1
|
Hanga-Farcas A, Fritea L, Filip GA, Clichici S, Vicas LG, Toma VA, Marian E, Gligor FG, Abu Dayyih W, Muresan ME. The Influence of Juglans regia L. Extract and Ellagic Acid on Oxidative Stress, Inflammation, and Bone Regeneration Biomarkers. Int J Mol Sci 2024; 25:12577. [PMID: 39684288 DOI: 10.3390/ijms252312577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/17/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Bone regeneration is a highly dynamic and complex process that involves hematopoietic stem cells and mesenchymal cells, collagen fibers, non-collagenous proteins and biomolecules from extracellular matrices, and different cytokines and immune cells, as well as growth factors and hormones. Some phytochemicals due to antioxidant and anti-inflammatory effects can modulate the bone signaling pathways and improve bone healing and thus can be a good candidate for osteoregeneration. The aim of this study was to analyze the impact of Juglans regia L. extract compared to ellagic acid on bone neoformation in rats. The animals with a 5 mm calvaria defect were divided into four groups (n = 10): group 1 was treated with ellagic acid 1% (EA), group 2 was treated with Juglans regia L. extract 10% (JR), group 3 was treated with a biphasic mix of hydroxyapatite and tricalcium phosphate (Ceraform), and group 4 was treated with vehicle inert gel with carboxymethylcellulose (CMC). After 3 weeks of treatment, blood samples were collected for oxidative stress and inflammation assessment. Additionally, the receptor activator of nuclear factor kappa-Β ligand (RANKL) and hydroxyproline levels were quantified in blood. The skull samples were analyzed by scanning electron microscopy in order to detect the modifications in the four groups. The results suggested that JR extract had relevant anti-oxidant effect and bone protective activity and generated the accumulation of Ca and P, demonstrating the potential therapeutic abilities in bone regeneration.
Collapse
Affiliation(s)
- Alina Hanga-Farcas
- Doctoral School of Biomedical Sciences, University of Oradea, 1 University Street, 410087 Oradea, Romania
| | - Luminita Fritea
- Department of Preclinical Discipline, Faculty of Medicine and Pharmacy, University of Oradea, 10, 1 December Square, 410073 Oradea, Romania
| | - Gabriela Adriana Filip
- Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400347 Cluj-Napoca, Romania
| | - Simona Clichici
- Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400347 Cluj-Napoca, Romania
| | - Laura Gratiela Vicas
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 10, 1 December Square, 410073 Oradea, Romania
| | - Vlad-Alexandru Toma
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babes-Bolyai University, 5-7 Clinicilor Street, 400006 Cluj-Napoca, Romania
| | - Eleonora Marian
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 10, 1 December Square, 410073 Oradea, Romania
| | - Felicia Gabriela Gligor
- Faculty of Medicine, Lucian Blaga University Sibiu, Lucian Blaga Street, No 2A, 550169 Sibiu, Romania
| | - Wael Abu Dayyih
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mutah University, Al Karak 61710, Jordan
| | - Mariana Eugenia Muresan
- Department of Preclinical Discipline, Faculty of Medicine and Pharmacy, University of Oradea, 10, 1 December Square, 410073 Oradea, Romania
| |
Collapse
|
2
|
Sun H, Yu W, Li H, Hu X, Wang X. Bioactive Components of Areca Nut: An Overview of Their Positive Impacts Targeting Different Organs. Nutrients 2024; 16:695. [PMID: 38474823 PMCID: PMC10935369 DOI: 10.3390/nu16050695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/19/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Areca catechu L. is a widely cultivated tropical crop in Southeast Asia, and its fruit, areca nut, has been consumed as a traditional Chinese medicinal material for more than 10,000 years, although it has recently attracted widespread attention due to potential hazards. Areca nut holds a significant position in traditional medicine in many areas and ranks first among the four southern medicines in China. Numerous bioactive compounds have been identified in areca nuts, including alkaloids, polyphenols, polysaccharides, and fatty acids, which exhibit diverse bioactive functions, such as anti-bacterial, deworming, anti-viral, anti-oxidant, anti-inflammatory, and anti-tumor effects. Furthermore, they also display beneficial impacts targeting the nervous, digestive, and endocrine systems. This review summarizes the pharmacological functions and underlying mechanisms of the bioactive ingredients in areca nut. This helps to ascertain the beneficial components of areca nut, discover its medicinal potential, and guide the utilization of the areca nut.
Collapse
Affiliation(s)
- Huihui Sun
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (H.S.); (W.Y.); (X.H.)
