1
|
Williams B, Hewage SPWR, Alexander D, Fernando H. 1H-NMR Lipidomics, Comparing Fatty Acids and Lipids in Cow, Goat, Almond, Cashew, Soy, and Coconut Milk Using NMR and Mass Spectrometry. Metabolites 2025; 15:110. [PMID: 39997734 PMCID: PMC11857238 DOI: 10.3390/metabo15020110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/31/2025] [Accepted: 02/04/2025] [Indexed: 02/26/2025] Open
Abstract
Background/Objectives: Lipids are an important component of human nutrition. Conventional milk is obtained from animals, and dairy milk is consumed by many people worldwide. Recently, milk consumers have been increasingly shifting towards plant-based milk options. The aim of the study was the qualitative identification of lipid metabolites in animal- and plant-based milk, the identification and comparison of the fatty acids (FAs) of milk, and the qualitative identification of the lipid groups among the milk varieties. Methods: Milk samples were obtained from local grocery stores. Lipids were extracted using a modified Folch method and analyzed using nuclear magnetic resonance (NMR) metabolomics. Gas and liquid chromatography mass spectrometry methods (GC-MS and LC-MS) were used to identify the FAs and lipid groups. Lipid weights were compared and the NMR profiles of the lipids analyzed by multivariate statistical analysis. Principal component analysis was performed for the milk lipids obtained from the animal, and plant milk varieties. Results: Clustering of NMR data showed two main clusters: cow/almond/cashew and goat/soy/coconut. GC-MS analysis of the methylated fatty acids (FAs) showed the presence of 12:0, 14:0, 16:0, 16:1, 17:0, 18:0, 18:1, 18:2, 20:1, and 20:2 in all milk types, while FAs 19:0 and 20:4 were observed only in the dairy milk. LC-MS data showed common masses that may indicate the presence of mono- and diacyl glycerols and several lysophospholipids among the different types of milk. Conclusions: This study shows the advantage of using NMR, GC-MS, and LC-MS to differentiate the lipids among different milk types and compare them on one platform.
Collapse
Affiliation(s)
| | | | | | - Harshica Fernando
- Department of Chemistry, Prairie View A&M University, Prairie View, TX 77446, USA; (B.W.); (S.P.W.R.H.); (D.A.)
| |
Collapse
|
2
|
Corvino A, Khomenko I, Betta E, Brigante FI, Bontempo L, Biasioli F, Capozzi V. Rapid Profiling of Volatile Organic Compounds Associated with Plant-Based Milks Versus Bovine Milk Using an Integrated PTR-ToF-MS and GC-MS Approach. Molecules 2025; 30:761. [PMID: 40005073 PMCID: PMC11858441 DOI: 10.3390/molecules30040761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/04/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
The growing demand for plant-based beverages has underscored the importance of investigating their volatile profiles, which play a crucial role in sensory perception and consumer acceptance. This is especially true for plant-based milks (PBMs) that have a clear reference model in bovine milk. This study characterises the volatile organic compounds (VOCs) in soy, almond and oat beverages compared to bovine milk using proton transfer reaction-time of flight-mass spectrometry (PTR-ToF-MS) as a rapid and noninvasive screening tool, complemented by gas chromatography-mass spectrometry (GC-MS) for compound identification. A total of 188 mass peaks were detected by PTR-ToF-MS, all showing significant differences from the blank, while GC-MS allowed the identification of 50 compounds, supporting the tentative identifications performed with PTR-MS analysis. In order to facilitate a comparison of different milks, after statistical analysis, these 188 mass peaks were further categorised into two groups: one consisting of VOCs with minimal variability across all samples and another comprising VOCs with significantly different abundances, distinctly characterising each beverage. Principal component analysis revealed a clear separation between bovine milk and PBMs, with almond beverages exhibiting the richest volatilome, while oat beverages displayed a more homogeneous volatile profile. PTR-ToF-MS demonstrated its ability to analyse volatile profiles rapidly, with excellent complementarity to GC-MS in terms of analytical versatility. The results provided a valuable basis for testing new experimental designs aimed to characterise and enhance flavour profiles in plant-based beverages, also after processing, in case of new product development that considers using these milks as raw materials.
Collapse
Affiliation(s)
- Antonia Corvino
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38098 San Michele all’Adige, Italy; (I.K.); (E.B.); (F.I.B.); (L.B.); (F.B.)
- Centre for Agriculture Food Environment C3A, University of Trento, Via E. Mach 1, 38098 San Michele all’Adige, Italy
| | - Iuliia Khomenko
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38098 San Michele all’Adige, Italy; (I.K.); (E.B.); (F.I.B.); (L.B.); (F.B.)
| | - Emanuela Betta
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38098 San Michele all’Adige, Italy; (I.K.); (E.B.); (F.I.B.); (L.B.); (F.B.)
| | - Federico Ivan Brigante
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38098 San Michele all’Adige, Italy; (I.K.); (E.B.); (F.I.B.); (L.B.); (F.B.)
| | - Luana Bontempo
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38098 San Michele all’Adige, Italy; (I.K.); (E.B.); (F.I.B.); (L.B.); (F.B.)
| | - Franco Biasioli
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38098 San Michele all’Adige, Italy; (I.K.); (E.B.); (F.I.B.); (L.B.); (F.B.)
| | - Vittorio Capozzi
- National Research Council of Italy, Institute of Sciences of Food Production (ISPA) c/o CS-DAT, Via Michele Protano, 71121 Foggia, Italy
| |
Collapse
|
3
|
Khanashyam AC, Mundanat AS, Sajith Babu K, Thorakkattu P, Krishnan R, Abdullah S, Bekhit AEDA, McClements DJ, Santivarangkna C, Nirmal NP. Emerging alternative food protein sources: production process, quality parameters, and safety point of view. Crit Rev Biotechnol 2025; 45:1-22. [PMID: 39676293 DOI: 10.1080/07388551.2024.2341902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/25/2023] [Accepted: 01/17/2024] [Indexed: 12/17/2024]
Abstract
The rise in the global population has increased the demand for dietary food protein. Strategies to maximize agricultural and livestock outputs could strain land and freshwater supply and contribute to substantial negative environmental impacts. Consequently, there has been an emphasis on identifying alternative sources of edible proteins that are more sustainable, sustainable, ethical, and healthy. This review provides a critical report on future food protein sources including: plant, cultured meat, insect, and microbial, as alternative sources to traditional animal-based sources. The technical challenges associated with the production process of alternative protein sources are discussed. The most important quality parameters of alternative proteins, such as: protein composition and digestibility, allergenicity, functional and sensory attributes, and safety regulations have been documented. Lastly, future direction and conclusion have been made on future protein trends. However, further regulatory norms need to develop for safe consumption and distribution around the world.
