile on Saccharomyces cerevisiae α-glucosidases compared to the positive control, acarbose. Compound (5) further depicted promising binding affinity and stability towards the human intestinal maltase-glucoamylase α-glucosidases, which is a diabetes-related therapeutic target, through coupled molecular docking and dynamics studies. The obtained results encourage the usage of 1,3,6-trigalloyl glucose in the management of diabetes and its complications. However, detailed in-vivo studies for this compound should be performed.
Collapse
Affiliation(s)
- Hossam M. Abdallah
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.T.K.); (G.A.M.); (A.E.K.); (S.S.E.)
- Correspondence:
| | - Albraa T. Kashegari
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.T.K.); (G.A.M.); (A.E.K.); (S.S.E.)
| | - Akram A. Shalabi
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Giza 11562, Egypt; (A.A.S.); (A.M.E.-H.)
| | - Khaled M. Darwish
- Department of Medicinal Chemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt;
| | - Ali M. El-Halawany
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Giza 11562, Egypt; (A.A.S.); (A.M.E.-H.)
| | - Mardi M. Algandaby
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Sabrin R. M. Ibrahim
- Preparatory Year Program, Department of Chemistry, Batterjee Medical College, Jeddah 21442, Saudi Arabia;
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Gamal A. Mohamed
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.T.K.); (G.A.M.); (A.E.K.); (S.S.E.)
| | - Ashraf B. Abdel-Naim
- Department of Pharmacology and Toxicology, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Abdulrahman E. Koshak
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.T.K.); (G.A.M.); (A.E.K.); (S.S.E.)
| | - Peter Proksch
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany;
| | - Sameh S. Elhady
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.T.K.); (G.A.M.); (A.E.K.); (S.S.E.)
| |
Collapse
|
10
|
Wang X, Wang Y, Han M, Liang J, Zhang M, Bai X, Yue T, Gao Z. Evaluating the changes in phytochemical composition, hypoglycemic effect, and influence on mice intestinal microbiota of fermented apple juice. Food Res Int 2022; 155:110998. [DOI: 10.1016/j.foodres.2022.110998] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 01/07/2022] [Accepted: 01/17/2022] [Indexed: 01/11/2023]
|
11
|
Tongkaew P, Purong D, Ngoh S, Phongnarisorn B, Aydin E. Acute Effect of Riceberry Waffle Intake on Postprandial Glycemic Response in Healthy Subjects. Foods 2021; 10:2937. [PMID: 34945488 PMCID: PMC8701308 DOI: 10.3390/foods10122937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 11/25/2022] Open
Abstract
Gluten-free products have been developed due to increasing consumer demand. The improvement of the sensory quality and nutritional value of these products may support functional food development and provide health benefits. The purpose of this study was to develop a gluten-free waffle formulation with Riceberry rice flour by replacing the sucrose with maltitol and palm sugar powder. Evaluations of the sensory acceptability of these products and the blood glucose levels of healthy volunteers after consuming Riceberry and wheat flour waffles were carried out. The glycemic responses of the volunteers to the Riceberry and wheat flour waffles at 0, 15, 30, 45, 60, 90, 120, 150, and 180 min were monitored. In addition, the glycemic index of the products was calculated. The finding revealed that replacing sugar with 50% (w/w of total sugar) palm sugar powder and 50% maltitol was the most acceptable formulation that received the highest acceptability scores in terms of overall acceptability and texture. The blood glucose levels of both Riceberry waffle and wheat flour were not significantly different. The glycemic index of Riceberry waffle and wheat flour waffle were 94.73 ± 7.60 and 91.96 ± 6.93, respectively. Therefore, Riceberry waffle could be used as an alternative gluten-free product for celiac patients, but not for diabetic patients.
