Serrano S, Barrio R, Martínez-Rubio Á, Belmonte-Beitia J, Pérez-García VM. Understanding the role of B cells in CAR T-cell therapy in leukemia through a mathematical model.
CHAOS (WOODBURY, N.Y.) 2024;
34:083142. [PMID:
39191245 DOI:
10.1063/5.0206341]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 08/09/2024] [Indexed: 08/29/2024]
Abstract
Chimeric antigen receptor T (CAR T) cell therapy has been proven to be successful against a variety of leukemias and lymphomas. This paper undertakes an analytical and numerical study of a mathematical model describing the competition of CAR T, leukemia, tumor, and B cells. Considering its significance in sustaining anti-CD19 CAR T-cell stimulation, a B-cell source term is integrated into the model. Through stability and bifurcation analyses, the potential for tumor eradication, contingent on the continuous influx of B cells, has been revealed, showing a transcritical bifurcation at a critical B-cell input. Additionally, an almost heteroclinic cycle between equilibrium points is identified, providing a theoretical basis for understanding disease relapse. Analyzing the oscillatory behavior of the system, the time-dependent dynamics of CAR T cells and leukemic cells can be approximated, shedding light on the impact of initial tumor burden on therapeutic outcomes. In conclusion, the study provides insights into CAR T-cell therapy dynamics for acute lymphoblastic leukemias, offering a theoretical foundation for clinical observations and suggesting avenues for future immunotherapy modeling research.
Collapse