Collapse
Affiliation(s)
| | - Anjaly Shanker Mundanat
- Department of Agriculture and Environmental Sciences, National Institute of Food Technology Entrepreneurship and Management (NIFTEM), Sonepat, Haryana, India
| | - Karthik Sajith Babu
- Department of Animal Sciences and Industry/Food Science Institute, KS State University, Manhattan, KS, USA
| | - Priyamvada Thorakkattu
- Department of Animal Sciences and Industry/Food Science Institute, KS State University, Manhattan, KS, USA
| | - Reshma Krishnan
- Agro Processing and Technology Division, CSIR - National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, India
| | - Sajeeb Abdullah
- Department of Food Technology, Saintgits College of Engineering, Kottukulam Hills, Kerala, India
| | | | | | - Chalat Santivarangkna
- Department of Food Science, Institute of Nutrition, Mahidol University, Salaya, Nakhon Pathom, Thailand
| | - Nilesh Prakash Nirmal
- Department of Food Science, Institute of Nutrition, Mahidol University, Salaya, Nakhon Pathom, Thailand
| |
Collapse
|
4
|
Brusati M, Baiocchi M. Vegetarian Diets During Complementary Feeding: An Overview of Nutritional and Health Features. CHILDREN (BASEL, SWITZERLAND) 2025; 12:126. [PMID: 40003229 PMCID: PMC11853971 DOI: 10.3390/children12020126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 01/21/2025] [Accepted: 01/21/2025] [Indexed: 02/27/2025]
Abstract
Nowadays, vegetarian diets are present in a solid way in Western countries' lifestyles. Some families opt for this dietetic pattern for their infants too, during the period of introduction of complementary foods. Many releases have been issued about this subject, with different and often contradictory advice and conclusions. The aim of this work is to provide a comprehensive overview through the analysis of recently published opinions of the implementation of a vegetarian or vegan diet over the course of complementary feeding. The literature agrees about some key points to consider, that is the necessity for the diet to be well-planned, in order to meet energy, macro- and micronutrients requirements, as well as the need to follow the child longitudinally. Also, there is a substantial agreement on the need for fortified foods and/or supplements to be included in the diet. Following these suggestions, most (but not all) of the papers agree that normal growth and development may be achieved. Final considerations, however, are not straightforward to make and more research with better definition of the features of the diet adopted and of supplementation used and long-term follow-up studies are highly warranted.
Collapse
|
5
|
Boeck T, Nyhan L, Zannini E, Arendt EK. Protein digestibility and techno-functional performance of milk-alternative prototypes based on combinations of lentil and cereal protein. Food Funct 2024; 15:12228-12243. [PMID: 39604813 DOI: 10.1039/d4fo04103h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Lentil protein isolate was combined with proteins from oat, rice, brewer's spent grain (BSGP) and wheat to achieve plant-based milk alternatives (PBMA) with improved protein quality and functionality. Due to the complementary amino acid (AA) profile of pulse protein which is high in lysine, and cereal protein which is high in sulphur amino acids, their combination at an optimised ratio resulted in a protein blend with a significantly improved indispensable amino acid score (IAAS) compared to the single ingredients. All protein combinations with lentil except for wheat resulted in a full IAAS for adults. The in vitro protein digestibility was assessed using the static INFOGEST digestion model to calculate the proxy in vitro DIAAS (PIVDIAAS) of the emulsions. Techno-functional properties such as particle size, rheological behaviour and physical stability were investigated. The PIVDIAAS of the combined protein emulsions was found to be 0.72, 0.78, 0.83, 0.98 for lentil + wheat, lentil + oat, lentil + BSGP and lentil + rice emulsions, respectively, compared to 0.48, 0.25, 0.5, 0.67 and 0.81 determined for the emulsions based on lentil, wheat, oat, BSGP and rice alone, respectively. The emulsions based on the combination of lentil and cereal protein also showed improved physical stability regarding sedimentation and creaming, and a higher whiteness index of the emulsions. It could be shown that the combination of lentil and cereal protein is a promising strategy to achieve PBMAs with improved protein quality and techno-functionality.
Collapse
Affiliation(s)
- Theresa Boeck
- University College Cork, School of Food and Nutritional Sciences, College Road, Ireland.
| | - Laura Nyhan
- University College Cork, School of Food and Nutritional Sciences, College Road, Ireland.
| | - Emanuele Zannini
- University College Cork, School of Food and Nutritional Sciences, College Road, Ireland.
- Department of Environmental Biology, Sapienza University of Rome, Italy.
| | - Elke K Arendt
- University College Cork, School of Food and Nutritional Sciences, College Road, Ireland.
- APC Microbiome Ireland, Cork, Ireland
| |
Collapse
|
6
|
Zhang Y, Kong Y, Yan Y, Gao F, Ma H, Liu C. Influence of hydrocolloids and natural emulsifier in the physical stability of UHT oat beverage. FOOD SCI TECHNOL INT 2024; 30:764-772. [PMID: 37264589 DOI: 10.1177/10820132231176875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
This study aimed to improve the physical stability of ultra-high temperature (UHT) oat beverage by adding hydrophilic colloids (guar gum [GG] and xanthan gum [XG]) and a natural emulsifier (soluble soybean polysaccharide [SSPS]). The stability of the oat beverage was characterized by particle size, zeta potential, rheological properties, Fourier-transform infrared (FTIR) spectroscopy, backscattered light intensity (ΔBS), and microstructure. The results indicated that XG reduced the average particle size and size distribution of the beverage, indicating that XG could prevent particle aggregation. GG increases the apparent viscosity of the oat beverage without affecting the zeta potential. When SSPS was added to the oat beverage, it increased the absolute value of the zeta potential and the infrared absorption peak intensity, while the average particle size and backscattered light intensity (ΔBS) decreased, resulting in a more uniform microstructure. The zeta potential reached a maximum value of 32.12 when GG, XG, and SSPS were combined, indicating that the physical stability of the oat beverage was effectively improved when all three were present simultaneously. This study may provide some suggestions for the industrial production of low-viscosity cereal beverages with good stability.
Collapse
Affiliation(s)
- Youhui Zhang
- School of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Yu Kong
- School of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Yanjun Yan
- School of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Feng Gao
- School of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - He Ma
- School of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Changjin Liu
- School of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
7
|
Oh J, Lee KG. Analysis of physicochemical properties of nut-based milk and sweetened condensed milk alternatives. Food Chem 2024; 455:139991. [PMID: 38850990 DOI: 10.1016/j.foodchem.2024.139991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/02/2024] [Accepted: 06/04/2024] [Indexed: 06/10/2024]
Abstract
This study analyzed the physicochemical properties of nut-based milk and sweetened condensed milk (SCM) alternatives. Four types of nuts (almonds, cashews, hazelnuts, and walnuts) were roasted at 140 °C for 15 min, followed by the preparation and analysis of milk and SCM alternatives. During the production of SCM by heating with adding sugar, the pH, moisture, and L* decreased, while the carbohydrates, viscosity, and browning index increased significantly (p < 0.05). Oleic acid, linoleic acid, and linolenic acid contents were comparable among all samples (p > 0.05). Volatile compounds were analyzed using HS-SPME-GC-MS to determine changes due to roasting and heating, and a total of 54 volatile compounds were identified. These findings to show the importance of the physicochemical characteristics of milk and SCM alternatives, provide practical information for the development of improved-quality dairy alternatives.