Collapse
Affiliation(s)
- Patthamawadee Tongkaew
- Department of Food Science and Nutrition, Faculty of Science and Technology, Prince of Songkla University Pattani Campus, Pattani 94000, Thailand; (D.P.); (S.N.)
| | - Deeyana Purong
- Department of Food Science and Nutrition, Faculty of Science and Technology, Prince of Songkla University Pattani Campus, Pattani 94000, Thailand; (D.P.); (S.N.)
| | - Suraida Ngoh
- Department of Food Science and Nutrition, Faculty of Science and Technology, Prince of Songkla University Pattani Campus, Pattani 94000, Thailand; (D.P.); (S.N.)
| | - Benjapor Phongnarisorn
- Department of Food Technology, Faculty of Agricultural Technology, Phuket Rajabhat University, Phuket 83000, Thailand;
| | - Ebru Aydin
- Department of Food Engineering, Suleyman Demirel University, Isparta 32260, Turkey;
| |
Collapse
|
12
|
Delfita R, Dahelmi D, Tjong D, Suhatri S. Effect of Enhydra fluctuans on Kidney Function in Alloxan-induced Diabetic Rats. Open Access Maced J Med Sci 2021. [DOI: 10.3889/oamjms.2021.7531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
AIM: The aim of this study was to explore the effect of n-hexane fraction of Enhydra fluctuans aerial on kidney function in alloxan induced diabetic rats.
METHODS: Five groups of diabetic Wistar rats were studied: Group 1 was given 0.5% Na-CMC (G0), group 2 was given glibenclamide 0.45 mg/kg (G1), groups 3, 4, and 5 were given a dose of n-hexane fraction 57.03, 114.06, and 171.09 mg/kg respectively. The experiment was completed in 21 days. Blood glucose was estimated on day 0 and day 21 of treatment. Histology of kidney, creatinine, and blood urea nitrogen (BUN) was examined. ANOVA was used to evaluate quantitative data, which was then followed by Duncan's new multiple range test (p < 0.05).
RESULTS: Our results demonstrate that n-hexane fraction dosages of 57.03 mg/kg and 114,06 mg/kg significantly improved blood glucose profile, BUN, and creatinine in diabetic rats. Moreover, the dosage of 57.03 mg/kg is effective to counteract necrosis and fibrosis of kidney cells.
CONCLUSION: Our findings revealed that the administration of the n-hexane fraction of E. fluctuans aerial improved the kidney function of diabetic rats, especially at the dosage of 57.03 mg/kg. Therefore, E. fluctuans can be relied upon to be a drug to prevent the development of diabetes mellitus and diabetic nephropathy.
Collapse
|
13
|
Antihyperglycemic and Antilipidemic Properties of a Tea Infusion of the Leaves from Annona cherimola Miller on Streptozocin-Induced Type 2 Diabetic Mice. Molecules 2021; 26:molecules26092408. [PMID: 33919145 PMCID: PMC8122452 DOI: 10.3390/molecules26092408] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/15/2021] [Accepted: 04/18/2021] [Indexed: 01/02/2023] Open
Abstract
The antihyperglycemic and antilipidemic effects of the tea infusion extracts of leaves from Annona cherimola Miller (IELAc-0.5, IELAc-1.5, and IELAc-3.0) were evaluated on normoglycemic (NG) and streptozocin-induced diabetic (STID) mice. In the acute test, IELAc-1.5 at 300 mg/kg bodyweight (bw) exhibited antihyperglycemic activity on STID mice since the first hour of treatment. Then, its antidiabetic potential was analyzed in a subchronic evaluation. IELAc-1.5 was able to reduce the blood glucose level, glycated hemoglobin (HbA1c), cholesterol (CHO), and triglycerides (TG); high-density lipoprotein (HDL) showed an increase at the end of treatment. IELAc-1.5 did not modify the urine profile at the end of the evaluation, and neither toxicity nor macroscopic organ damage were observed in acute and subchronic assays. In addition, a major flavonol glycoside present in the tea infusion extracts was identified using high-performance liquid chromatography with diode array detection (HPLC-DAD). The analysis of the tea infusion extracts by HPLC revealed that rutin was the major component. This study supports the use of tea infusions from Annona cherimola for the treatment of diabetes and suggests that rutin could be responsible, at least in part, for their antidiabetic properties.
