1
|
Xu Y, Xu X, Zhao Y, Tian Y, Ma Y, Zhang X, Li F, Zhao W, Ma J, Xu Q, Sun Q. A self-powered casein hydrogel E-dressing with synergistic photothermal therapy, electrical stimulation, and antibacterial effects for chronic wound management. Acta Biomater 2025; 198:63-84. [PMID: 40157697 DOI: 10.1016/j.actbio.2025.03.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/26/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
Triboelectric nanogenerators (TENGs) have recently demonstrated great application potential for accelerating wound healing in the field of medical research due to their unique electrical stimulation effect. Among the various types of TENGs, solid-liquid TENGs have attracted much attention due to their significant advantages, such as high contact-separation efficiency and a wide range of liquid motion. Therefore, this study innovatively proposed a solid-liquid biphasic TENG electronic dressing constructed from a casein hydrogel enhanced by the metal-organic framework Zeolitic Imidazolate Framework-8 (ZIF-8). This hydrogel dressing comprised sodium caseinate (SC)/multi-walled carbon nanotubes-polydopamine@polydopamine (MWCNT@PDA)/polyacrylamide (PAM)/ZIF-8. It ingeniously integrates multiple functions such as photothermal, photodynamic antibacterial, and electrical stimulation therapies, thereby establishing a new multimodal synergistic treatment paradigm. Notably, the addition of ZIF-8 not only controlled photothermal release of antibacterial agents but also facilitates the development of a distinctive solid-liquid biphasic operational modality in TENG system, achieving a 131 V peak output voltage through significant enhancement of electrical performance parameters. In addition, the TENG-based system adopts a non-contact electrical stimulation method for wound treatment, fundamentally reducing the risk of infection caused by direct contact. Experiments using mouse fibroblasts revealed that the simultaneous real-time use of near-infrared light and TENG can significantly improve the cell migration process. Empirical studies on animals demonstrated that it could accelerate tissue regeneration and wound healing by increasing collagen deposition and angiogenesis. Based on these results, this study provides new perspectives for the developing intelligent biomedical composites for future wound management. STATEMENT OF SIGNIFICANCE: Chronic wounds have become a major threat to global medical and health fields due to pathogenic infections. Traditional wound dressings mostly focus on passive healing, which has limited effectiveness. To overcome these limitations, we developed an electronic dressing of a casein-based hydrogel TENG enhanced by a MOF. This electronic dressing combines photothermal, photodynamic antibacterial, and electrical stimulation functions and efficiently promotes wound healing through multifunctional synergy. This research provides a promising solution for diabetic wound care and a broader field of chronic wound treatment. It is a solid step in the scientific exploration of interdisciplinary integration, offering new ideas for making the wound treatment field more intelligent, efficient, and precise.
Collapse
Affiliation(s)
- Yuhang Xu
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Xiaoyu Xu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China; National Demonstration Center for Experimental Light Chemistry Engineering Education, Xi'an 710021, China
| | - Yuan Zhao
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China; National Demonstration Center for Experimental Light Chemistry Engineering Education, Xi'an 710021, China
| | - YaNing Tian
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Yubo Ma
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xin Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Fanni Li
- Department of Talent Highland, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Wei Zhao
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Jianzhong Ma
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China; National Demonstration Center for Experimental Light Chemistry Engineering Education, Xi'an 710021, China; Xi'an Key Laboratory of Green Chemicals and Functional Materials, Xi'an 710021, China.
| | - Qunna Xu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China; National Demonstration Center for Experimental Light Chemistry Engineering Education, Xi'an 710021, China; Xi'an Key Laboratory of Green Chemicals and Functional Materials, Xi'an 710021, China.
| | - Qi Sun
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
2
|
Zhang D, Qiu M, Tian Y, Zhang S, Wu F. Advances in hydrogel research: a 25-year bibliometric overview. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2025; 36:39. [PMID: 40366451 DOI: 10.1007/s10856-025-06887-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Accepted: 04/03/2025] [Indexed: 05/15/2025]
Abstract
This study presents a comprehensive bibliometric analysis of hydrogel research from 2000 to 2025, examining 101,291 publications from the OpenAlex database to highlight the field's evolution, trends, and impact, providing a better landscape of the field. The analysis demonstrates significant growth in the research output, from ~350 publications in 2000 to nearly 11,000 in 2024, with 37% being open access. Publication patterns demonstrate Physical Sciences leading with about 50,000 publications, followed by Life Sciences (~30,000) and Health Sciences (~21,000). The citation analysis emphasizes that 20% of all citations result from the top 1% of papers, demonstrating the concentration of the research impact. The study identifies key research hubs, with China as a leader in the publication (27,931 publications), while the United States maintains the highest citation impact (>1 million citations). Network analysis reveals increasingly complicated international collaborations, particularly between the United States and China. Topic modeling using Latent Dirichlet Allocation identifies 17 distinct research themes, emphasizing the field's diversification from fundamental material features to advanced applications in the tissue engineering, drug delivery, and regenerative medicine. This analysis provides valuable insights into the dynamic landscape of hydrogel research, highlighting opportunities for future innovation and collaboration.
Collapse
Affiliation(s)
- Dongbin Zhang
- Department of Special Inspection, Shandong Academy of Occupational Health and Occupational Medicine, Occupational Disease Hospital of Shandong First Medical University (Shandong Province Hospital Occupational Disease Hospital), Jinan, Shandong, China
| | - Mengru Qiu
- Department of Occupational Pulmonary Disease, Shandong Academy of Occupational Health and Occupational Medicine, Occupational Disease Hospital of Shandong First Medical University (Shandong Province Hospital Occupational Disease Hospital), Jinan, Shandong, China
| | - Yu Tian
- Research Center, the Huizhou Central People's Hospital, Guangdong Medical University, Huizhou, Guangdong, China
| | - Shuo Zhang
- Department of Oncology, Central Hospital affiliated TO Shandong First Medical University, Jinan, China.
| | - Fan Wu
- Department of Special Inspection, Shandong Academy of Occupational Health and Occupational Medicine, Occupational Disease Hospital of Shandong First Medical University (Shandong Province Hospital Occupational Disease Hospital), Jinan, Shandong, China.
| |
Collapse
|
3
|
Moussa AK, Abd El-Rahman HA, Mohamed RR, Hanna DH. Multifunctional Plasticized Hyaluronic-Acid-Based Nanogel Dressing for Accelerating Diabetic and Nondiabetic Wounds. Biomacromolecules 2025. [PMID: 40340350 DOI: 10.1021/acs.biomac.5c00126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
Diabetic ulcers are associated with oxidative stress, inflammation, decreased synthesis of pro-healing mediators, and impaired vascularization, which convert the wound from acute to chronic and delay healing. An extended duration of wound healing raises the possibility of complications such as infection, sepsis, and even amputation. The objective of this study is the synthesis of a plasticized cross-linked hyaluronic acid (HA)-grafted poly(acrylamide-co-itaconic acid) nanogel as a nontoxic adhesive, swellable, antibacterial wound dressing with good mechanical properties to protect the wound from pathogens and accelerate the healing process, in addition to decreasing oxidative stress and inflammatory cytokines while increasing anti-inflammatory cytokines and angiogenesis. Nanogel H3 with a ratio (AM/IA) (3:1) showed excellent adhesion with good mechanical properties, biocompatibility, swelling, antioxidant, and antibacterial efficiencies. It showed great wound closure in vitro and in vivo with downregulation of inflammatory cytokines, upregulation of anti-inflammatory cytokines, and enhanced angiogenesis in vivo on diabetic and nondiabetic wounds.
Collapse
Affiliation(s)
- Aalaa K Moussa
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | | | - Riham R Mohamed
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Demiana H Hanna
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| |
Collapse
|
4
|
Hosseini SA, Noruzi S, Kesharwani P, Sahebkar A. Hydrogel-based dressing for wound healing: A systematic review of clinical trials. Int J Biol Macromol 2025; 308:142322. [PMID: 40118421 DOI: 10.1016/j.ijbiomac.2025.142322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 01/08/2025] [Accepted: 03/18/2025] [Indexed: 03/23/2025]
Abstract
BACKGROUND Chronic wounds pose significant healthcare challenges. Hydrogel-based wound dressings have garnered significant attention in the field of wound care. Furthermore, no severe adverse effect was reported for treatment with hydrogel in wound healing. However, a comprehensive review of their clinical application for enhancing chronic wound healing is lacking. OBJECTIVES This systematic review evaluates their clinical effectiveness of hydrogel-based dressing in managing chronic wounds and assesses the evidence supporting their use. SEARCH METHODS We searched the following databases PubMed, the Cochrane Library; Web of Science; and ClinicalTrials.gov. from January 2010 to January 2023. SELECTION CRITERIA Published clinical trial studies that evaluate the effect of hydrogel-based dressing on chronic wounds. RESULT We included 39 studies with 1786 participants (1818 wounds), 1024 of whom (1100 wounds) received hydrogel dressings while 679 patients (725 wounds) used non-hydrogel dressings. This systematic review of clinical research indicates that utilizing hydrogel dressings could potentially reduce the required time (31.17 ± 21.74 days) for wound healing and enhance the percentage of wound closure (63.76 ± 28.97 %). CONCLUSIONS This systematic review revealed that hydrogel dressings are effective in treatment of chronic wounds. Nonetheless, there is a necessity for additional long-term trials tailored to specific wound types and patient characteristics.
Collapse
Affiliation(s)
- Seyede Atefe Hosseini
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Science, Mashhad, Iran; Biological Sciences (IZN), Buchman Institute for Molecular Life Sciences (BMLS), 11 Goethe-Universität Frankfurt am Main, DE-Frankfurt am Main, Germany
| | - Somaye Noruzi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Science, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar, Madhya Pradesh, 470003, India.