Collapse
Affiliation(s)
- Jeongeun Oh
- Department of Food Science and Biotechnology, Dongguk University-Seoul, 32, Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do, 10326, Republic of Korea
| | - Kwang-Geun Lee
- Department of Food Science and Biotechnology, Dongguk University-Seoul, 32, Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do, 10326, Republic of Korea.
| |
Collapse
|
8
|
Khemthong C, Suttisansanee U, Chaveanghong S, Chupeerach C, Thangsiri S, Temviriyanukul P, Sahasakul Y, Santivarangkna C, Chamchan R, Aursalung A, On-Nom N. Physico-functional properties, structural, and nutritional characterizations of Hodgsonia heteroclita oilseed cakes. Sci Rep 2024; 14:19241. [PMID: 39164362 PMCID: PMC11336117 DOI: 10.1038/s41598-024-70276-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 08/14/2024] [Indexed: 08/22/2024] Open
Abstract
The physicochemical and functional properties, structures, and nutritional characterizations of Hodgsonia heteroclita oilseed cake powder (OCP) obtained from oil extraction with no pretreatment (NP), heat pretreatment (HP; drying at 55 °C until reaching 10% moisture content), and the combined heat and enzymatic pretreatment (HEP; 2.98% (w/w) enzyme loading, 48 °C of incubation temperature and 76 min of incubation time) were investigated. HP and HEP caused a decrease in lightness but an increase in the yellow-brown color of OCP. The results showed that HEP-OCP had significantly lower oil and water absorption index, pasting properties and gelatinization enthalpy while higher water solubility index, foaming and emulsifying properties than NP-OCP and HP-OCP. Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction indicated a small change in the protein secondary structure after pretreatment. Moreover, depending on pretreatment method, OCP samples contained a significant difference in nutritional values. However, all OCP samples could be claimed as high protein sources, containing all 9 essential amino acids and 9 non-essential amino acids. Finally, HEP-OCP seemed to have suitable properties to use as a potential ingredient in various food products such as soups, sauces, ice-cream, mousses, chiffon cakes and whipped toppings.
Collapse
Grants
- RSPG01/2564 The 2020 Plant Genetic Conservation Project Under the Royal Initiation of Her Royal Highness Princess Maha Chakri Sinrindhorn, Mahidol University
- RSPG01/2564 The 2020 Plant Genetic Conservation Project Under the Royal Initiation of Her Royal Highness Princess Maha Chakri Sinrindhorn, Mahidol University
- RSPG01/2564 The 2020 Plant Genetic Conservation Project Under the Royal Initiation of Her Royal Highness Princess Maha Chakri Sinrindhorn, Mahidol University
- RSPG01/2564 The 2020 Plant Genetic Conservation Project Under the Royal Initiation of Her Royal Highness Princess Maha Chakri Sinrindhorn, Mahidol University
- RSPG01/2564 The 2020 Plant Genetic Conservation Project Under the Royal Initiation of Her Royal Highness Princess Maha Chakri Sinrindhorn, Mahidol University
- RSPG01/2564 The 2020 Plant Genetic Conservation Project Under the Royal Initiation of Her Royal Highness Princess Maha Chakri Sinrindhorn, Mahidol University
- RSPG01/2564 The 2020 Plant Genetic Conservation Project Under the Royal Initiation of Her Royal Highness Princess Maha Chakri Sinrindhorn, Mahidol University
- RSPG01/2564 The 2020 Plant Genetic Conservation Project Under the Royal Initiation of Her Royal Highness Princess Maha Chakri Sinrindhorn, Mahidol University
- RSPG01/2564 The 2020 Plant Genetic Conservation Project Under the Royal Initiation of Her Royal Highness Princess Maha Chakri Sinrindhorn, Mahidol University
- RSPG01/2564 The 2020 Plant Genetic Conservation Project Under the Royal Initiation of Her Royal Highness Princess Maha Chakri Sinrindhorn, Mahidol University
- RSPG01/2564 The 2020 Plant Genetic Conservation Project Under the Royal Initiation of Her Royal Highness Princess Maha Chakri Sinrindhorn, Mahidol University
Collapse
Affiliation(s)
- Chanakan Khemthong
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom, 73170, Thailand
| | - Uthaiwan Suttisansanee
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom, 73170, Thailand
| | - Suwilai Chaveanghong
- Mahidol University Frontier Research Facility, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom, 73170, Thailand
| | - Chaowanee Chupeerach
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom, 73170, Thailand
| | - Sirinapa Thangsiri
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom, 73170, Thailand
| | - Piya Temviriyanukul
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom, 73170, Thailand
| | - Yuraporn Sahasakul
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom, 73170, Thailand
| | - Chalat Santivarangkna
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom, 73170, Thailand
| | - Rungrat Chamchan
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom, 73170, Thailand
| | - Amornrat Aursalung
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom, 73170, Thailand
| | - Nattira On-Nom
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom, 73170, Thailand.
| |
Collapse
|
9
|
Lv W, Chen W, Tan S, Ba G, Sun C, Feng F, Sun Q, Xu D. Effects of removing phytic acid on the bioaccessibility of Ca/Fe/Zn and protein digestion in soymilk. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:5262-5273. [PMID: 38329463 DOI: 10.1002/jsfa.13367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/09/2024]
Abstract
BACKGROUND Soymilk is a high-quality source of protein and minerals, such as calcium (Ca), iron (Fe), and zinc (Zn). However, phytic acid in soymilk restricts mineral and protein availability. We here investigated the effects of removing phytic acid on the physicochemical properties, mineral (Ca, Fe, and Zn) bioaccessibility, and protein digestibility of soymilk. RESULTS Physicochemical property analysis revealed that the removal of phytic acid reduced protein accumulation at the gastric stage, thereby facilitating soymilk matrix digestion. The removal of phytic acid significantly increased Zn bioaccessibility by 18.19% in low-protein soymilk and Ca and Fe bioaccessibility by 31.20% and 30.03%, respectively, in high-protein soymilk. CONCLUSION Removing phytic acid was beneficial for the hydrolysis of high-molecular-weight proteins and increased the soluble protein content in soymilk, which was conducive to protein digestion. This study offers a feasible guide for developing plant-based milk with high nutrient bioaccessibility. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wenwen Lv
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, China
| | - Wei Chen
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, China
| | - Shengjie Tan
- Liquid Milk Department, Inner Mongolia Yili Industrial Group Co., Ltd, Beijing, China
| | - Genna Ba
- Liquid Milk Department, Inner Mongolia Yili Industrial Group Co., Ltd, Beijing, China
| | - Chao Sun
- Liquid Milk Department, Inner Mongolia Yili Industrial Group Co., Ltd, Beijing, China
| | - Fanqing Feng
- Liquid Milk Department, Inner Mongolia Yili Industrial Group Co., Ltd, Beijing, China
| | - Qian Sun
- Liquid Milk Department, Inner Mongolia Yili Industrial Group Co., Ltd, Beijing, China
| | - Duoxia Xu
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, China
| |
Collapse
|
10
|
Xiong X, Wang W, Bi S, Liu Y. Application of legumes in plant-based milk alternatives: a review of limitations and solutions. Crit Rev Food Sci Nutr 2024:1-17. [PMID: 38881295 DOI: 10.1080/10408398.2024.2365353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
In recent years, a global shift has been observed toward reducing the consumption of animal-derived foods in favor of healthier and more sustainable dietary choices. This has led to a steady growth in the market for plant-based milk alternatives (PBMAs). Projections suggest that this market will reach a value of USD 69.8 billion by 2030. Legumes, being traditional and nutritious ingredients for PMBAs, are rich in proteins, dietary fibers, and other nutrients, with potential health benefits such as anticancer and cardiovascular disease prevention. In this review, the application of 12 legumes in plant-based milk alternatives was thoroughly discussed for the first time. However, compared to milk, processing of legume-based beverages can lead to deficiencies such as nutritional imbalance, off-flavor, and emulsion stratification. Considering the potential and challenges associated with legume-based beverages, this review aims to provide a scientific comparison between legume-based beverages and cow's milk in terms of nutritional quality, organoleptic attributes and stability, and to summarize ways to improve the deficiencies of legume-based beverages in terms of raw materials and processing method improvements. In conclusion, the legume-based beverage industry will be better enhanced and developed by improving the issues.