Collapse
|
14
|
Choque Delgado GT, Cruz Morales NX, Villa Gómez KY, da Silva Cunha Tamashiro WM. Antioxidant, Antiproliferative, and Immunomodulatory Activities in Peruvian Fruits. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1902345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Grethel Teresa Choque Delgado
- Departamento Académico de Ingeniería de Industrias Alimentarias, Universidad Nacional de San Agustín de Arequipa, Arequipa, Peru
| | - Noelia Ximena Cruz Morales
- Departamento Académico de Ingeniería de Industrias Alimentarias, Universidad Nacional de San Agustín de Arequipa, Arequipa, Peru
| | - Katherine Ysabel Villa Gómez
- Departamento Académico de Ingeniería de Industrias Alimentarias, Universidad Nacional de San Agustín de Arequipa, Arequipa, Peru
| | - Wirla Maria da Silva Cunha Tamashiro
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, PO Box: 6109, University of Campinas - UNICAMP, Campinas, SP, Brazil
| |
Collapse
|
15
|
Faria JV, Valido IH, Paz WHP, da Silva FMA, de Souza ADL, Acho LRD, Lima ES, Boleti APA, Marinho JVN, Salvador MJ, Dos Santos EL, Soares PK, López-Mesas M, Maia JMF, Koolen HHF, Bataglion GA. Comparative evaluation of chemical composition and biological activities of tropical fruits consumed in Manaus, central Amazonia, Brazil. Food Res Int 2021; 139:109836. [PMID: 33509461 DOI: 10.1016/j.foodres.2020.109836] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/11/2020] [Accepted: 10/19/2020] [Indexed: 10/23/2022]
Abstract
Fruits are widely recognized as sources of biologically active metabolites, such as antioxidant compounds. In this context, fruits commonly consumed in the central Amazonia, especially in its biggest metropolis (Manaus - AM/Brazil), are attractive as potential sources of antioxidant compounds related to biological activities. Most of such fruits are still poorly studied and/or remain unknown outside the Amazon region. Therefore, this study aims to investigate nine fruits (abiu, cubiu, biribá, breadfruit, genipap, peach palm, murici, soursop, and umari) regarding their chemical composition (fixed and volatile), reducing capacity, antioxidant activity, enzyme inhibition, and cytotoxicity. Determination of small organic acids, hydroxycinnamic acids, flavan-3-ols and flavonoid aglycones was done by HPLC-MS/MS, whereas determination of volatile organic compounds (VOCs) was done by HS-SPME/GC-MS. Reducing capacity was determined by the Folin-Ciocalteu method, and antioxidant activities were evaluated by DPPH, ABTS, and H-ORACFL assays. In vitro activities regarding inhibition of enzymes were tested for α-glucosidase, lipase, and α-amylase, and anti-glycation activities were evaluated for methylglyoxal and fructose. Cytotoxicity of fruit extracts was evaluated by cell viability of human fibroblast cell line (MRC-5). A total of 16 antioxidant compounds and 139 VOCs were determined, whose profiles were unique for each studied fruit. Total phenolic contents as well as antioxidant activities found herein were similar or even higher than those reported for several traditional fruits. Some of fruit extracts were able to inhibit α-glucosidase and glycation in methylglyoxal and fructose models, whereas none of them was active for lipase and α-amylase. All of the fruit extracts showed to be non-cytotoxic to MRC-5 cell line.