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Applied Biomedical Research Center, Mashhad University of Medical Science, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Science, Mashhad, Iran.
| |
Collapse
|
5
|
Alipour A, Nejati O, Yaşayan G, Girgin A, Zaman BT, Giray B, Karal‐Yılmaz O, Bakırdere S, Bal‐Öztürk A. Multilayer Antibacterial Hydrogel Wound Dressings Incorporated With Green Synthesized Silver Nanoparticles. Drug Dev Res 2025; 86:e70102. [PMID: 40341660 PMCID: PMC12060213 DOI: 10.1002/ddr.70102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2025] [Revised: 04/23/2025] [Accepted: 05/01/2025] [Indexed: 05/10/2025]
Abstract
Multilayer antibacterial hydrogel wound dressings were fabricated and characterized for wound healing applications. Dressings are designed to achieve infection control, moisture management in the wound area and to support wound healing. Multilayer wound dressings were prepared as three layers by solvent casting method. The upper layer is composed of kappa carrageenan and green synthesized silver nanoparticles (AgNPs, ~122 nm in size, zeta potential of -35 mV) to provide the moist control, and to form a barrier against microorganism attack. Lidocaine HCl loaded polyvinyl alcohol and chitosan-based middle layer was designed to achieve controlled drug release and to add strength to the hydrogel structure. The lower layer is composed of hyaluronic acid and ovalbumin to serve a controlling membrane for controlled drug release, and to further support wound healing. Different amounts of AgNPs were used in formulations to evaluate their impact on multilayer wound dressings. The incorporation of AgNPs resulted in reduced swelling values and degradation rates of the multilayer wound dressings, enhanced mechanical capabilities, and no significant change in water vapor permeability values. They have demonstrated enhanced antibacterial efficacy against Klebsiella pneumoniae, Bacillus subtilis and Candida albicans. The optimal multilayered hydrogel, incorporating AgNPs and loaded with lidocaine HCl, has shown biocompatibility and hemocompatibility, exhibiting 60% degradation by day 14, water vapor permeability of 2022 ± 460 g/m2 over 24 h, a tensile strength of 6.71 ± 0.62 MPa, 36.38% ± 3.62% elongation at break, and 65.72% ± 14.80% drug release within 10 h, making it a promising candidate for facilitating the wound healing process.
Collapse
Affiliation(s)
- Ali Alipour
- Department of Stem Cell and Tissue Engineering, Institute of Graduate Educationİstinye UniversityİstanbulTürkiye
| | - Omid Nejati
- Department of Stem Cell and Tissue Engineering, Institute of Graduate Educationİstinye UniversityİstanbulTürkiye
| | - Gökçen Yaşayan
- Department of Pharmaceutical Technology, Faculty of PharmacyYeditepe UniversityİstanbulTürkiye
| | - Ayça Girgin
- Chemistry Department, Faculty of Art and ScienceYıldız Technical UniversityİstanbulTürkiye
| | - Buse Tuğba Zaman
- Chemistry Department, Faculty of Art and ScienceYıldız Technical UniversityİstanbulTürkiye
| | - Betül Giray
- Department of Pharmaceutical Microbiology, Faculty of Pharmacyİstinye UniversityİstanbulTürkiye
| | - Okşan Karal‐Yılmaz
- Department of Chemical Engineering, Faculty of Engineering and Architectureİstanbul Beykent University, SariyerİstanbulTurkey
| | - Sezgin Bakırdere
- Chemistry Department, Faculty of Art and ScienceYıldız Technical UniversityİstanbulTürkiye
- Turkish Academy of Sciences (TÜBA)AnkaraTürkiye
| | - Ayça Bal‐Öztürk
- Department of Stem Cell and Tissue Engineering, Institute of Graduate Educationİstinye UniversityİstanbulTürkiye
- Department of Analytical Chemistry, Faculty of Pharmacyİstinye UniversityİstanbulTürkiye
- Stem Cell and Tissue Engineering Application and Research Center (ISUKOK)İstinye UniversityİstanbulTürkiye
| |
Collapse
|
6
|
Taghdi MH, Al-Masawa ME, Muttiah B, Fauzi MB, Law JX, Zainuddin AA, Lokanathan Y. Three-Dimensional Bioprinted Gelatin-Genipin Hydrogels Enriched with hUCMSC-Derived Small Extracellular Vesicles for Regenerative Wound Dressings. Polymers (Basel) 2025; 17:1163. [PMID: 40362948 DOI: 10.3390/polym17091163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 04/17/2025] [Accepted: 04/21/2025] [Indexed: 05/15/2025] Open
Abstract
Mesenchymal stromal cell-derived small extracellular vesicles (MSC-sEVs) have shown great promise in promoting tissue repair, including skin wound healing, but challenges like rapid degradation and short retention have limited their clinical application. Hydrogels have emerged as effective carriers for sustained EV release. Three-dimensional printing enables the development of personalized skin substitutes tailored to the wound size and shape. This study aimed to develop 3D bioprinted gelatin-genipin hydrogels incorporating human umbilical cord MSC-sEVs (hUCMSC-sEVs) for future skin wound healing applications. Gelatin hydrogels (8% and 10% w/v) were crosslinked with 0.3% genipin (GECL) to improve stability. The hydrogels were evaluated for their suitability for extrusion-based 3D bioprinting and physicochemical properties, such as the swelling ratio, hydrophilicity, enzymatic degradation, and water vapor transmission rate (WVTR). Chemical characterization was performed using EDX, XRD, and FTIR. The hUCMSC-sEVs were isolated via centrifugation and tangential flow filtration (TFF) and characterized. The crosslinked hydrogels were successfully 3D bioprinted and demonstrated superior properties, including high hydrophilicity, a swelling ratio of ~500%, slower degradation, and optimal WVTR. hUCMSC-sEVs, ranging from 50 to 200 nm, were positive for surface and cytosolic markers. Adding 75 μg/mL of hUCMSC-EVs into 10% GECL hydrogels significantly improved the biocompatibility. These hydrogels offer ideal properties for 3D bioprinting and wound healing, demonstrating their potential as biomaterial scaffolds for skin tissue regeneration applications.
Collapse
Affiliation(s)
- Manal Hussein Taghdi
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
- Department of Anesthesia and Intensive Care, Faculty of Medical Technology, University of Tripoli, Tripoli P.O. Box 13932, Libya
| | - Maimonah Eissa Al-Masawa
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Barathan Muttiah
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Mh Busra Fauzi
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
- Advance Bioactive Materials-Cells UKM Research Group, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Jia Xian Law
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Ani Amelia Zainuddin
- Department of Obstetrics and Gynecology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Yogeswaran Lokanathan
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
- Advance Bioactive Materials-Cells UKM Research Group, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| |
Collapse
|
7
|
Oouchi A, Ito T, Katahira Y, Hasegawa H, Nakamura K, Mizoguchi I, Yoshimoto T, Koyama Y. Wound Healing Enhancement and Physical Characterization of Bioadhesive Poly(acrylic acid)/Polyvinylpyrrolidone Complex Gels. Gels 2025; 11:300. [PMID: 40277736 PMCID: PMC12027315 DOI: 10.3390/gels11040300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 04/15/2025] [Accepted: 04/17/2025] [Indexed: 04/26/2025] Open
Abstract
In addition to protection against microorganisms and hemostasis, wound dressings are now expected to actively promote healing. A water-absorbing complex of poly(acrylic acid) (PAA) and polyvinylpyrrolidone (PVP) was developed by mixing the polymers under specific conditions. This complex swells in water and adheres strongly to biological tissues. Upon application to a wound, it absorbs blood, swells, and adheres firmly, providing coverage. During this process, blood cells that infiltrate the gel secrete growth factors and other bioactive molecules, which are retained and gradually released toward the wound, promoting healing. In the present study, the mechanical properties of the PAA/PVP complexes were analyzed, and their healing-promoting effects were examined. In a diabetic mouse skin wound model, untreated wounds remained over 95% of their original size after 4 days. In contrast, wounds treated with the PAA/PVP complex shrank to 70-75% of their original size by day 4, and further reduced to 17-23% by day 11. Histological analysis on day 11 showed complete or nearly complete re-epithelialization in PAA/PVP-treated wounds, while untreated wounds exhibited incomplete tissue regeneration. These results suggest that the PAA/PVP complex not only provides physical protection, but also facilitates tissue repair, demonstrating its potential as a next-generation wound dressing.
Collapse
Affiliation(s)
- Ayaka Oouchi
- Kawasaki Frontiens R&D Center, Toagosei Co., Ltd., Kanagawa 210-0821, Japan; (A.O.); (K.N.)
- Institute of Medical Science, Tokyo Medical University, Tokyo 160-8402, Japan; (Y.K.); (H.H.); (I.M.); (T.Y.)
| | - Tomoko Ito
- Institute of Medical Science, Tokyo Medical University, Tokyo 160-8402, Japan; (Y.K.); (H.H.); (I.M.); (T.Y.)
- Obara Hospital Research Institute, Tokyo 164-0012, Japan
| | - Yasuhiro Katahira
- Institute of Medical Science, Tokyo Medical University, Tokyo 160-8402, Japan; (Y.K.); (H.H.); (I.M.); (T.Y.)
| | - Hideaki Hasegawa
- Institute of Medical Science, Tokyo Medical University, Tokyo 160-8402, Japan; (Y.K.); (H.H.); (I.M.); (T.Y.)
| | - Kenichi Nakamura
- Kawasaki Frontiens R&D Center, Toagosei Co., Ltd., Kanagawa 210-0821, Japan; (A.O.); (K.N.)
- Institute of Medical Science, Tokyo Medical University, Tokyo 160-8402, Japan; (Y.K.); (H.H.); (I.M.); (T.Y.)
| | - Izuru Mizoguchi
- Institute of Medical Science, Tokyo Medical University, Tokyo 160-8402, Japan; (Y.K.); (H.H.); (I.M.); (T.Y.)
| | - Takayuki Yoshimoto
- Institute of Medical Science, Tokyo Medical University, Tokyo 160-8402, Japan; (Y.K.); (H.H.); (I.M.); (T.Y.)
| | - Yoshiyuki Koyama
- Institute of Medical Science, Tokyo Medical University, Tokyo 160-8402, Japan; (Y.K.); (H.H.); (I.M.); (T.Y.)
- Obara Hospital Research Institute, Tokyo 164-0012, Japan
| |
Collapse
|
8
|
Sri R, Ghosh T, B V B, P LP. Tamarind seed polymer-based formulations: advances and applications in biomedical science. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2025:1-24. [PMID: 40244801 DOI: 10.1080/09205063.2025.2491604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 03/27/2025] [Indexed: 04/19/2025]
Abstract
Tamarind seed polymer has garnered significant attention in biomedical science due to its exceptional properties, like biocompatibility, biodegradability, and adaptability for drug delivery. Derived from tamarind seeds, tamarind gum, a natural polysaccharide, shows great potential as a gelling agent for controlled drug release. Its versatility makes it suitable for delivering both water-soluble and water-insoluble drugs. This opens up exciting opportunities in areas such as oral drug delivery, wound healing, tissue regeneration, anti-inflammatory treatments, and ophthalmic drug delivery. Tamarind seed-based formulations have the remarkable ability to modify drug release rates, enhance drug stability, and improve bioavailability, making them a promising option for advancing healthcare. This review delves into the advancements and ongoing research surrounding tamarind seed polymer systems, highlighting their diverse applications and untapped potential in the biomedical and pharmaceutical fields.