Collapse
Affiliation(s)
- Xiaoying Xiong
- College of Food and Health, Beijing Technology and Business University (BTBU), Beijing, China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing, China
- Key Laboratory of Geriatric Nutrition and Health, (Beijing Technology and Business University), Ministry of Education, Beijing, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing, China
| | - Wendong Wang
- College of Food and Health, Beijing Technology and Business University (BTBU), Beijing, China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing, China
- Key Laboratory of Geriatric Nutrition and Health, (Beijing Technology and Business University), Ministry of Education, Beijing, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing, China
| | - Shuang Bi
- College of Food and Health, Beijing Technology and Business University (BTBU), Beijing, China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing, China
- Key Laboratory of Geriatric Nutrition and Health, (Beijing Technology and Business University), Ministry of Education, Beijing, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing, China
| | - Ye Liu
- College of Food and Health, Beijing Technology and Business University (BTBU), Beijing, China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing, China
- Key Laboratory of Geriatric Nutrition and Health, (Beijing Technology and Business University), Ministry of Education, Beijing, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing, China
| |
Collapse
|
11
|
Khamzaeva N, Kunz C, Schamann A, Pferdmenges L, Briviba K. Bioaccessibility and Digestibility of Proteins in Plant-Based Drinks and Cow's Milk: Antioxidant Potential of the Bioaccessible Fraction. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2300-2308. [PMID: 38235666 DOI: 10.1021/acs.jafc.3c07221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
During the last years, a strong increase in the sales volume and consumption of plant-based drinks was observed, which were partly used as an alternative to cow's milk. As milk is a relevant protein source in many countries, we have investigated the protein bioaccessibility and digestibility of soy, almond, and oat drinks in comparison to milk using the tiny-TIMsg gastrointestinal model. The relative protein digestibility of all products was between 81% (soy drink) and 90% (milk). The digestible indispensable amino acid score (DIAAS) in vitro method was used to estimate the protein nutritional quality. The highest DIAAS values were obtained for milk in tryptophan (117%) and soy drink in sulfur containing amino acids (100%). Oat drink was limited in lysine (73%), almond drink in lysine (34%) and the sulfur containing amino acids (56%). Additionally, the antioxidant activity of the bioaccessible fractions was analyzed using Trolox equivalent antioxidative capacity and oxygen radical absorbance capacity assays, revealing a higher antioxidative potential of milk and soy drink compared to oat and almond drink.
Collapse
Affiliation(s)
- Narigul Khamzaeva
- Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Department of Physiology and Biochemistry of Nutrition, Karlsruhe 76131, Germany
| | - Christina Kunz
- Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Department of Physiology and Biochemistry of Nutrition, Karlsruhe 76131, Germany
| | - Alexandra Schamann
- Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Department of Physiology and Biochemistry of Nutrition, Karlsruhe 76131, Germany
| | - Larissa Pferdmenges
- Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Department of Nutritional Behaviour, Karlsruhe 76131, Germany
| | - Karlis Briviba
- Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Department of Physiology and Biochemistry of Nutrition, Karlsruhe 76131, Germany
| |
Collapse
|
12
|
Pérez-Rodríguez ML, Serrano-Carretero A, García-Herrera P, Cámara-Hurtado M, Sánchez-Mata MC. Plant-based beverages as milk alternatives? Nutritional and functional approach through food labelling. Food Res Int 2023; 173:113244. [PMID: 37803557 DOI: 10.1016/j.foodres.2023.113244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 10/08/2023]
Abstract
Plant-based beverages (PBB) market is largely growing. In this study, 136 beverages made of soy, oat, almond, rice, tigernut, and others (mixtures of various plant materials), from the Spanish market were evaluated through labelling information. Energy value and fat content were intermediate between skimmed and whole cow milk; while fatty acids profile was quite different. Carbohydrate content was usually higher than cow milk, and highly dependent on the addition of sugars. All products provided some dietary fibre. With the exception of soy-based drinks, samples presented lower protein and calcium content than milk (1/3 samples studied were Ca-fortified), and 23% were vitamin D enriched. The claim "No added sugars" was in more than 50% samples. A right labelling and nutritional education of consumers is essential to make adequate choices, since the appearing of many claims is not always indicative of a better-quality product. Plant-based beverages cannot be considered as an alternative to milk, but as a different product, with their own nutritional and functional entity. Their inclusion in a diversified balanced diet can provide interesting functional components, such as soluble fibre or unsaturated fatty acids (mainly soybean and almond drink), which can help improve the health status of the population.
Collapse
Affiliation(s)
- M L Pérez-Rodríguez
- Departamento Nutrición y Ciencia de los Alimentos, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), Pza. Ramón y Cajal, s/n, E-28040 Madrid, Spain
| | - A Serrano-Carretero
- Departamento Nutrición y Ciencia de los Alimentos, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), Pza. Ramón y Cajal, s/n, E-28040 Madrid, Spain
| | - P García-Herrera
- Departamento Nutrición y Ciencia de los Alimentos, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), Pza. Ramón y Cajal, s/n, E-28040 Madrid, Spain.