- Sanya Institute of China Agricultural University, Sanya 572025, China
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100083, China;
| | - Wenzhen Yu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (H.S.); (W.Y.); (X.H.)
| | - Hu Li
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100083, China;
| | - Xiaosong Hu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (H.S.); (W.Y.); (X.H.)
| | - Xiaofei Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (H.S.); (W.Y.); (X.H.)
| |
Collapse
|
3
|
Zhou X, Gong X, Li X, An N, He J, Zhou X, Zhao C. The Antioxidant Activities In Vitro and In Vivo and Extraction Conditions Optimization of Defatted Walnut Kernel Extract. Foods 2023; 12:3417. [PMID: 37761127 PMCID: PMC10528741 DOI: 10.3390/foods12183417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
The objective of this study was to determine the antioxidant activities of defatted walnut kernel extract (DWE) and whole walnut kernel extract (WE) in vitro and in vivo. Three spectrophotometric methods, DPPH, ABTS, and FRAP, were used in in vitro experiments, and mice were used in in vivo experiments. In addition, response surface methodology (RSM) was used to optimize reflux-assisted ethanol extraction of DWE for maximum antioxidant activity and total phenolic content. The results of in vitro experiments showed that both extracts showed antioxidant activity; however, the antioxidant activity of DWE was higher than that of WE. Both extracts improved the mice's oxidative damage status in in vivo studies. An ethanol concentration of 58%, an extraction temperature of 48 °C, and an extraction time of 77 min were the ideal parameters for reflux-assisted ethanol extraction of DWE. The results may provide useful information for further applications of defatted walnut kernels and the development of functional foods.
Collapse
Affiliation(s)
- Xiaomei Zhou
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang 550001, China
- Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, Guiyang 550001, China
| | - Xiaojian Gong
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang 550001, China
- Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, Guiyang 550001, China
| | - Xu Li
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang 550001, China
- Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, Guiyang 550001, China
| | - Ning An
- Experimental Centre of Tropical Forestry, Chinese Academy of Forestry, Pingxiang 532600, China
| | - Jiefang He
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang 550001, China
| | - Xin Zhou
- Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, Guiyang 550001, China
| | - Chao Zhao
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang 550001, China
| |
Collapse
|
4
|
Wang B, Wang Y, Chen Y, Sun X, Xu J, Zhu J, Zhang Y. Red-Fleshed Apple Flavonoids Extract Alleviates Male Reproductive Injury Caused by Busulfan in Mice. Nutrients 2023; 15:3288. [PMID: 37571225 PMCID: PMC10420934 DOI: 10.3390/nu15153288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/20/2023] [Accepted: 07/20/2023] [Indexed: 08/13/2023] Open
Abstract
In this research, we analyzed the protective effects of red-fleshed apple flavonoid extracts (RAFEs) on male reproductive injury induced by busulfan, using both in vitro and in vivo models. In the cell-based experiments, RAFEs significantly improved cell viability and proliferation rates compared to control groups. Similarly, in vivo testing with male mice showed that RAFEs and whole apple flavonoid extracts (WAFEs) enhanced various biochemical and liver function-related indicators in the testes; however, RAFEs demonstrated superior efficacy in mitigating testicular damage. Through immunohistochemistry, qRT-PCR, and Western blotting, we found that RAFEs notably enhanced the expression of spermatogenesis-related genes. Moreover, RAFEs increased the expression of oxidative stress- and apoptosis-related genes, thereby effectively reducing oxidative damage in the testes. These findings highlight the potential of RAFEs as natural agents for the prevention and treatment of male reproductive injury, paving the way for future research and potential therapeutic applications.
Collapse
Affiliation(s)
- Bin Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China; (B.W.); (Y.W.); (Y.C.); (J.Z.)
- China Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao Agricultural University, Qingdao 266109, China
| | - Yanbo Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China; (B.W.); (Y.W.); (Y.C.); (J.Z.)
| | - Yizhou Chen
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China; (B.W.); (Y.W.); (Y.C.); (J.Z.)
| | - Xiaohong Sun
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China; (X.S.); (J.X.)
| | - Jihua Xu
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China; (X.S.); (J.X.)
| | - Jun Zhu
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China; (B.W.); (Y.W.); (Y.C.); (J.Z.)
| | - Yugang Zhang
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China; (B.W.); (Y.W.); (Y.C.); (J.Z.)