Collapse
Affiliation(s)
- Ramya Sri
- Department of Pharmaceutics, Faculty of Pharmacy, MS Ramaiah University of Applied Sciences, Bengaluru, India
| | - Tanmoy Ghosh
- Department of Pharmaceutics, Faculty of Pharmacy, MS Ramaiah University of Applied Sciences, Bengaluru, India
| | - Basavaraj B V
- Department of Pharmaceutics, Faculty of Pharmacy, MS Ramaiah University of Applied Sciences, Bengaluru, India
| | - Lakshmi Priya P
- Department of Pharmaceutics, Faculty of Pharmacy, MS Ramaiah University of Applied Sciences, Bengaluru, India
| |
Collapse
|
9
|
Wu Z, Yaqoob I, Afzal M, Iqbal FM, Hassan W, Chen X. Evaluation and characterization of framycetin sulphate loaded hydrogel dressing for enhanced wound healing. PLoS One 2025; 20:e0317273. [PMID: 40244999 PMCID: PMC12005552 DOI: 10.1371/journal.pone.0317273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 12/24/2024] [Indexed: 04/19/2025] Open
Abstract
BACKGROUND Hydrogels loaded with antibiotics can be an effective drug delivery systemfor treating skin diseases or conditions such asinburns and wound healing. OBJECTIVES The current research work was planned to preparea hydrogel dressing for an effective wound healing. The hydrogel formulation was aimed to provide sustained drug release, reducing the frequency of repeated applying the transdermal drug formulation or patch. METHODS Different polymers, polyvinyl alcohol, sodium alginate, and polyvinyl pyrrolidonein varying ratios were used to prepare hydrogels by freeze-thawing method. The prepared hydrogel formulations were loaded with framycetinsulphate (FC-S), a topical aminoglycoside. RESULTS Swelling behaviour, drug release pattern, wereinvestigated.Equilibrium and dynamic studies were conducted at pH 7.4. The prepared hydrogel formulations showed Euilibriumswellingratio of 197.5%. The in-vitro release pattern of FC-Shydrogels was determined by dissolution testing. The prepared hydrogels were characterized by scanning electron microscopy (SEM)andfourier transform infrared (FTIR)spectroscopy.Animal study was conducted on rats to evaluatethe in-vivo therapeutic effectiveness of FC-S hydrogels in wound healing. For that purpose,wounds were induced in the animals. The drug loaded hydrogel dressing was effiecent in wound heaing as the wound treated with FC-S loaded hydrogel was almost completely healed (97%) on the fifth day in comparison to commercially available product (Sofra Tulle gauze) that healed 86%, whereas free FC-S manifested healing at 76%. CONCLUSION It was observed that hydrogel dressing loaded with FC-S was therapeutically more efficient and can be used as a potential candidate for wound healing.
Collapse
Affiliation(s)
- Zhuo Wu
- Department of Equipment Section, Shaanxi Provincial People’s Hospital, Shaanxi Province, Xian, China
| | - Iqra Yaqoob
- Department of Pharmaceutics, Bahauddin Zakariya University, Multan, Pakistan
| | - Mehreen Afzal
- Department of Pathology, Nishtar Medical University, Multan, Pakistan
- Department of Pathology, Combined Military Hospital (CMH), Multan, Pakistan
| | | | - Waseem Hassan
- Department of Pharmacy, COMSATS University Islamabad, Lahore campus, Lahore, Pakistan
| | - Xinjun Chen
- Department of Emergency Medical Center, Xixian Campus of Shaanxi Provincial People’s Hospital, Shaanxi Province, Xian, China
| |
Collapse
|
10
|
Hassan H, Khan M, Shah LA, Yoo HM. CNC-mediated functionalized MWCNT-reinforced double-network conductive hydrogels as smart, flexible strain and epidermic sensors for human motion monitoring. J Mater Chem B 2025; 13:4796-4808. [PMID: 40146006 DOI: 10.1039/d4tb02709d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Abstract
Soft, stretchable, and smart strain-sensing hydrogels have attracted significant attention due to their broad applicability in emerging fields. However, developing hydrogel-based strain-sensing materials with finely tuned mechanical and sensing properties remains challenging, primarily due to the inherent brittleness of traditionally fabricated hydrogels. In this study, a novel flexible strain- and epidermis-sensitive sensor was designed using a cellulose nanocrystal (CNC)-mediated acid functionalized multiwalled carbon nanotube (A-MWCNT)-reinforced double-network conductive hydrogel. This dual-network hydrogel system was fabricated by integrating a covalently crosslinked acrylamide (Amm) and [2-(acryloyloxy) ethyl] trimethyl-ammonium chloride (AETAC) with a physically crosslinked network of A-MWCNTs, which were uniformly dispersed via CNCs. Incorporating hydrogen bonding and strong electrostatic interactions within the physical network introduced reversible sacrificial bonds, significantly enhancing the hydrogel's mechanical strength. The hydrogel exhibited mechanical and sensing performance, including sufficient stretchability (431.6%), remarkable sensitivity, a gauge factor (GF) of 4.32 at 400% strain, toughness of 65.6 kJ m-3, Young's modulus of 1.5 kPa, and rapid response and recovery times of 100 msec. Furthermore, it demonstrated excellent cycling stability over 100 cycles and effective sensing capabilities across a broad strain range, from small deformations (5%) to large strains (400%). The conductivity of 0.09 S m-1, facilitated by the formation of conduction pathways through the AETAC and A-MWCNTs, further enhanced its performance. Moreover, the hydrogel exhibited practical applicability in detecting various large-scale and physiological human movements. Functioning as a wearable electronic skin, it represents a highly flexible and adaptable material suitable for applications in soft robotics, flexible sensors, and health monitoring devices.
Collapse
Affiliation(s)
- Hamna Hassan
- Polymer Laboratory, National Centre of Excellence in Physical Chemistry, University of Peshawar, Peshawar, 25120, Pakistan.
| | - Mansoor Khan
- Polymer Laboratory, National Centre of Excellence in Physical Chemistry, University of Peshawar, Peshawar, 25120, Pakistan.
| | - Luqman Ali Shah
- Polymer Laboratory, National Centre of Excellence in Physical Chemistry, University of Peshawar, Peshawar, 25120, Pakistan.
| | - Hyeong-Min Yoo
- School of Mechanical Engineering, Korea University of Technology and Education (KOREATECH), Cheonan 31253, Republic of Korea
| |
Collapse
|
11
|
Oh N, Hwang J, Kang MS, Yoo CY, Kwak M, Han DW. Versatile and Marvelous Potentials of Polydeoxyribonucleotide for Tissue Engineering and Regeneration. Biomater Res 2025; 29:0183. [PMID: 40231205 PMCID: PMC11994882 DOI: 10.34133/bmr.0183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/10/2025] [Accepted: 03/15/2025] [Indexed: 04/16/2025] Open
Abstract
Over the past decade, substantial focus has been placed on polydeoxyribonucleotide (PDRN) due to its promising pharmacological properties, making it a valuable candidate for tissue engineering applications. Accordingly, this paper aims to review and summarize the latest experimental research on PDRN in the context of tissue engineering and regeneration. The unique biochemical mechanisms of PDRN to promote cellular behavior and regeneration are summarized. We categorize commonly utilized PDRN-based tissue engineering fields as neuromuscular tissues, diabetic wound or skin, and bone regeneration. At the same time, we explore scaffold strategies for integrating PDRN into bioceramics, polymers, and cell/tissue-derived materials, along with its combination with photo/electromodulation techniques. Furthermore, we discuss potential opportunities and challenges in translating PDRN-based approaches into clinical practice. We expect future interdisciplinary research and clinical trials to evaluate the long-term efficacy and safety of PDRN while emphasizing standardization and quality control to ensure its consistency and effectiveness in regenerative applications.
Collapse
Affiliation(s)
- Nuri Oh
- Department of Chemistry and Biology,
Korea Science Academy of Korea Advanced Institute of Science and Technology, Busan 47162, Republic of Korea
| | - Juyoung Hwang
- Department of Chemistry,
Pukyong National University, Busan 48513, Republic of Korea
- Smart Gym-Based Translational Research Center for Active Senior’s Healthcare,
Pukyong National University, Busan 48513, Republic of Korea
- Ajou Energy Science Research Center,
Ajou University, Suwon 16499, Republic of Korea
| | - Moon Sung Kang
- Research Institute of Mechanical Technology,
Pusan National University, Busan 46241, Republic of Korea
| | - Chung-Yul Yoo
- Department of Energy Systems Research and Chemistry,
Ajou University, Suwon 16499, Republic of Korea
| | - Minseok Kwak
- Department of Chemistry,
Pukyong National University, Busan 48513, Republic of Korea
- Smart Gym-Based Translational Research Center for Active Senior’s Healthcare,
Pukyong National University, Busan 48513, Republic of Korea
- Industry 4.0 Convergence Bionics Engineering,
Pukyong National University, Busan 48513, Republic of Korea
| | - Dong-Wook Han
- Department of Cogno-Mechatronics Engineering,
Pusan National University, Busan 46241, Republic of Korea
- Institute of Nano-Bio Convergence,
Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
12
|
Yang S, Liang J, Wang N, Ouyang XK, Hu J. Light-triggered release of nitric oxide from chitosan-based cationic hydrogels for promoting infected wounds healing. Int J Biol Macromol 2025; 304:140998. [PMID: 39952500 DOI: 10.1016/j.ijbiomac.2025.140998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/23/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
Infected wounds are highly susceptible to bacterial contamination, which not only delays the healing process but also leads to a range of complications. NO is one of the most widely used gas molecules in wound treatment strategies due to its potent antibacterial and healing-promoting properties. However, excessive NO in infected wounds can damage cellular components and exacerbate inflammation. Therefore, precise control of NO dosage and targeted delivery to the wound site are crucial for effective treatment. Herein, a cationic hydrogel was constructed using modified guar gum and polyvinyl alcohol to enhance antibacterial effects, with guanidine-modified chitosan (Met-CS) and the photosensitizer sodium copper chlorophyllin (SCC) incorporated to create a light-triggered NO release system. Both in vitro and in vivo experiments confirmed that the proposed hydrogel exhibits excellent antibacterial performance, anti-inflammatory effects, and wound healing capabilities, demonstrating its potential for precise therapeutic applications.