| | - M Cámara-Hurtado
- Departamento Nutrición y Ciencia de los Alimentos, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), Pza. Ramón y Cajal, s/n, E-28040 Madrid, Spain
| | - M C Sánchez-Mata
- Departamento Nutrición y Ciencia de los Alimentos, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), Pza. Ramón y Cajal, s/n, E-28040 Madrid, Spain
| |
Collapse
|
13
|
Cichońska P, Bryś J, Ziarno M. Use of natural biotechnological processes to modify the nutritional properties of bean-based and lentil-based beverages. Sci Rep 2023; 13:16976. [PMID: 37813961 PMCID: PMC10562390 DOI: 10.1038/s41598-023-44239-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 10/05/2023] [Indexed: 10/11/2023] Open
Abstract
The market for plant-based beverages (PBBs) is relatively new; hence, to enable its further development, it is important to use new raw materials and improve production technology. The use of natural biotechnological processes can diversify the segment of PBBs, which may offer products with better functionality than those available in the market. Therefore, the present study aimed to determine the effects of fermentation and germination on the nutritional properties of bean-based beverages (BBs) and lentil-based beverages (LBs). The applied processes significantly (p ≤ 0.05) influenced the characteristics of PBBs. Fermentation improved the antioxidant properties (e.g., by increasing the level of 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity by 2-6% and 3-7% for BBs and LBs, respectively) and modified the fatty acid (FA) profile of PBBs. This process increased the share of polyunsaturated FAs in the sn2 position in triacylglycerols, which may promote its absorption in the intestine. The simultaneous use of germination and fermentation was most effective in decreasing oligosaccharide content (< 1.55 mg/kg), which may reduce digestive discomfort after consuming PBBs. We recommend that the designing of innovative legume-based beverages should include the application of fermentation and germination to obtain products with probiotic bacteria and improved nutritional properties.
Collapse
Affiliation(s)
- Patrycja Cichońska
- Department of Food Technology and Assessment, Institute of Food Science, Warsaw University of Life Sciences - SGGW (WULS-SGGW), Nowoursynowska 159C St., 020776, Warsaw, Poland.
| | - Joanna Bryś
- Department of Chemistry, Institute of Food Science, Warsaw University of Life Sciences - SGGW (WULS-SGGW), Nowoursynowska 159C St., 020776, Warsaw, Poland
| | - Małgorzata Ziarno
- Department of Food Technology and Assessment, Institute of Food Science, Warsaw University of Life Sciences - SGGW (WULS-SGGW), Nowoursynowska 159C St., 020776, Warsaw, Poland
| |
Collapse
|
14
|
Blasi F, Maria Pellegrino R, Br Alabed H, Ianni F, Emiliani C, Cossignani L. Lipidomics of coconut, almond and soybean milks - Comprehensive characterization of triacylglycerol class and comparison with bovine milk. Food Res Int 2023; 172:113147. [PMID: 37689910 DOI: 10.1016/j.foodres.2023.113147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/26/2023] [Accepted: 06/14/2023] [Indexed: 09/11/2023]
Abstract
Nowadays, plant-based milk consumption, as part of a healthy diet, is continuously increasing. In this paper, for the first time a lipidomic analysis on molecular species of triacylglycerol (TG) fraction of plant-based beverages (almond, soy, coconut) was performed by liquid chromatography quadrupole time-of-flight mass spectrometry. A total of 557 TG molecular species was measured, showing significantly different profiles between milk alternatives, compared with bovine milk. The most abundant TG molecular species were TG 18:1_18:1_18:1 and 18:1_18:1_18:2 for almond, TG 18:2_18:2_18:2 and 16:0_18:2_18:2 for soy, TG 12:0_10:0_12:0 and 12:0_12:0_14:0 for coconut. Unconventional fatty acids were detected in almond and soy. The main TG with ethereal linkage were TG-O 56:2, TG-O 56:4, and TG-O 56:5, while the main oxygenated TG was TG 54:5;1O. A total of 30 molecular species were identified as biomarkers for milk differentiation by principal component analysis, providing an interesting support for milk authentication and detection of adulteration on a larger sampling.
Collapse
Affiliation(s)
- Francesca Blasi
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy.
| | | | - Husam Br Alabed
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06122 Perugia, Italy
| | - Federica Ianni
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy
| | - Carla Emiliani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06122 Perugia, Italy
| | - Lina Cossignani
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy; Center for Perinatal and Reproductive Medicine, Santa Maria della Misericordia University Hospital, University of Perugia, Sant'Andrea delle Fratte, 06132 Perugia, Italy
| |
Collapse
|
15
|
Lo Turco V, Sgrò B, Albergamo A, Nava V, Rando R, Potortì AG, Di Bella G. Assessment of the Accuracy of Nutrition Label and Chemical Composition of Plant-Based Milks Available on the Italian Market. Foods 2023; 12:3207. [PMID: 37685140 PMCID: PMC10486939 DOI: 10.3390/foods12173207] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/22/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Growing health, environmental, and ethical concerns have encouraged interest in plant-based milks (PBMs), but it remains questionable whether the nutrition labeling of these products is adequately reliable for consumers, and whether nutritional standards can be defined for a given PBM type. On this basis, cereal, pseudocereal, nut, and legume PBMs available on the Italian market were analyzed in order to check the accuracy of nutritional labels on packages and generate new or updated compositional data. Most labels provided inaccurate information, especially with respect to the declared energy, fat, and saturated fat. Cereal- and pseudocereal-based PBMs were generally characterized by high MUFA (34.04-59.35%) and PUFA (21.61-52.27%). Almond, soy, rice, and hazelnut beverages displayed the highest levels of total tocopherols (11.29-13.68 mg/L), while buckwheat and spelt PBMs had the highest total polyphenol content (34.25-52.27 mg GAE/100 mL). Major and trace elements greatly varied among samples, being more abundant in buckwheat and coconut-based drinks. A PCA confirmed that nutritional standards cannot be unequivocally established for a given PBM, and indicated that, among the investigated variables, inorganic elements had more weight in the sample differentiation. Overall, to reliably guide consumers in their dietary choices, there is a need for greater accuracy in the development of nutrition labels for PBMs, as well as greater effort in assessing the nutritional quality of the ever-increasing variety of products available on the market.
Collapse
Affiliation(s)
- Vincenzo Lo Turco
- Department of Biomedical, Dental, Morphological and Functional Images Sciences (BIOMORF), University of Messina, Viale Annunziata, 98122 Messina, Italy; (V.L.T.); (B.S.); (R.R.); (A.G.P.); (G.D.B.)
| | - Benedetta Sgrò
- Department of Biomedical, Dental, Morphological and Functional Images Sciences (BIOMORF), University of Messina, Viale Annunziata, 98122 Messina, Italy; (V.L.T.); (B.S.); (R.R.); (A.G.P.); (G.D.B.)
| | - Ambrogina Albergamo
- Department of Biomedical, Dental, Morphological and Functional Images Sciences (BIOMORF), University of Messina, Viale Annunziata, 98122 Messina, Italy; (V.L.T.); (B.S.); (R.R.); (A.G.P.); (G.D.B.)
| | - Vincenzo Nava
- Department of Veterinary Science, University of Messina, Viale Annunziata, 98168 Messina, Italy;
| | - Rossana Rando
- Department of Biomedical, Dental, Morphological and Functional Images Sciences (BIOMORF), University of Messina, Viale Annunziata, 98122 Messina, Italy; (V.L.T.); (B.S.); (R.R.); (A.G.P.); (G.D.B.)