Collapse
Affiliation(s)
- Jéssica V Faria
- Grupo de Pesquisas em Metabolômica e Espectrometria de Massas, Universidade do Estado do Amazonas, 690065-130 Manaus, Brazil
| | - Iris H Valido
- Grupo de Pesquisas em Metabolômica e Espectrometria de Massas, Universidade do Estado do Amazonas, 690065-130 Manaus, Brazil; Centre Grup de Técniques de Separació en Química (GTS), Departament de Química, Universitat Autònoma de Barcelona, Facultat de Ciències, Edifici CN, 08193 Bellaterra, Barcelona, Spain
| | - Weider H P Paz
- Grupo de Pesquisas em Metabolômica e Espectrometria de Massas, Universidade do Estado do Amazonas, 690065-130 Manaus, Brazil; Departamento de Química, Universidade Federal do Amazonas, 69080-900 Manaus, Brazil
| | - Felipe M A da Silva
- Departamento de Química, Universidade Federal do Amazonas, 69080-900 Manaus, Brazil
| | - Afonso D L de Souza
- Departamento de Química, Universidade Federal do Amazonas, 69080-900 Manaus, Brazil
| | - Leonard R D Acho
- Faculdade de Ciências Farmacêuticas, Universidade Federal do Amazonas, 69077-000 Manaus, Brazil
| | - Emerson S Lima
- Faculdade de Ciências Farmacêuticas, Universidade Federal do Amazonas, 69077-000 Manaus, Brazil
| | - Ana Paula A Boleti
- Faculdade de Ciências Biológicas e Ambientais, Universidade Federal de Grande Dourados, 79825-900 Dourados, Brazil
| | - Jane V N Marinho
- Departamento de Biologia Vegetal, Universidade Estadual de Campinas, 13083-970 Campinas, Brazil
| | - Marcos J Salvador
- Departamento de Biologia Vegetal, Universidade Estadual de Campinas, 13083-970 Campinas, Brazil
| | - Edson L Dos Santos
- Faculdade de Ciências Biológicas e Ambientais, Universidade Federal de Grande Dourados, 79825-900 Dourados, Brazil
| | - Patrícia K Soares
- Escola de Ciências e Tecnologia, Universidade Federal do Rio Grande do Norte, 59078-970 Natal, Brazil
| | - Montserrat López-Mesas
- Centre Grup de Técniques de Separació en Química (GTS), Departament de Química, Universitat Autònoma de Barcelona, Facultat de Ciències, Edifici CN, 08193 Bellaterra, Barcelona, Spain
| | - Jair M F Maia
- Laboratório de Ecologia, Universidade do Estado do Amazonas, 69050-010 Manaus, Brazil
| | - Hector H F Koolen
- Grupo de Pesquisas em Metabolômica e Espectrometria de Massas, Universidade do Estado do Amazonas, 690065-130 Manaus, Brazil.
| | - Giovana A Bataglion
- Grupo de Pesquisas em Metabolômica e Espectrometria de Massas, Universidade do Estado do Amazonas, 690065-130 Manaus, Brazil; Departamento de Química, Universidade Federal do Amazonas, 69080-900 Manaus, Brazil.
| |
Collapse
|
16
|
Pomological, Sensorial, Nutritional and Nutraceutical Profile of Seven Cultivars of Cherimoya ( Annona cherimola Mill). Foods 2020; 10:foods10010035. [PMID: 33374394 PMCID: PMC7823484 DOI: 10.3390/foods10010035] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 01/05/2023] Open
Abstract
In this work, the food quality of four international (Campas, Chaffey, Fino de Jete and White) and three local (Daniela, Torre1 and Torre2) cultivars of Cherimoya (Annona cherimola Mill) was investigated. With this aim, pomological traits, sensorial attributes, physiochemical parameters (pH, total soluble content and total acidity), nutritional composition (macro- and micro-nutrients) and nutraceutical values (bioactive compounds, radical scavenging and antioxidant properties) were evaluated. Among the seven observed cultivars, Fino de Jete was identified as the best, not only for its commercial attributes such as pomological traits and physiochemical values, but also for its nutritional composition. On the other hand, Chaffey and Daniela were the cultivars with the highest content of polyphenols, proanthocyanidins, and with the strongest antioxidant capacity. Concerning the two local ecotypes, Torre1 and Torre2, they displayed a balanced nutritional profile that, if combined with their discrete nutraceutical, physicochemical and pomological values, may result in a reassessment of their commercial impact. In conclusion, our data provide interesting information about the pomological, nutritional, and nutraceutical properties of cherimoya fruits. Our results, in addition to promoting the commercial impact of local cultivars, may increase the use of individual cultivars in breeding programs.
Collapse
|