- China Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao Agricultural University, Qingdao 266109, China
- Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Dongying 257300, China
| |
Collapse
|
5
|
Han M, Yang F, Zhang K, Ni J, Zhao X, Chen X, Zhang Z, Wang H, Lu J, Zhang Y. Antioxidant, Anti-Inflammatory and Anti-Diabetic Activities of Tectona grandis Methanolic Extracts, Fractions, and Isolated Compounds. Antioxidants (Basel) 2023; 12:664. [PMID: 36978912 PMCID: PMC10044725 DOI: 10.3390/antiox12030664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/23/2023] [Accepted: 03/02/2023] [Indexed: 03/11/2023] Open
Abstract
Tectona grandis is a traditional Dai medicine plant belonging to the Lamiaceae family, which can be used to treat malaria, inflammation, diabetes, liver disease, bronchitis, tumors, cholelithiasis, jaundice, skin disease and as an anti-helminthic. To find more novel therapeutic agents contained in this medicinal plant, the antioxidant, anti-inflammatory and anti-diabetic activities of T. grandis methanolic extract, fractions and compounds were evaluated. In this study, 26 compounds were isolated from the leaves and branches of T. grandis. Their structures were identified based on extensive spectral experiments, including NMR, ESI-MS and comparison with published spectral data. Among them, compounds 1-2, 4-6, 9-14 and 16-22 were reported for the first time for this plant. The antioxidant activity screening results showed that compounds 5, 15 and 23 had potent antioxidant capacities, with SC50 values from 0.32 to 9.92 µmol/L, 0.92 to 1.10 mmol Trolox/L and 1.02 to 1.22 mmol Trolox/L for DPPH, ABTS and FRAP, respectively. In addition, their anti-inflammatory effects were investigated by releasing TNF-α, IL-1β and IL-6 through the use of mouse monocytic macrophages (RAW 264.7). Compounds 1, 13, 18 and 23 had the effects of reducing the expression of inflammatory factors. Compounds 13 and 18 were reported for the first time for their anti-inflammatory activities. Furthermore, the methanolic extract (ME), petroleum ether extract (PEE) and EtOAc extract (EAE) of T. grandis showed significant glucose uptake activities; compounds 21 and 23 significantly promoted glucose uptake of 3T3-L1 adipocytes at 40 µM. Meanwhile, compounds 4, 5 and 7 showed significant inhibitory activities against α-glucosidase, with IC50 values of 14.16 ± 0.34 µmol/L, 19.29 ± 0.26 µmol/L and 3.04 ± 0.08 µmol/L, respectively. Compounds 4 and 5 were reported for the first time for their α-glucosidase inhibitory activities. Our investigation explored the possible therapeutic material basis of T. grandis to prevent oxidative stress and related diseases, especially inflammation and diabetes.
Collapse
Affiliation(s)
- Mei Han
- Key Laboratory of Tropical Plant Resource and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
- Faculty of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fengxian Yang
- Key Laboratory of Tropical Plant Resource and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
| | - Kun Zhang
- Key Laboratory of Tropical Plant Resource and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
- Faculty of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiyan Ni
- Key Laboratory of Tropical Plant Resource and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
- Faculty of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xia Zhao
- Key Laboratory of Tropical Plant Resource and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
| | - Xuelin Chen
- Key Laboratory of Tropical Plant Resource and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
- Faculty of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhennan Zhang
- Key Laboratory of Tropical Plant Resource and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
- Faculty of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hanlei Wang
- Key Laboratory of Tropical Plant Resource and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
- Faculty of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Lu
- Key Laboratory of Tropical Plant Resource and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
- Faculty of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yumei Zhang
- Key Laboratory of Tropical Plant Resource and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
| |
Collapse
|
6
|
Yang L, Zhang C, Su Z, Zhao L, Wu J, Sun X, Zhang X, Hu X. Inactivation of Salmonella typhimurium SL1344 by Chlorogenic Acid and the Impairment of Cellular Integrity. Front Microbiol 2022; 13:887950. [PMID: 35495681 PMCID: PMC9048040 DOI: 10.3389/fmicb.2022.887950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/25/2022] [Indexed: 11/23/2022] Open
Abstract
Chlorogenic acid (CGA) is an antibacterial agent that can be isolated from Eucommia ulmoides Oliver, a Chinese medicinal and edible plant food. The inhibitory effect of CGA on bacterial growth and stiffness of the outer membrane (OM) had been reported, while more evidence were required to elucidate its impairment of cell wall. In this study, the morphological and physiochemical changes of Salmonella cells under CGA treatment were investigated. Firstly, the minimum inhibitory concentration (MIC) of CGA against Salmonella was assayed. Later, the permeability of OM and activity of the proteins released were measured and observed to reveal the alteration of OM characteristic and cellular morphology. Finally, reactive oxygen species and cell membrane fluidity were analyzed, respectively, to elucidate how CGA damaged cell surface. The results showed that MIC of CGA against Salmonella was 6.25 mg/L. Under sub-lethal doses of CGA, the OM permeability and the release of soluble proteins were enhanced evidently, and Salmonella cells showed more deformed and shrunken, confirming the impairment of cellular integrity under CGA. Finally, the possible cause of cell surface damage was investigated. the fluidity of the membrane was increased upon CGA treatment, which may the possible cause of OM by CGA.