Collapse
Affiliation(s)
- Shuo Yang
- Department of endocrinology, Zhoushan Hospital of Traditional Chinese Medicine, 355 Xinqiao Road, Zhoushan 316000, PR China
| | - Jianhao Liang
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Nan Wang
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Xiao-Kun Ouyang
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, PR China.
| | - Junhua Hu
- Department of endocrinology, Zhoushan Hospital of Traditional Chinese Medicine, 355 Xinqiao Road, Zhoushan 316000, PR China.
| |
Collapse
|
13
|
Pham DT, Thuy NTN, Thao NTP, Nhi LT, Thuy BTP. Naturally derived hydrogels for wound healing. Ther Deliv 2025; 16:349-363. [PMID: 39871586 PMCID: PMC11970767 DOI: 10.1080/20415990.2025.2457928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 01/21/2025] [Indexed: 01/29/2025] Open
Abstract
Natural hydrogels have garnered increasing attention due to their natural origins and beneficial roles in wound healing. Hydrogel water-retaining capacity and excellent biocompatibility create an ideal moist environment for wound healing, thereby enhancing cell proliferation and tissue regeneration. For this reason, naturally derived hydrogels formulated from biomaterials such as chitosan, alginate, gelatin, and fibroin are highly promising due to their biodegradability and low immunogenic responses. Recent integrated approaches to utilizing new technologies with bioactive agents have significantly improved the mechanical properties of hydrogels and the controlled release and delivery of active compounds, thereby increasing the efficiency of the treatment processes. Herein, this review highlights the advantages and the challenges of natural hydrogels in wound healing, focusing on their mechanical strength, controlled degradation rates, safety and efficiency validation, and the potential for incorporating advanced technologies such as tissue engineering and gene therapy for utilization in personalized medicine.
Collapse
Affiliation(s)
- Duy Toan Pham
- Department of Health Sciences, College of Natural Sciences, Can Tho University, Can Tho, Vietnam
| | - Ngo Thi Ngoc Thuy
- Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh City, Vietnam
| | - Nguyen Thi Phuong Thao
- Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh City, Vietnam
| | - Le Thi Nhi
- Faculty of Materials Science, University of Science, Vietnam National University, Ho Chi Minh City, Vietnam
| | - Bui Thi Phuong Thuy
- Faculty of Fundamental Sciences, Van Lang University, Ho Chi Minh City, Vietnam
| |
Collapse
|
14
|
Winkler P, Mao Y. Dual Delivery of Cells and Bioactive Molecules for Wound Healing Applications. Molecules 2025; 30:1577. [PMID: 40286165 PMCID: PMC11990229 DOI: 10.3390/molecules30071577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/21/2025] [Accepted: 03/30/2025] [Indexed: 04/29/2025] Open
Abstract
Chronic wounds not only cause significant patient morbidity but also impose a substantial economic burden on the healthcare system. The primary barriers to wound healing include a deficiency of key modulatory factors needed to progress beyond the stalled inflammatory phase and an increased susceptibility to infections. While antimicrobial agents have traditionally been used to treat infections, stem cells have recently emerged as a promising therapy due to their regenerative properties, including the secretion of cytokines and immunomodulators that support wound healing. This study aims to develop an advanced dual-delivery system integrating stem cells and antibiotics. Stem cells have previously been delivered by encapsulation in gelatin methacrylate (GelMA) hydrogels. To explore a more effective delivery method, GelMA was processed into microparticles (MP). Compared to a bulk GelMA hydrogel (HG) encapsulation, GelMA MP supported greater cell growth and enhanced in vitro wound healing activity of human mesenchymal stem cells (hMSCs), likely due to a larger surface area for cell attachment and improved nutrient exchange. To incorporate antimicrobial properties, the broad-spectrum antibiotics penicillin/streptomycin (PS) were loaded into a bulk GelMA hydrogel, which was then cryo-milled into MPs to serve as carriers for hMSCs. To achieve a more sustained antibiotic release, gelatin nanoparticles (NP) were used as carriers for PS. PS was either incorporated during NP synthesis (NP+PS(S)) or absorbed into NP after synthesis (NP+PS(A)). MPs containing PS, NP+PS(S), or NP+PS(A) were tested for their cell carrier functions and antibacterial activities. The incorporation of PS did not compromise the cell-carrying function of MP configurations. The anti-S. aureus activity was detected in conditioned media from MPs for up to eight days-four days longer than from bulk HG containing PS. Notably, the presence of hMSCs prolonged the antimicrobial activity of MPs, suggesting a synergistic effect between stem cells and antibiotics. PS loaded via synthesis (NP+PS(S)) exhibited a delayed initial release, whereas PS loaded via absorption (NP+PS(A)) provided a more immediate release, with potential for sustained delivery. This study demonstrates the feasibility of a dual-delivery system integrating thera.
Collapse
Affiliation(s)
| | - Yong Mao
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA;
| |
Collapse
|
15
|
Makada H, Singh M. Hydrogels as Suitable miRNA Delivery Systems: A Review. Polymers (Basel) 2025; 17:915. [PMID: 40219305 PMCID: PMC11991254 DOI: 10.3390/polym17070915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/26/2025] [Accepted: 03/27/2025] [Indexed: 04/14/2025] Open
Abstract
The use of miRNA in therapeutics has, since its discovery in 1993, attracted tremendous attention, and research in this area has progressed rapidly. Since the advent of RNA interference (RNAi), much about the nucleic acid siRNA has been elucidated. At the same time, no miRNA-based drugs have passed phase II clinical trials. A significant obstacle to miRNA-based drug development is the ease of degradation and relatively short half-life in vivo of miRNA. Hydrogels are networks of cross-linked polymer chains with the ability to 'swell'. They have shown remarkable capabilities that improve the properties of other researched carriers. In combination with miRNA modification strategies and inorganic carriers, hydrogel systems show promise for sustained miRNA delivery and the development of novel miRNA-based drugs. Although hydrogel systems have been reported recently, the focus has been predominantly on their wound-healing properties, with a dearth of information on their nucleic acid carrier abilities. This paper focuses more on the latest advancements in developing hydrogels as a carrier system, emphasizing the delivery of miRNA. This review will cover the methods of hydrogel fabrication, efforts for sustained miRNA release, biomedical applications, and future prospects.
Collapse
Affiliation(s)
| | - Moganavelli Singh
- Nano-Gene and Drug Delivery Laboratory, Discipline of Biochemistry, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa;
| |
Collapse
|
16
|
Liu X, Yu L, Xiao A, Sun W, Wang H, Wang X, Zhou Y, Li C, Li J, Wang Y, Wang G. Analytical methods in studying cell force sensing: principles, current technologies and perspectives. Regen Biomater 2025; 12:rbaf007. [PMID: 40337625 PMCID: PMC12057814 DOI: 10.1093/rb/rbaf007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/16/2024] [Accepted: 02/10/2025] [Indexed: 05/09/2025] Open
Abstract
Mechanical stimulation plays a crucial role in numerous biological activities, including tissue development, regeneration and remodeling. Understanding how cells respond to their mechanical microenvironment is vital for investigating mechanotransduction with adequate spatial and temporal resolution. Cell force sensing-also known as mechanosensation or mechanotransduction-involves force transmission through the cytoskeleton and mechanochemical signaling. Insights into cell-extracellular matrix interactions and mechanotransduction are particularly relevant for guiding biomaterial design in tissue engineering. To establish a foundation for mechanical biomedicine, this review will provide a comprehensive overview of cell mechanotransduction mechanisms, including the structural components essential for effective mechanical responses, such as cytoskeletal elements, force-sensitive ion channels, membrane receptors and key signaling pathways. It will also discuss the clutch model in force transmission, the role of mechanotransduction in both physiology and pathological contexts, and biomechanics and biomaterial design. Additionally, we outline analytical approaches for characterizing forces at cellular and subcellular levels, discussing the advantages and limitations of each method to aid researchers in selecting appropriate techniques. Finally, we summarize recent advancements in cell force sensing and identify key challenges for future research. Overall, this review should contribute to biomedical engineering by supporting the design of biomaterials that integrate precise mechanical information.
Collapse
Affiliation(s)
- Xiaojun Liu
- College of Life Sciences and Health, University of Health and Rehabilitation Sciences, Qingdao 266113, China
- Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao 266024, China
| | - Lei Yu
- Department of Traditional Chinese Medicine, Qingdao Special Service Sanatorium of PLA Navy, Qingdao 266071, China
| | - Adam Xiao
- Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Wenxu Sun
- School of Sciences, Nantong University, Nantong 226019, China
| | - Han Wang
- State Key Laboratory of Precision Measuring Technology and Instruments, School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| | - Xiangxiu Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Yanghao Zhou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Chao Li
- College of Life Sciences and Health, University of Health and Rehabilitation Sciences, Qingdao 266113, China
- Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao 266024, China
| | - Jiangtao Li
- College of Life Sciences and Health, University of Health and Rehabilitation Sciences, Qingdao 266113, China
| | - Yongliang Wang
- College of Life Sciences and Health, University of Health and Rehabilitation Sciences, Qingdao 266113, China
- Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao 266024, China
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
- Qindao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao 266044, China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
- JinFeng Laboratory, Chongqing 401329, China
| |
Collapse
|
17
|
Busto F, Licini C, Cometa S, Liotino S, Damiani E, Bacchetti T, Kleider I, La Contana A, Mattioli-Belmonte M, De Giglio E. Pectin/Gellan Gum Hydrogels Loaded with Crocus sativus Tepal Extract for In Situ Modulation of Pro-Inflammatory Pathways Affecting Wound Healing. Polymers (Basel) 2025; 17:814. [PMID: 40292702 PMCID: PMC11945028 DOI: 10.3390/polym17060814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/12/2025] [Accepted: 03/17/2025] [Indexed: 04/30/2025] Open
Abstract
Tepals of the Crocus sativus flower constitute the most abundant floral residue during saffron production (350 kg tepals/kg stigmas). Being a natural source of polyphenols with antioxidant properties, they can be reused to create potentially valuable products for pharmaceutical applications, generating a new income source while reducing agricultural bio-waste. In this work, composite hydrogels based on blends of pectin and gellan gum containing Crocus sativus tepal extract (CSE) have been proposed for the regeneration and healing of cutaneous wounds, exploiting the antioxidant properties of CSE. Various physico-chemical and mechanical characterizations were performed. The skin permeation of CSE was investigated using Franz cell diffusion system. The composite films were cytocompatible and able to counteract the increase in ROS, restore the production of matrix proteins, and favor wound closure. To conclude, CSE-loaded composite films represent a promising strategy to promote the body's natural healing process. In addition, by reusing saffron tepals, not only can we develop new, sustainable treatments for skin diseases, but we can also reduce agricultural waste.