| | - Angela Giorgia Potortì
- Department of Biomedical, Dental, Morphological and Functional Images Sciences (BIOMORF), University of Messina, Viale Annunziata, 98122 Messina, Italy; (V.L.T.); (B.S.); (R.R.); (A.G.P.); (G.D.B.)
| | - Giuseppa Di Bella
- Department of Biomedical, Dental, Morphological and Functional Images Sciences (BIOMORF), University of Messina, Viale Annunziata, 98122 Messina, Italy; (V.L.T.); (B.S.); (R.R.); (A.G.P.); (G.D.B.)
| |
Collapse
|
16
|
Shi Z, Zhao Z, Zhu P, An C, Zhang K. Types of milk consumed and risk of essential hypertension: A 2-sample Mendelian randomization analysis. J Dairy Sci 2023:S0022-0302(23)00263-1. [PMID: 37225577 DOI: 10.3168/jds.2022-22392] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 01/17/2023] [Indexed: 05/26/2023]
Abstract
Observational associations between milk consumption and essential hypertension have been reported. However, their causal inferences have not been proved, and the effects of different types of milk consumption on hypertension risk remain poorly characterized. The Mendelian randomization (MR) analysis was performed using public summary-level statistics from genome-wide association studies to determine whether the different types of milk consumption affect essential hypertension differently. Six different milk consumption types were defined as exposure conditions, whereas essential hypertension identified by the ninth and tenth revisions of the International Classification of Diseases was considered the outcome of interest. Genetic variants, which were genome-wide associated with the types of milk consumed, were used as an instrumental variable for MR analysis. In primary MR analysis, the inverse-variance weighted method was adopted followed by several sensitivity analyses. Our findings suggested that of the 6 common types of milk consumed, semi-skimmed and soya milk products were protective against essential hypertension, whereas skim milk had the opposite effect. Consistent results were also observed in sensitivity analyses that followed. The present study provided genetic evidence that a causal link between milk consumption and the risk of essential hypertension and a new reference for the diet antihypertensive treatment plan for patients with hypertension.
Collapse
Affiliation(s)
- Zhangyan Shi
- Institute of Population and Health, College of Life Sciences, Northwest University, Xi'an, 710069, P. R. China
| | - Ze Zhao
- Institute of Population and Health, College of Life Sciences, Northwest University, Xi'an, 710069, P. R. China
| | - Puyan Zhu
- Institute of Population and Health, College of Life Sciences, Northwest University, Xi'an, 710069, P. R. China
| | - Caiyan An
- Foundational and Translational Medical Research Center, Department of Allergy and General Surgery, Hohhot First Hospital, Hohhot 010030, P. R. China.
| | - Kejin Zhang
- Institute of Population and Health, College of Life Sciences, Northwest University, Xi'an, 710069, P. R. China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an 710069, P. R. China.
| |
Collapse
|
17
|
Akan E, Karakaya S, Eda Eker Özkacar M, Kinik Ö. Effect of food matrix and fermentation on angiotensin-converting enzyme inhibitory activity and β-glucan release after in vitro digestion in oat-based products. Food Res Int 2023; 165:112508. [PMID: 36869510 DOI: 10.1016/j.foodres.2023.112508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 01/09/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023]
Abstract
The aim of this study was to determine the effects of fermentation and food matrix on the ACE inhibitory activities of the peptides obtained after in vitro gastrointestinal digestion, protein profiles (SDS-PAGE) and β-glucan amounts of oat products. Furthermore, the physicochemical and microbiological properties of fermented oat drinks and oat yogurt-like product obtained from oat fermentation were evaluated. Oat grains were mixed with a certain ratio of water 1:3 w/v (oat:water, yogurt consistency) and 1:5 w/v (oat:water, drink consistency), and this mixture was fermented with yogurt culture and probiotic Lactobacillus plantarum and fermented drinks and yogurt were produced. The results indicated that the fermented oat drink and the oat yogurt-like product had L. plantarum viability over 107 cfu/g. After the in vitro gastrointestinal digestion of the samples, the hydrolysis levels ranged from 57.70 % to 82.06 %.The hydrolysis level of the samples with fermented-drink consistency was significantly higher than the samples with yogurt consistency (p < 0.05).The SDS-PAGE profiles of the non-digested samples showed that the bands had molecular weights of 12-15 kDa and around 35 kDa. Bands whose molecular weights were around 35 kDA disappeared after gastric digestion. ACE inhibitory activities of the fractions composed of molecular weights of 2 kDa and 2-5 kDa obtained after in vitro gastrointestinal digestion of the oat samples were in the range of 46.93-65.91 %. The effect of fermentation on the ACE inhibitory activities of the peptide mixture with molecular weights between 2 and 5 kDa was not statistically significant, however, fermentation caused an increase in the ACE inhibitory activities of the peptide mixture with a molecular weight<2 kDa (p < 0.05). The β-glucan amounts of fermented and non-fermented oat products were in the range of 0.57-1.28 %. The β-glucan amounts detected after gastric digestion decreased considerably and β-glucan could not be detected in the supernatant after gastrointestinal digestion. This indicated that β-glucan did not solubilize in the supernatant (bioaccessible) and remained in the pellet. In conclusion, fermentation is a valuable process for releasing peptides with moderately high ACE inhibitory effects from the parent oat proteins.
Collapse
Affiliation(s)
- Ecem Akan
- Aydin Adnan Menderes University Faculty of Agriculture Department of Dairy Technology, Aydin, Türkiye.
| | - Sibel Karakaya
- Ege University Faculty of Engineering Department of Food Engineering, Izmir, Türkiye
| | | | - Özer Kinik
- Ege University Faculty of Agriculture Department of Dairy Technology, Izmir, Türkiye
| |
Collapse
|
18
|
Li A, Zheng J, Han X, Jiang Z, Yang B, Yang S, Zhou W, Li C, Sun M. Health implication of lactose intolerance and updates on its dietary management. Int Dairy J 2023. [DOI: 10.1016/j.idairyj.2023.105608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
19
|
Martínez-Padilla E, Faber I, Petersen IL, Vargas-Bello-Pérez E. Perceptions toward Plant-Based Milk Alternatives among Young Adult Consumers and Non-Consumers in Denmark: An Exploratory Study. Foods 2023; 12:foods12020385. [PMID: 36673476 PMCID: PMC9858389 DOI: 10.3390/foods12020385] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
The objective of this study was to determine associations among plant-based milk alternatives (PBMAs), sources of information on the PBMAs used, and the consumption of PBMAs among Danish young adult consumers and non-consumers of PBMAs. An online survey was conducted in May 2019. A total of 341 participants (consumers: n = 171; non-consumers: n = 170) aged 16-35 years old completed the survey. Most consumers drank less than one glass of PBMAs per week, and oat drink was the most frequently consumed PBMAs. Oat drinks were primarily consumed with coffee/tea or porridge, while soy drinks were preferred to be consumed alone. Participants who perceived PBMAs as natural, good for health, tasty, or nutritionally equal to cow's milk were more likely to be consumers of PBMAs. Additionally, participants who perceived PBMAs as highly processed or artificial were less likely to be consumers of PBMAs. For consumers, the most used sources of information on PBMAs were package labeling, followed by social media. The study´s results can help to improve marketing campaigns concerning the Danish retail of PBMA, whereby nutritional and sensory characteristics of PBMAs are highlighted through social networks and marketing strategies with product package labeling.