Collapse
Affiliation(s)
- Liang Yang
- Department of Brewing Engineering, Moutai Institute, Renhuai, China.,School of Biotechnology, Jiangnan University, Wuxi, China
| | - Chunlin Zhang
- Department of Brewing Engineering, Moutai Institute, Renhuai, China
| | - Zijing Su
- Department of Brewing Engineering, Moutai Institute, Renhuai, China
| | - Liang Zhao
- Department of Brewing Engineering, Moutai Institute, Renhuai, China
| | - Jiaxin Wu
- School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xiaoying Sun
- School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xiujuan Zhang
- School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xiaoqing Hu
- School of Biotechnology, Jiangnan University, Wuxi, China.,State Key Laboratory of Food Science and Technology, Wuxi, China.,Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| |
Collapse
|
7
|
Wu Y, Zhang C, Huang Z, Lyu L, Li W, Wu W. Integrative analysis of the metabolome and transcriptome provides insights into the mechanisms of flavonoid biosynthesis in blackberry. Food Res Int 2022; 153:110948. [DOI: 10.1016/j.foodres.2022.110948] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 11/28/2022]
|
8
|
Keșa AL, Pop CR, Mudura E, Salanță LC, Pasqualone A, Dărab C, Burja-Udrea C, Zhao H, Coldea TE. Strategies to Improve the Potential Functionality of Fruit-Based Fermented Beverages. PLANTS (BASEL, SWITZERLAND) 2021; 10:2263. [PMID: 34834623 PMCID: PMC8623731 DOI: 10.3390/plants10112263] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/13/2021] [Accepted: 10/17/2021] [Indexed: 06/01/2023]
Abstract
It is only recently that fermentation has been facing a dynamic revival in the food industry. Fermented fruit-based beverages are among the most ancient products consumed worldwide, while in recent years special research attention has been granted to assess their functionality. This review highlights the functional potential of alcoholic and non-alcoholic fermented fruit beverages in terms of chemical and nutritional profiles that impact on human health, considering the natural occurrence and enrichment of fermented fruit-based beverages in phenolic compounds, vitamins and minerals, and pro/prebiotics. The health benefits of fruit-based beverages that resulted from lactic, acetic, alcoholic, or symbiotic fermentation and specific daily recommended doses of each claimed bioactive compound were also highlighted. The latest trends on pre-fermentative methods used to optimize the extraction of bioactive compounds (maceration, decoction, and extraction assisted by supercritical fluids, microwave, ultrasound, pulsed electric fields, high pressure homogenization, or enzymes) are critically assessed. As such, optimized fermentation processes and post-fermentative operations, reviewed in an industrial scale-up, can prolong the shelf life and the quality of fermented fruit beverages.
Collapse
Affiliation(s)
- Ancuța-Liliana Keșa
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (A.-L.K.); (E.M.)
| | - Carmen Rodica Pop
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (C.R.P.); (L.C.S.)
| | - Elena Mudura
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (A.-L.K.); (E.M.)
| | - Liana Claudia Salanță
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (C.R.P.); (L.C.S.)
| | - Antonella Pasqualone
- Department of Soil, Plant and Food Sciences, University of Bari ‘Aldo Moro’, Via Amendola, 165/A, 70126 Bari, Italy;
| | - Cosmin Dărab
- Department of Electric Power Systems, Faculty of Electrical Engineering, Technical University of Cluj-Napoca, 400027 Cluj-Napoca, Romania;
| | - Cristina Burja-Udrea
- Industrial Engineering and Management Department, Faculty of Engineering, Lucian Blaga University of Sibiu, 10 Victoriei Blv., 550024 Sibiu, Romania;
| | - Haifeng Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China;
- Research Institute for Food Nutrition and Human Health, Guangzhou 510640, China
| | - Teodora Emilia Coldea
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (A.-L.K.); (E.M.)
| |
Collapse
|
9
|
Evaluation and identification of antioxidative components of Radix Rhodomyrti by DPPH–UPLC–PDA coupled with UPLC–QTOF-MS/MS. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01544-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
10
|
Physicochemical properties, bioactive compounds and total antioxidant activity of Blackberry (Syzygium cumini L.) juice retained by preservatives during storage. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-00933-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
11
|
Araújo MEM, Martins A. Foods, the Best Way to Take Antioxidant Natural Products. Foods 2020; 10:foods10010019. [PMID: 33374616 PMCID: PMC7822403 DOI: 10.3390/foods10010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 12/18/2020] [Indexed: 12/05/2022] Open
Affiliation(s)
- Maria Eduarda Machado Araújo
- CQE and Department of Chemistry and Biochemistry, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisboa, Portugal
- Correspondence: ; Tel.: +35-(121)-750-0056
| | - Alice Martins
- CQE-Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisboa, Portugal;
| |
Collapse
|