Collapse
Affiliation(s)
- Francesco Busto
- Department of Chemistry, University of Bari, Via Orabona 4, 70126 Bari, Italy; (F.B.); (S.L.)
- INSTM, National Consortium of Materials Science and Technology, Via G. Giusti 9, 50121 Florence, Italy
| | - Caterina Licini
- Department of Clinica and Molecular Science, Università Politecnica delle Marche, via Tronto 10/a, 60126 Ancona, Italy; (C.L.); (A.L.C.); (M.M.-B.)
| | | | - Stefano Liotino
- Department of Chemistry, University of Bari, Via Orabona 4, 70126 Bari, Italy; (F.B.); (S.L.)
- INSTM, National Consortium of Materials Science and Technology, Via G. Giusti 9, 50121 Florence, Italy
| | - Elisabetta Damiani
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (E.D.); (T.B.)
| | - Tiziana Bacchetti
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (E.D.); (T.B.)
| | | | - Alessandra La Contana
- Department of Clinica and Molecular Science, Università Politecnica delle Marche, via Tronto 10/a, 60126 Ancona, Italy; (C.L.); (A.L.C.); (M.M.-B.)
| | - Monica Mattioli-Belmonte
- Department of Clinica and Molecular Science, Università Politecnica delle Marche, via Tronto 10/a, 60126 Ancona, Italy; (C.L.); (A.L.C.); (M.M.-B.)
- Advanced Technology Center for Aging Research, IRCCS INRCA, Via Birarelli, 60121 Ancona, Italy
| | - Elvira De Giglio
- Department of Chemistry, University of Bari, Via Orabona 4, 70126 Bari, Italy; (F.B.); (S.L.)
- INSTM, National Consortium of Materials Science and Technology, Via G. Giusti 9, 50121 Florence, Italy
| |
Collapse
|
18
|
Jia X, Wang S. A Multifunctional γ-Polyglutamic Acid Hydrogel for Combined Tumor Photothermal and Chemotherapy. Gels 2025; 11:217. [PMID: 40136922 PMCID: PMC11942037 DOI: 10.3390/gels11030217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 03/12/2025] [Accepted: 03/13/2025] [Indexed: 03/27/2025] Open
Abstract
Efficient and precise cancer therapy remains a challenge due to limitations in current treatment modalities. In this study, we developed a multifunctional hydrogel system that integrates photothermal therapy (PTT) and chemotherapy to achieve combined tumor treatment. The hydrogel, composed of γ-polyglutamic acid (γ-PGA), fifth-generation polyamide-amine dendrimers (G5), and polydopamine (PDA) nanoparticles, exhibits high photothermal conversion efficiency and temperature-responsive drug release properties. The hydrogel exhibited a high photothermal conversion efficiency of 45.6% under 808 nm near-infrared (NIR) irradiation. Drug release studies demonstrated a cumulative hydrophilic anticancer drug doxorubicin DOX release of 79.27% within 72 h under mild hyperthermia conditions (50 °C). In vivo experiments revealed a significant tumor inhibition rate of 82.3% with minimal systemic toxicity. Comprehensive in vitro and in vivo evaluations reveal that the hydrogel demonstrates excellent biocompatibility, photothermal stability, and biodegradability. Unlike conventional hydrogel systems, our γ-PGA-based hydrogel uniquely integrates a biocompatible and biodegradable polymer with polydopamine (PDA) nanoparticles, providing a smart and responsive platform for precise cancer therapy. This multifunctional hydrogel system represents a promising platform that combines PTT precision and chemotherapy efficacy, providing a robust strategy for advanced and safer cancer treatment.
Collapse
Affiliation(s)
| | - Shige Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, China;
| |
Collapse
|
19
|
Chidchai P, Singpanna K, Pengnam S, Charoenying T, Pamornpathomkul B, Patrojanasophon P, Chaksmithanont P, Pornpitchanarong C. Experimental Optimization of Tannic Acid-Crosslinked Hydrogels for Neomycin Delivery in Infected Wounds. Polymers (Basel) 2025; 17:770. [PMID: 40292644 PMCID: PMC11946848 DOI: 10.3390/polym17060770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/03/2025] [Accepted: 03/12/2025] [Indexed: 04/30/2025] Open
Abstract
Wound infections pose a significant challenge in healthcare settings due to prolonged healing times and the emergence of antibiotic-resistant bacteria. Traditional wound dressings often fail to provide sustained drug release, optimal moisture retention, and effective antibacterial protection, leading to suboptimal therapeutic outcomes. This study aimed to optimize and develop neomycin-integrated hydrogels crosslinked via tannic acid (TA) for the treatment of infectious wounds. The hydrogels were optimized using a central composite experimental design. The amounts of polyvinyl alcohol (PVA, 10-20% w/w) and polyvinylpyrrolidone (PVP, 5-20% w/w) were varied and mixed with a fixed concentration of TA (1% w/w) as a crosslinker. The water content (%), water absorption (%), erosion (%), water vapor transmission rate (WVTR), and the mechanical properties of the hydrogels were evaluated. Neomycin was integrated in the optimized hydrogel, and the antibacterial activity against Staphylococcus aureus was studied using a time-kill analysis method. The optimal hydrogel formula contained PVA and PVP at a ratio of 20:19.89 by weight. The resulting hydrogel possessed good physical and mechanical properties and had a water content of 71.86%, water absorption of 124.96%, minimal erosion of 33.08%, and optimal WVTR of 5567 g/m2/24 h. Furthermore, the hydrogel showed desirable elasticity, with a Young's modulus of 474.81 Pa and a tensile strength that could resist breakage upon application. The neomycin-integrated hydrogels inhibited bacterial growth comparably to the neomycin solution (0.5% w/v). Therefore, TA was proven to be a promising natural crosslinker and the optimized hydrogel was demonstrated to be a propitious platform for neomycin cutaneous application, and which could be used to treat infected wounds in the future.
Collapse
Affiliation(s)
- Peerapat Chidchai
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Kanokwan Singpanna
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Supusson Pengnam
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Research and Innovation Center for Advanced Therapy Medicinal Products, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Thapakorn Charoenying
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Research and Innovation Center for Advanced Therapy Medicinal Products, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Boonnada Pamornpathomkul
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Research and Innovation Center for Advanced Therapy Medicinal Products, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Prasopchai Patrojanasophon
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Research and Innovation Center for Advanced Therapy Medicinal Products, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Prin Chaksmithanont
- Research and Innovation Center for Advanced Therapy Medicinal Products, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Chaiyakarn Pornpitchanarong
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Research and Innovation Center for Advanced Therapy Medicinal Products, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| |
Collapse
|
20
|
Zainuddin ANZ, Mustakim NN, Rosemanzailani FA, Fadilah NIM, Maarof M, Fauzi MB. A Comprehensive Review of Honey-Containing Hydrogel for Wound Healing Applications. Gels 2025; 11:194. [PMID: 40136899 PMCID: PMC11942582 DOI: 10.3390/gels11030194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 03/27/2025] Open
Abstract
Honey has long been recognized for its medicinal properties, particularly in wound healing. Recent advancements in material science have led to the development of honey-containing hydrogels, combining the natural healing properties of honey with the versatile characteristics of hydrogel matrices. These hydrogels offer numerous advantages, including high moisture retention, biocompatibility, and the controlled release of bioactive compounds, making them highly effective for wound healing applications. Hydrogels hold significant potential in advancing medical applications, particularly for cutaneous injuries. The diverse properties of honey, including antimicrobial, anti-inflammatory, and anti-eschar effects, have shown promise in accelerating tissue regeneration. According to studies, they are effective in maintaining a good swelling ratio index, Water Vapour Transmission Rate (WVTR), contact angle, tensile and elongation at break, in vitro biodegradation rate, viscosity and porosity analysis, lowering bacterial infections, and encouraging rapid tissue regeneration with notable FTIR peaks and SEM average pore sizes. However, limitations such as low bioavailability and inefficiencies in direct application reduce their therapeutic effectiveness at the wound site. Integrating honey into hydrogels can help preserve its wound healing mechanisms while enhancing its ability to facilitate skin tissue recovery. This review explores the underlying mechanisms of honey in wound healing management and presents an extensive analysis of honey-containing hydrogels reported in the literature over the past eight years. It emphasizes the physicochemical and mechanical effectiveness and advancements of honey-incorporated hydrogels in promoting skin wound healing and tissue regeneration, supported by evidence from both in vitro and in vivo studies. While honey-based therapies for wound healing have demonstrated promising outcomes in numerous in vitro and animal studies, clinical studies remain limited. Despite that, honey's incorporation into hydrogel systems, however, offers a potent fusion of contemporary material technology and natural healing qualities, marking a substantial breakthrough in wound treatment.
Collapse
Affiliation(s)
- Andik Nisa Zahra Zainuddin
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia; (A.N.Z.Z.); (N.N.M.); (F.A.R.); (N.I.M.F.); (M.M.)
| | - Nurul Nadhirah Mustakim
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia; (A.N.Z.Z.); (N.N.M.); (F.A.R.); (N.I.M.F.); (M.M.)
| | - Farah Alea Rosemanzailani
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia; (A.N.Z.Z.); (N.N.M.); (F.A.R.); (N.I.M.F.); (M.M.)
| | - Nur Izzah Md Fadilah
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia; (A.N.Z.Z.); (N.N.M.); (F.A.R.); (N.I.M.F.); (M.M.)
- Advance Bioactive Materials-Cells UKM Research Group, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Manira Maarof
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia; (A.N.Z.Z.); (N.N.M.); (F.A.R.); (N.I.M.F.); (M.M.)
- Advance Bioactive Materials-Cells UKM Research Group, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
- Ageing and Degenerative Disease UKM Research Group, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Mh Busra Fauzi
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia; (A.N.Z.Z.); (N.N.M.); (F.A.R.); (N.I.M.F.); (M.M.)