Collapse
Affiliation(s)
- Eliana Martínez-Padilla
- Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, DK-1958 Frederiksberg C, Denmark
| | - Ilona Faber
- Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, DK-1958 Frederiksberg C, Denmark
- Correspondence: (I.F.); (E.V.-B.-P.)
| | - Iben Lykke Petersen
- Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, DK-1958 Frederiksberg C, Denmark
| | - Einar Vargas-Bello-Pérez
- School of Agriculture, Policy and Development New Agriculture Building, Earley Gate Whiteknights Road, P.O. Box 237, Reading, Berkshire RG6 6EU, UK
- Department of Veterinary and Animal Sciences, Faculty of Science, University of Copenhagen, Grønnegårdsvej 3, DK-1870 Frederiksberg C, Denmark
- Correspondence: (I.F.); (E.V.-B.-P.)
| |
Collapse
|
20
|
Lappi J, Silventoinen-Veijalainen P, Vanhatalo S, Rosa-Sibakov N, Sozer N. The nutritional quality of animal-alternative processed foods based on plant or microbial proteins and the role of the food matrix. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.09.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
21
|
Escobar-Sáez D, Montero-Jiménez L, García-Herrera P, Sánchez-Mata M. Plant-based drinks for vegetarian or vegan toddlers: Nutritional evaluation of commercial products, and review of health benefits and potential concerns. Food Res Int 2022; 160:111646. [DOI: 10.1016/j.foodres.2022.111646] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 07/02/2022] [Accepted: 07/05/2022] [Indexed: 01/29/2023]
|
22
|
Sugahara H, Kato S, Nagayama K, Sashihara K, Nagatomi Y. Heterofermentative lactic acid bacteria such as Limosilactobacillus as a strong inhibitor of aldehyde compounds in plant-based milk alternatives. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.965986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Reduction of greenhouse gas emissions is important to limit climate change. Because ruminant animals emit greenhouse gases, the worldwide plant-based alternative market is an emerging trend for eating less meat and dairy products. To produce plant-based dairy products such as yogurt alternatives, certain lactic acid bacterial species, which are used for cow's milk fermentation, are often used. Substrate changes from cow's milk to plant-based milk caused nutritional changes, and unsaturated fatty acids are more enriched in plant-based milk alternatives than in cow's milk. Unsaturated fatty acids can lead to the formation of aldehydes, some of which are off-flavors; therefore, substrate changes have the potential to alter the suitable lactic acid bacterial species used for fermentation to control flavor formation, such as aldehyde compounds. However, differences in the effect of the fermentation processes on aldehyde compounds have not been evaluated among lactic acid bacterial species. In this study, we comprehensively evaluated the effect of lactic acid bacterial fermentation on aldehyde compounds in synthetic medium and plant-based milk alternatives using 20 species of lactic acid bacteria. Heterofermentative lactic acid bacteria such as strains belonging to Limosilactobacillus had a strong aldehyde-reducing ability, likely from differences in alcohol dehydrogenase function. Because the odor detection threshold of ethanol compounds was lower than that of their equivalent aldehyde compounds, our findings are valuable for the fermentation of plant-based milk alternatives with lactic acid bacteria with the goal of decreasing off-flavors derived from aldehyde compounds.
Collapse
|
23
|
An investigation into consumer perception and attitudes towards plant-based alternatives to milk. Food Res Int 2022; 159:111648. [DOI: 10.1016/j.foodres.2022.111648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/30/2022] [Accepted: 07/05/2022] [Indexed: 12/26/2022]
|
24
|
Fermentation Enhances the Anti-Inflammatory and Anti-Platelet Properties of Both Bovine Dairy and Plant-Derived Dairy Alternatives. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8070292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Within the present study, the effects of fermentation on the anti-inflammatory and anti-platelet properties of both homemade and commercially purchased bovine dairy and almond, coconut, and rice-based dairy alternatives were evaluated. The extracted total lipids (TL) from homemade and commercially purchased fermented and unfermented bovine, almond, coconut, and rice-based products were further separated into their neutral lipids (NL) and polar lipids (PL) fractions by counter current distribution. The TL, PL, and NL of each sample were assessed in human platelets against the inflammatory and thrombotic mediator, platelet-activating factor (PAF), and the well-established platelet agonist, adenosine 5′ diphosphate (ADP). In all samples, the PL fractions showed significantly stronger inhibitory effects against human platelet aggregation induced by PAF or ADP, in comparison to the TL and NL, with higher specificity against PAF. PL of all fermented products (bovine yogurt and fermented dairy alternatives from almond, rice, and coconut), exhibited the strongest anti-inflammatory and anti-platelet potency, in comparison to PL from their initial pasteurized materials (bovine milk and rice, almond, and coconut-based dairy alternative drinks). PL of the pasteurized rice-based drink and, especially PL from the novel homemade rice-based fermented product (HMFRD), showed the strongest anti-PAF and anti-ADP potency compared to all samples, with anti-PAF activity being most potent overall. The unfermented pasteurized coconut-based drink showed the lowest anti-inflammatory and anti-platelet potency, and the bovine and almond-based fermented products showed an intermediate effect. Further lipidomics with LC-MS analysis of all these PL fractions revealed that fermentation altered their fatty acid content in a way that decreased their degree of saturation and increased the content of unsaturated fatty acids, thus providing a rationale for the stronger anti-inflammatory and anti-platelet potency of the more unsaturated PL fractions of the fermented products. This study has shown that fermentation alters the fatty acid content and the bio-functionality of the PL bioactives in both fermented bovine dairy and plant-based dairy alternatives, and subsequently improved their anti-inflammatory and anti-platelet functional properties.
Collapse
|
25
|
Sridhar K, Bouhallab S, Croguennec T, Renard D, Lechevalier V. Recent trends in design of healthier plant-based alternatives: nutritional profile, gastrointestinal digestion, and consumer perception. Crit Rev Food Sci Nutr 2022; 63:10483-10498. [PMID: 35647889 DOI: 10.1080/10408398.2022.2081666] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In recent years, various types of plant-based meat, dairy, and seafood alternatives merged in the health-conscious consumer market. However, plant-based alternatives present complexity in terms of nutritional profile and absorption of nutrients after food ingestion. Thus, this review summarizes current strategies of plant-based alternatives and their nutritional analysis along with gastrointestinal digestion and bioavailability. Additionally, regulatory frameworks, labeling claims, and consumer perception of plant-based alternatives are discussed thoroughly with a focus on status and future prospects. Plant-based alternatives become a mainstream of many food-processing industries with increasing alternative plant-based food manufacturing industries around the world. Novel food processing technologies could enable the improving of the taste of plant-based foods. However, it is still a technical challenge in production of plant-based alternatives with authentic meaty flavor. In vitro gastrointestinal digestion studies revealed differences in the digestion and absorption of plant-based alternatives and animal-based foods due to their protein type, structure, composition, anti-nutritional factors, fibers, and polysaccharides. Overall, plant-based alternatives may facilitate the replacement of animal-based foods; however, improvements in nutritional profile and in vitro digestion should be addressed by application of novel processing technologies and food fortification. The specific legislation standards should be necessary to avoid consumer misleading of plant-based alternatives.