- Advance Bioactive Materials-Cells UKM Research Group, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| |
Collapse
|
21
|
Marvi PK, Das P, Jafari A, Hassan S, Savoji H, Srinivasan S, Rajabzadeh AR. Multifunctional Carbon Dots In Situ Confined Hydrogel for Optical Communication, Drug Delivery, pH Sensing, Nanozymatic Activity, and UV Shielding Applications. Adv Healthc Mater 2025; 14:e2403876. [PMID: 39757485 PMCID: PMC11874666 DOI: 10.1002/adhm.202403876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/29/2024] [Indexed: 01/07/2025]
Abstract
Inspired by the emerging potential of photoluminescent hydrogels, this work unlocks new avenues for advanced biosensing, bioimaging, and drug delivery applications. Carbon quantum dots (CDs) are deemed particularly promising among various optical dyes, for enhancing polymeric networks with superior physical and chemical properties. This study presents the synthesis of CDs derived from Prunella vulgaris, a natural plant resource, through a single-step hydrothermal process, followed by their uniform integration into hydrogel matrices via an in situ free radical graft polymerization. The resulting CD-integrated hydrogels exhibit multifunctionality in biomedical applications, featuring a diffusion-controlled drug release mechanism, permit concurrent delivery of photoluminescent CDs and therapeutic agents, enabling real-time monitoring over 32 h. In addition, these hydrogels function as a broad-range optical pH sensor (pH 3-11), provide robust ultraviolet (UV) shielding, and demonstrate nanozyme-like peroxidase activity. Critically, biocompatibility tests confirm their non-cytotoxicity toward fibroblast cells, establishing these hydrogels as promising candidates for diverse biomedical applications. These include advanced wound dressings that monitor the healing process and detect infection through pH sensing, and promote healing through the nanozymatic activity, all while maintaining a moist wound microenvironment. These hydrogels demonstrate exceptional suitability for advanced smart drug delivery, effective UV-blocking, and as innovative platforms for in vivo sensing and bioimaging.
Collapse
Affiliation(s)
- Parham Khoshbakht Marvi
- School of Biomedical EngineeringMcMaster University1280 Main Street West HamiltonHamiltonOntarioL8S 4L7Canada
| | - Poushali Das
- School of Biomedical EngineeringMcMaster University1280 Main Street West HamiltonHamiltonOntarioL8S 4L7Canada
| | - Arman Jafari
- Institute of Biomedical EngineeringDepartment of Pharmacology and PhysiologyFaculty of MedicineUniversity of MontrealMontrealQCH3T 1J4Canada
- Research CenterCentre Hospitalier Universitaire Sainte‐JustineMontrealQCH3T 1C5Canada
- Montreal TransMedTech InstituteMontrealQCH3T 1J4Canada
| | - Shiza Hassan
- School of Engineering Practice and TechnologyMcMaster University1280 Main Street West HamiltonHamiltonOntarioL8S 4L7Canada
| | - Houman Savoji
- Institute of Biomedical EngineeringDepartment of Pharmacology and PhysiologyFaculty of MedicineUniversity of MontrealMontrealQCH3T 1J4Canada
- Research CenterCentre Hospitalier Universitaire Sainte‐JustineMontrealQCH3T 1C5Canada
- Montreal TransMedTech InstituteMontrealQCH3T 1J4Canada
- Center for Applied Research On Polymers and Composites (CREPEC)MontrealQCH3A 0C3Canada
| | - Seshasai Srinivasan
- School of Biomedical EngineeringMcMaster University1280 Main Street West HamiltonHamiltonOntarioL8S 4L7Canada
- School of Engineering Practice and TechnologyMcMaster University1280 Main Street West HamiltonHamiltonOntarioL8S 4L7Canada
| | - Amin Reza Rajabzadeh
- School of Biomedical EngineeringMcMaster University1280 Main Street West HamiltonHamiltonOntarioL8S 4L7Canada
- School of Engineering Practice and TechnologyMcMaster University1280 Main Street West HamiltonHamiltonOntarioL8S 4L7Canada
| |
Collapse
|
22
|
Raissi-Dehkordi N, Raissi-Dehkordi N, Ebrahimibagha H, Tayebi T, Moeinabadi-Bidgoli K, Hassani M, Niknejad H. Advancing chronic and acute wound healing with cold atmospheric plasma: cellular and molecular mechanisms, benefits, risks, and future directions. Front Med (Lausanne) 2025; 12:1527736. [PMID: 40093019 PMCID: PMC11907477 DOI: 10.3389/fmed.2025.1527736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 01/23/2025] [Indexed: 03/19/2025] Open
Abstract
Chronic and acute wounds represent significant challenges in healthcare, often leading to prolonged recovery times and increased complications. While chronic wounds, such as diabetic foot ulcers and venous leg ulcers, persist due to underlying conditions and biofilm formation, acute wounds, including surgical incisions and burns, can also benefit from innovative therapeutic approaches. Cold atmospheric plasma (CAP) has emerged as a promising non-invasive therapy capable of enhancing wound healing outcomes across both wound types. This review examines the cellular and molecular mechanisms by which CAP promotes wound repair, focusing on its modulation of inflammation, stimulation of angiogenesis, facilitation of tissue remodeling, and antimicrobial effects, which can potentially be used in regenerative medicine. CAP generates reactive oxygen and nitrogen species that influence key cellular processes, accelerating tissue regeneration while reducing bacterial load and preventing biofilm formation. Clinical applications of CAP have demonstrated its efficacy in improving wound healing metrics for both chronic and acute wounds. Despite promising results, translating CAP into routine clinical practice requires addressing challenges such as standardizing treatment protocols, assessing long-term safety, and developing portable devices. Future research should prioritize optimizing CAP parameters and exploring combination therapies to maximize its therapeutic potential. Overall, CAP represents a safe, effective, and versatile modality in wound management, with the potential to significantly improve patient outcomes in both chronic and acute wound care.
Collapse
Affiliation(s)
- Nastaran Raissi-Dehkordi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Negar Raissi-Dehkordi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Ebrahimibagha
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tahereh Tayebi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kasra Moeinabadi-Bidgoli
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Hassani
- Department of Vascular and Endovascular Surgery, Taleghani General Hospital, Tehran, Iran
| | - Hassan Niknejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
23
|
Bright R, Sivanantha S, Hayles A, Phuoc Ton T, Ninan N, Luo X, Vasilev K, Truong VK. In Vitro Assessment of Gallium Nanoalloy Hydrogels for Antimicrobial and Wound Healing Applications. ACS APPLIED BIO MATERIALS 2025; 8:1017-1026. [PMID: 39433303 DOI: 10.1021/acsabm.4c01182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Chronic and recurring wounds pose a significant challenge in modern healthcare, leading to substantial morbidity. These wounds allow pathogens to colonize, potentially resulting in local and systemic infections. Current interventions need to be revised and become increasingly less reliable due to the emergence of antibiotic resistance. In the present study, we aim to address these issues by fabricating hydrogels impregnated with gallium-based nanoalloys for their antimicrobial activity. Gallium liquid metal nanoparticles (approximately 100 nm in diameter) were alloyed in different combinations with bismuth and silver ions through a galvanic replacement reaction. These multimetallic hydrogels showed favorable antibacterial activity against the Gram-positive Staphylococcus aureus and the Gram-negative Pseudomonas aeruginosa, as observed with fluorescence microscopy and inhibition assays. The multimetallic hydrogels showed no toxicity against murine macrophages or human dermal fibroblasts and enhanced in vitro wound healing. The development of these innovative gallium-based hydrogels represents a promising strategy to combat chronic wounds and their associated complications, offering an effective alternative to current antimicrobial treatments amidst rising antibiotic resistance.
Collapse
Affiliation(s)
- Richard Bright
- College of Medicine and Public Health, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Soroopan Sivanantha
- College of Medicine and Public Health, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Andrew Hayles
- College of Medicine and Public Health, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Tan Phuoc Ton
- College of Medicine and Public Health, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Neethu Ninan
- College of Medicine and Public Health, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Xuan Luo
- College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Krasimir Vasilev
- College of Medicine and Public Health, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Vi Khanh Truong
- College of Medicine and Public Health, Flinders University, Bedford Park, South Australia 5042, Australia
| |
Collapse
|
24
|
Yadu N, Singh M, Singh D, Keshavkant S. Mechanistic insights of diabetic wound: Healing process, associated pathways and microRNA-based delivery systems. Int J Pharm 2025; 670:125117. [PMID: 39719258 DOI: 10.1016/j.ijpharm.2024.125117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/27/2024] [Accepted: 12/19/2024] [Indexed: 12/26/2024]
Abstract
Wounds that represent one of the most critical complications can occur in individuals suffering from diabetes mellitus, and results in the need for hospitalisation and, in severe cases, require amputation. This condition is primarily characterized by infections, persistent inflammation, and delayed healing processes, which exacerbate the overall health of the patients. As per the standard mechanism, signalling pathways such as PI3K/AKT, HIF-1, TGF-β, Notch, Wnt/β-Cat, NF-κB, JAK/STAT, TLR, and Nrf2 play major roles in inflammatory, proliferative and remodelling phases of wound healing. However, dysregulation of the above pathways has been seen during the healing of diabetic wounds. MicroRNAs (miRNAs) are small, non-coding RNAs that regulate the expression of various genes and signalling pathways which are associated with the process of wound healing. In the past few years, there has been a great deal of interest in the potential of miRNAs as biological agents in the management of a number of disorders. These miRNAs have been shown to modulate expression of genes involved in the healing process of wounds. There have been previous reviews pertaining to clinical trials examining miRNAs in several disorders, but only a few clinical studies have examined involvement of miRNAs in healing of wounds. Considering the therapeutic promise, there are several obstacles concerning their instabilities and inefficient delivery into the target cells. Therefore, this review is an attempt to discuss precise roles of signalling pathways and miRNAs in different phases of wound healing, and their aberrant regulation in diabetic wounds, particularly. It has also compiled a range of delivery mechanisms as well as an overview of the latest findings pertaining to miRNAs and associated delivery systems for improved healing of diabetic wounds.
Collapse
Affiliation(s)
- Nidhi Yadu
- School of Studies in Biotechnology, Pt. Ravishankar Shukla University, Raipur 492 010, India
| | - Manju Singh
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur 492 010, India
| | - Deependra Singh
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur 492 010, India
| | - S Keshavkant
- School of Studies in Biotechnology, Pt. Ravishankar Shukla University, Raipur 492 010, India.
| |
Collapse
|
25
|
Huang J, Deng Q, Tsang LL, Chang G, Guo J, Ruan YC, Wang CC, Li G, Chan HF, Zhang X, Jiang X. Mesenchymal stem cells from perinatal tissues promote diabetic wound healing via PI3K/AKT activation. Stem Cell Res Ther 2025; 16:59. [PMID: 39923118 PMCID: PMC11807333 DOI: 10.1186/s13287-025-04141-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 01/13/2025] [Indexed: 02/10/2025] Open
Abstract
BACKGROUND Diabetic foot ulcers (DFUs) represent a major complication of diabetes, often leading to poor healing outcomes with conventional treatments. Mesenchymal stem cell (MSC) therapies have emerged as a promising alternative, given their potential to modulate various pathways involved in wound healing. This study evaluates and compares the therapeutic potential of MSCs derived from perinatal tissues-human umbilical cord MSCs (hUCMSCs), human chorionic villi MSCs (hCVMSCs), and human decidua basalis MSCs (hDCMSCs)-in a diabetic wound healing model. METHODS We performed in vitro and in vivo studies to compare the efficacy of hUCMSCs, hCVMSCs, and hDCMSCs. Mass spectrometry was used to analyze the secreted proteins of the MSCs. We incorporated the MSCs into a polyethylene glycol diacrylate (PEGDA) and sodium alginate (SA) hydrogel matrix with collagen I (Col-I) to evaluate their effects on wound healing. RESULTS All three types of MSCs promoted wound healing, with hUCMSCs and hCVMSCs showing stronger effects compared to hDCMSCs. Both hUCMSCs and hCVMSCs demonstrated robust wound healing kinetics, with enhanced keratinocyte proliferation (KRT14+/Ki67+ cells), maturation (KRT10/KRT14 ratio), and angiogenesis. In vitro studies demonstrated that the MSC-derived secretome enhanced keratinocyte proliferation and migration, endothelial cell function and stem cell recruitment, indicating robust paracrine effects. Mass spectrometry revealed a conserved set of proteins including THBS1 (thrombospondin 1), SERPINE1 (serpin family E member 1), ANXA1 (annexin A1), LOX (lysyl oxidase), and ITGB1 (integrin beta-1) which are involved in extracellular matrix (ECM) organization and wound healing, with the PI3K/AKT signaling pathway playing a central role. The PEGDA/SA/Col-I hydrogel demonstrated a unique balance of mechanical and biological properties and an optimal environment for MSC viability and function. Application of either hUCMSC- or hCVMSC-laden hydrogels resulted in accelerated wound closure, improved re-epithelialization, increased collagen deposition, and enhanced vascularization in vivo. CONCLUSIONS MSCs From perinatal tissues particularly hUCMSCs and hCVMSCs significantly enhance diabetic wound healing through PI3K/AKT pathway activation while hDCMSCs exhibited weaker efficacy. The PEGDA/SA/Col-I hydrogel supports MSC viability and function offering a promising scaffold for DFU treatment. These findings underscore the potential of specific perinatal MSCs and optimized hydrogel formulations in advancing diabetic wound care.
Collapse
Affiliation(s)
- Jiawei Huang
- School of Biomedical Sciences, Faculty of Medicine; CUHK-GIBH CAS Joint Research Laboratory On Stem Cell and Regenerative Medicine; Key Laboratory for Regenerative Medicine of the Ministry of Education of China, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Qingwen Deng
- School of Biomedical Sciences, Faculty of Medicine; CUHK-GIBH CAS Joint Research Laboratory On Stem Cell and Regenerative Medicine; Key Laboratory for Regenerative Medicine of the Ministry of Education of China, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Lai Ling Tsang
- School of Biomedical Sciences, Faculty of Medicine; CUHK-GIBH CAS Joint Research Laboratory On Stem Cell and Regenerative Medicine; Key Laboratory for Regenerative Medicine of the Ministry of Education of China, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Guozhu Chang
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jinghui Guo
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, 518172, Guangdong, China
| | - Ye Chun Ruan
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Chi Chiu Wang
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong; Reproduction and Development, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Gang Li
- Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
| | - Hon Fai Chan
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xiaohu Zhang
- Sichuan University-The Chinese University of Hong Kong Joint Laboratory for Reproductive Medicine, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Xiaohua Jiang
- School of Biomedical Sciences, Faculty of Medicine; CUHK-GIBH CAS Joint Research Laboratory On Stem Cell and Regenerative Medicine; Key Laboratory for Regenerative Medicine of the Ministry of Education of China, The Chinese University of Hong Kong, Hong Kong SAR, China.
- The Chinese University of Hong Kong, Shenzhen Research Institute, Shenzhen, 518000, China.
| |
Collapse
|
26
|
Alberts A, Tudorache DI, Niculescu AG, Grumezescu AM. Advancements in Wound Dressing Materials: Highlighting Recent Progress in Hydrogels, Foams, and Antimicrobial Dressings. Gels 2025; 11:123. [PMID: 39996666 PMCID: PMC11854827 DOI: 10.3390/gels11020123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 01/27/2025] [Accepted: 02/05/2025] [Indexed: 02/26/2025] Open
Abstract
Recent advancements in wound dressing materials have significantly improved acute and chronic wound management by addressing challenges such as infection control, moisture balance, and enhanced healing. Important progress has been made, especially with hydrogels, foams, and antimicrobial materials for creating optimized dressings. Hydrogels are known for maintaining optimal moisture levels, while foam dressings are excellent exudate absorbents. Meanwhile, antimicrobial dressing incorporates various antimicrobial agents to reduce infection risks. These dressing options reduce wound healing time while focusing on customized patient needs. Therefore, this review highlights the newest research materials and prototypes for wound healing applications, emphasizing their particular benefits and clinical importance. Innovations such as stimuli-responsive hydrogels and hybrid bioengineered composites are discussed in relation to their enhanced properties, including responsiveness to pH, temperature, glucose, or enzymes and drug delivery precision. Moreover, ongoing clinical trials have been included, demonstrating the potential of emerging solutions to be soon translated from the laboratory to clinical settings. By discussing interdisciplinary approaches that integrate advanced materials, nanotechnology, and biological insights, this work provides a contemporary framework for patient-centric, efficient wound care strategies.
Collapse
Affiliation(s)
- Adina Alberts
- Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Dana-Ionela Tudorache
- National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (D.-I.T.); (A.M.G.)
| | - Adelina-Gabriela Niculescu
- National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (D.-I.T.); (A.M.G.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| | - Alexandru Mihai Grumezescu
- National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (D.-I.T.); (A.M.G.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| |
Collapse
|
27
|
Alberts A, Bratu AG, Niculescu AG, Grumezescu AM. New Perspectives of Hydrogels in Chronic Wound Management. Molecules 2025; 30:686. [PMID: 39942790 PMCID: PMC11820815 DOI: 10.3390/molecules30030686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 01/29/2025] [Accepted: 01/31/2025] [Indexed: 02/16/2025] Open
Abstract
Chronic wounds pose a substantial healthcare concern due to their prevalence and cost burden. This paper presents a detailed overview of chronic wounds and emphasizes the critical need for novel therapeutic solutions. The pathophysiology of wound healing is discussed, including the healing stages and the factors contributing to chronicity. The focus is on diverse types of chronic wounds, such as diabetic foot necrosis, pressure ulcers, and venous leg ulcers, highlighting their etiology, consequences, and the therapeutic issues they provide. Further, modern wound care solutions, particularly hydrogels, are highlighted for tackling the challenges of chronic wound management. Hydrogels are characterized as multipurpose materials that possess vital characteristics like the capacity to retain moisture, biocompatibility, and the incorporation of active drugs. Hydrogels' effectiveness in therapeutic applications is demonstrated by how they support healing, including preserving ideal moisture levels, promoting cellular migration, and possessing antibacterial properties. Thus, this paper presents hydrogel technology's latest developments, emphasizing drug-loaded and stimuli-responsive types and underscoring how these advanced formulations greatly improve therapy outcomes by enabling dynamic and focused reactions to the wound environment. Future directions for hydrogel research promote the development of customized hydrogel treatments and the incorporation of digital health tools to improve the treatment of chronic wounds.
Collapse
Affiliation(s)
- Adina Alberts
- Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Andreea Gabriela Bratu
- Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu St. 1-7, 060042 Bucharest, Romania; (A.G.B.); (A.-G.N.)
| | - Adelina-Gabriela Niculescu
- Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu St. 1-7, 060042 Bucharest, Romania; (A.G.B.); (A.-G.N.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| | - Alexandru Mihai Grumezescu
- Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu St. 1-7, 060042 Bucharest, Romania; (A.G.B.); (A.-G.N.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| |
Collapse
|
28
|
Rahman Khan MM, Rumon MMH. Synthesis of PVA-Based Hydrogels for Biomedical Applications: Recent Trends and Advances. Gels 2025; 11:88. [PMID: 39996631 PMCID: PMC11854265 DOI: 10.3390/gels11020088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/18/2025] [Accepted: 01/21/2025] [Indexed: 02/26/2025] Open
Abstract
There is ongoing research for biomedical applications of polyvinyl alcohol (PVA)-based hydrogels; however, the execution of this has not yet been achieved at an appropriate level for commercialization. Advanced perception is necessary for the design and synthesis of suitable materials, such as PVA-based hydrogel for biomedical applications. Among polymers, PVA-based hydrogel has drawn great interest in biomedical applications owing to their attractive potential with characteristics such as good biocompatibility, great mechanical strength, and apposite water content. By designing the suitable synthesis approach and investigating the hydrogel structure, PVA-based hydrogels can attain superb cytocompatibility, flexibility, and antimicrobial activities, signifying that it is a good candidate for tissue engineering and regenerative medicine, drug delivery, wound dressing, contact lenses, and other fields. In this review, we highlight the current progresses on the synthesis of PVA-based hydrogels for biomedical applications explaining their diverse usage across a variety of areas. We explain numerous synthesis techniques and related phenomena for biomedical applications based on these materials. This review may stipulate a wide reference for future acumens of PVA-based hydrogel materials for their extensive applications in biomedical fields.