Collapse
Affiliation(s)
- Kandi Sridhar
- INRAE, Institut Agro Rennes-Angers, STLO, Rennes, France
| | - Saïd Bouhallab
- INRAE, Institut Agro Rennes-Angers, STLO, Rennes, France
| | | | - Denis Renard
- INRAE UR 1268 Biopolymères Interactions Assemblages, Nantes, France
| | | |
Collapse
|
26
|
Cakebread J, Wallace OA, Henderson H, Jauregui R, Young W, Hodgkinson A. The impacts of bovine milk, soy beverage, or almond beverage on the growing rat microbiome. PeerJ 2022; 10:e13415. [PMID: 35573176 PMCID: PMC9104089 DOI: 10.7717/peerj.13415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/19/2022] [Indexed: 01/14/2023] Open
Abstract
Background Milk, the first food of mammals, helps to establish a baseline gut microbiota. In humans, milk and milk products are consumed beyond infancy, providing comprehensive nutritional value. Non-dairy beverages, produced from plant, are increasingly popular as alternatives to dairy milk. The nutritive value of some plant-based products continues to be debated, whilst investigations into impacts on the microbiome are rare. The aim of this study was to compare the impact of bovine milk, soy and almond beverages on the rat gut microbiome. We previously showed soy and milk supplemented rats had similar bone density whereas the almond supplemented group had compromised bone health. There is an established link between bone health and the microbiota, leading us to hypothesise that the microbiota of groups supplemented with soy and milk would be somewhat similar, whilst almond supplementation would be different. Methods Three-week-old male Sprague Dawley rats were randomly assigned to five groups (n = 10/group) and fed ad libitum for four weeks. Two control groups were fed either standard diet (AIN-93G food) or AIN-93G amino acids (AA, containing amino acids equivalent to casein but with no intact protein) and with water provided ad libitum. Three treatment groups were fed AIN-93G AA and supplemented with either bovine ultra-heat treatment (UHT) milk or soy or almond UHT beverages as their sole liquid source. At trial end, DNA was extracted from caecum contents, and microbial abundance and diversity assessed using high throughput sequencing of the V3 to V4 variable regions of the 16S ribosomal RNA gene. Results Almost all phyla (91%) differed significantly (FDR < 0.05) in relative abundance according to treatment and there were distinct differences seen in community structure between treatment groups at this level. At family level, forty taxa showed significantly different relative abundance (FDR < 0.05). Bacteroidetes (Bacteroidaceae) and Firmicutes populations (Lactobacillaceae, Clostridiaceae and Peptostreptococcaceae) increased in relative abundance in the AA almond supplemented group. Supplementation with milk resulted in increased abundance of Actinobacteria (Coriobacteriaceae and Bifidobacteriaceae) compared with other groups. Soy supplementation increased abundance of some Firmicutes (Lactobacilliaceae) but not Actinobacteria, as previously reported by others. Conclusion Supplementation with milk or plant-based drinks has broad impacts on the intestinal microbiome of young rats. Changes induced by cow milk were generally in line with previous reports showing increased relative abundance of Bifidobacteriacea, whilst soy and almond beverage did not. Changes induced by soy and almond drink supplementation were in taxa commonly associated with carbohydrate utilisation. This research provides new insight into effects on the microbiome of three commercially available products marketed for similar uses.
Collapse
Affiliation(s)
- Julie Cakebread
- Food and Biobased Products, AgResearch Ltd., Hamilton, New Zealand,Smart Foods Innovation Centre of Excellence, AgResearch Ltd., Palmerston North, New Zealand
| | | | - Harold Henderson
- Food and Biobased Products, AgResearch Ltd., Hamilton, New Zealand
| | - Ruy Jauregui
- Digital Agriculture Innovation Centre of Excellence, AgResearch Ltd., Palmerston North, New Zealand
| | - Wayne Young
- Smart Foods Innovation Centre of Excellence, AgResearch Ltd., Palmerston North, New Zealand
| | | |
Collapse
|
27
|
Pontonio E, Montemurro M, Dingeo C, Rotolo M, Centrone D, Carofiglio VE, Rizzello CG. Design and characterization of a plant-based ice cream obtained from a cereal/legume yogurt-like. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
28
|
|
29
|
The physiochemical and nutritional properties of high endosperm lipids rice mutants under artificially accelerated ageing. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
30
|
An Overview on Nutritional Aspects of Plant-Based Beverages Used as Substitutes for Cow's Milk. Nutrients 2021; 13:nu13082650. [PMID: 34444815 PMCID: PMC8399839 DOI: 10.3390/nu13082650] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/25/2021] [Accepted: 07/27/2021] [Indexed: 01/09/2023] Open
Abstract
The presence of milk in meals and products consumed daily is common and at the same time the adoption of a milk-free diet increases due to milk allergy, lactose intolerance, vegan diets, and others. Therefore, there is an increasing demand for plant-based beverages, which present variable and, sometimes, unknown nutritional characteristics. This study sought to compare the nutritional aspects of plant-based beverages used as substitutes for cow’s milk described in scientific studies. Therefore, we used a review of the scientific literature on PubMed, Google Scholar, Scopus, Web of Science, Google Patents, Embase, and ScienceDirect databases. The inclusion criteria were scientific studies referring to plant-based beverage used as an alternative to cow’s milk; published in the English language; present data on the serving size, ingredients, and nutritional composition, containing at least data on energy and macronutrients of plant-based beverages. Ingredients and data on energy, macronutrients, and, if available, dietary fiber and some micronutrients of plant-based beverages were collected. Data were obtained from 122 beverages of 22 different matrices, with soy being the most used (27.87%, n = 34). The variation in the amount of nutrients found was 6–183 Kcal/100 mL for energy value; 0.00–22.29 g/100 mL for carbohydrate; 0.06–12.43 g/100 mL for protein; 0.00–19.00 g/100 mL for lipid; 0.00–4.40 g/100 mL for dietary fiber; 0.00–1252.94 mg/100 mL for calcium; 0.04–1.40 mg/100 mL for iron; 0.84–10,178.60 mg/100 mL for magnesium; 0.00–343.43 mg/100 mL for sodium. Salt was the most commonly found added ingredient in plant-based beverages. Some beverages have reached certain amounts of cow’s milk nutrients. However, studies have pointed out differences in their qualities/types. Thus, attention is needed when replacing milk with these alternatives.
Collapse
|