Collapse
Affiliation(s)
- Mohammad Mizanur Rahman Khan
- Department of Mechanical Engineering, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| | | |
Collapse
|
29
|
Ma Y, You J, Hou J, Shi Y, Zhao E. In situ dressing based on a D-π-A structured aggregation-induced emission photosensitizer for healing infected wounds. J Mater Chem B 2025; 13:1326-1337. [PMID: 39692013 DOI: 10.1039/d4tb02372b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Photodynamic antimicrobial therapy (aPDT) can effectively kill bacteria without promoting drug resistance. However, the phototoxicity of photosensitizers in aPDT against normal cells hinders their practical applications. In this work, we report the utilization of an aggregation-induced emission (AIE)-active photosensitizer, DTTPB, to develop antibacterial dressing for effective eradication of both Gram-positive and Gram-negative bacteria. The D-π-A structure of DTTPB facilitates efficient ROS generation in the aggregate state, addressing the limitations of a traditional photosensitizer. Notably, DTTPB demonstrates good biocompatibility towards normal cells, which minimizes its phototoxicity to normal tissues. To demonstrate its practical implications, DTTPB is combined with Carbomer 940 to create an injectable hydrogel dressing (DTTPB@gel). DTTPB@gel not only adheres to wounds but also maintains the antimicrobial properties of DTTPB, which together contributes to its enhanced wound-healing performance. Biocompatibility and toxicity assessments confirm the safety of this novel material, highlighting its potential as a practical and effective treatment for bacterial infections in wounds. The results underscore the importance of innovative antimicrobial strategies in fighting against antibiotic resistance, paving the way for safer and more effective therapeutic options.
Collapse
Affiliation(s)
- Yu Ma
- School of Biomedical Engineering and Digital Health, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, China.
| | - Jiawei You
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Jianquan Hou
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Yupeng Shi
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Engui Zhao
- School of Biomedical Engineering and Digital Health, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, China.
| |
Collapse
|
30
|
Aydin B, Arol N, Burak N, Usta A, Ceylan M. Investigation of Chitosan-Based Hydrogels and Polycaprolactone-Based Electrospun Fibers as Wound Dressing Materials Based on Mechanical, Physical, and Chemical Characterization. Gels 2025; 11:39. [PMID: 39852010 PMCID: PMC11764951 DOI: 10.3390/gels11010039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/29/2024] [Accepted: 01/02/2025] [Indexed: 01/26/2025] Open
Abstract
The aim of this project is to fabricate fiber mats and hydrogel materials that constitute the two main components of a wound dressing material. The contributions of boric acid (BA) and zinc oxide (ZnO) to the physical and mechanical properties of polycaprolactone (PCL) is investigated. These materials are chosen for their antimicrobial and antifungal effects. Additionally, since chitosan forms brittle hydrogels, it is reinforced with polyvinyl alcohol (PVA) to improve ductility and water uptake properties. For these purposes, PCL, BA, ZnO, PVA, and chitosan are used in different ratios to fabricate nanofiber mats and hydrogels. Mechanical, physical, and chemical characteristics are examined. The highest elastic modulus and tensile strength are obtained from samples with 6% BA and 10% ZnO concentrations. ZnO-decorated fibers exhibit a higher elastic modulus than those with BA, though BA-containing fibers exhibit greater elongation before breakage. All fibers exhibit hydrophobic properties, which help to prevent biofilm formation. In compression tests, CS12 demonstrates the highest strength. Increasing the PVA content enhances ductility, while a higher concentration of chitosan results in a denser structure. This outcome is confirmed by FTIR and swelling tests. These findings highlight the optimal combinations of nanofibrous mats and hydrogels, offering guidance for future wound dressing designs that balance mechanical strength, water absorption, and antimicrobial properties. By stacking these nanofibrous mats and hydrogels in different orders, it is expected to achieve a wound care material that is suitable for various applications. The authors encourage experimentation with different configurations of these nanofiber and hydrogel stackings to observe their mechanical behavior under real-life conditions in future studies.
Collapse
Affiliation(s)
- Barkin Aydin
- Department of Mechanical Engineering, Engineering Faculty, Marmara University, 34854 Istanbul, Türkiye; (B.A.); (N.A.); (N.B.)
| | - Nihat Arol
- Department of Mechanical Engineering, Engineering Faculty, Marmara University, 34854 Istanbul, Türkiye; (B.A.); (N.A.); (N.B.)
| | - Nimet Burak
- Department of Mechanical Engineering, Engineering Faculty, Marmara University, 34854 Istanbul, Türkiye; (B.A.); (N.A.); (N.B.)
| | - Aybala Usta
- Department of Mechanical Engineering, Engineering Faculty, Marmara University, 34854 Istanbul, Türkiye; (B.A.); (N.A.); (N.B.)
| | - Muhammet Ceylan
- Department of Mechatronics Engineering, Engineering Faculty, Istanbul Ticaret University, 34854 Istanbul, Türkiye;
| |
Collapse
|
31
|
Kabir F, Yung DBY, da Cruz Nizer WS, Allison KN, Zigic S, Russell E, DeZeeuw KG, Marek JE, Cassol E, Pletzer D, Overhage J. Pressure injuries and biofilms: Microbiome, model systems and therapies. Wound Repair Regen 2025; 33:e70005. [PMID: 39949184 PMCID: PMC11826131 DOI: 10.1111/wrr.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 10/07/2024] [Accepted: 01/22/2025] [Indexed: 02/16/2025]
Abstract
Chronic wounds have emerged as significant clinical problems owing to their increasing incidence and greater recognition of associated morbidity and socio-economic burden. They are defined as wounds that do not progress normally through the stages of healing in a timely and/or orderly manner. Pressure injuries, in particular, represent a serious problem for patients who are elderly or have limited mobility, such as wheelchair users or those who spend most of the day in bed. These injuries often result from prolonged pressure exerted on the skin over the bone. Treatment of pressure injuries is complex and costly. Emerging evidence suggests that the pressure injury microbiome plays a vital role in chronic wound formation and delaying wound healing. Additionally, antibiotics often fail due to the formation of resistant biofilms and the emergence of antimicrobial-resistant bacteria. In this review, we will summarise the current knowledge on: (a) biofilms and microbiomes in pressure injuries; (b) in vitro and in vivo model systems to study pressure injuries, and (c) current therapies and novel treatment approaches. Understanding the complex interactions between microbes and the host immune system in pressure injuries will provide valuable insights to improve patient outcomes.
Collapse
Affiliation(s)
- Fahad Kabir
- Department of Health SciencesCarleton UniversityOttawaOntarioCanada
| | | | | | | | - Sandra Zigic
- Department of Health SciencesCarleton UniversityOttawaOntarioCanada
| | - Emily Russell
- Department of Health SciencesCarleton UniversityOttawaOntarioCanada
| | - Katrina G. DeZeeuw
- Department of Complex Continuing CareSaint Vincent HospitalOttawaOntarioCanada
| | - Jonah E. Marek
- Department of Complex Continuing CareSaint Vincent HospitalOttawaOntarioCanada
| | - Edana Cassol
- Department of Health SciencesCarleton UniversityOttawaOntarioCanada
| | - Daniel Pletzer
- Department of Microbiology and ImmunologyUniversity of OtagoDunedinNew Zealand
| | - Joerg Overhage
- Department of Health SciencesCarleton UniversityOttawaOntarioCanada
| |
Collapse
|
32
|
Cetin FN, Mignon A, Van Vlierberghe S, Kolouchova K. Polymer- and Lipid-Based Nanostructures Serving Wound Healing Applications: A Review. Adv Healthc Mater 2025; 14:e2402699. [PMID: 39543796 DOI: 10.1002/adhm.202402699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/18/2024] [Indexed: 11/17/2024]
Abstract
Management of hard-to-heal wounds often requires specialized care that surpasses the capabilities of conventional treatments. Even the most advanced commercial products lack the functionality to meet the needs of hard-to-heal wounds, especially those complicated by active infection, extreme bleeding, and chronic inflammation. The review explores how supramolecular nanovesicles and nanoparticles-such as dendrimers, micelles, polymersomes, and lipid-based nanocarriers-can be key to introducing advanced wound healing and monitoring properties to address the complex needs of hard-to-heal wounds. Their potential to enable advanced functions essential for next-generation wound healing products-such as hemostatic functions, transdermal penetration, macrophage polarization, targeted delivery, and controlled release of active pharmaceutical ingredients (antibiotics, gaseous products, anti-inflammatory drugs, growth factors)-is discussed via an extensive overview of the recent reports. These studies highlight that the integration of supramolecular systems in wound care is crucial for advancing toward a new generation of wound healing products and addressing significant gaps in current wound management practices. Current strategies and potential improvements regarding personalized therapies, transdermal delivery, and the promising critically evaluated but underexplored polymer-based nanovesicles, including polymersomes and proteinosomes, for wound healing.
Collapse
Affiliation(s)
- Fatma N Cetin
- Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, Gent, 9000, Belgium
| | - Arn Mignon
- Department of Engineering Technology, KU Leuven, Andreas Vesaliusstraat 13, Leuven, 3000, Belgium
| | - Sandra Van Vlierberghe
- Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, Gent, 9000, Belgium
| | - Kristyna Kolouchova
- Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, Gent, 9000, Belgium
| |
Collapse
|
33
|
Tofanica BM, Mikhailidi A, Samuil C, Ungureanu OC, Fortună ME, Ungureanu E. Advances in Cellulose-Based Hydrogels: Current Trends and Challenges. Gels 2024; 10:842. [PMID: 39727599 DOI: 10.3390/gels10120842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 12/17/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024] Open
Abstract
This paper provides a solid foundation for understanding the synthesis, properties, and applications of cellulose-based gels. It effectively showcases the potential of these gels in diverse applications, particularly in biomedicine, and highlights key synthesis methods and properties. However, to push the field forward, future research should address the gaps in understanding the environmental impact, mechanical stability, and scalability of cellulose-based gels, while also considering how to overcome barriers to their industrial use. This will ultimately allow for the realization of cellulose-based gels in large-scale, sustainable applications.
Collapse
Affiliation(s)
- Bogdan-Marian Tofanica
- "Gheorghe Asachi" Technical University of Iasi, 73 Prof. Dr. Docent D. Mangeron Boulevard, 700050 Iasi, Romania
- IF2000 Academic Foundation, 73 Prof. Dr. Docent D. Mangeron Boulevard, 700050 Iasi, Romania
| | - Aleksandra Mikhailidi
- IF2000 Academic Foundation, 73 Prof. Dr. Docent D. Mangeron Boulevard, 700050 Iasi, Romania
| | - Costel Samuil
- "Ion Ionescu de la Brad" Iasi University of Life Sciences, 3 Mihail Sadoveanu Alley, 700490 Iasi, Romania
| | - Ovidiu C Ungureanu
- Faculty of Medicine,"Vasile Goldis" Western University of Arad, 94 the Boulevard of the Revolution, 310025 Arad, Romania
| | - Maria E Fortună
- "Petru Poni" Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Elena Ungureanu
- "Ion Ionescu de la Brad" Iasi University of Life Sciences, 3 Mihail Sadoveanu Alley, 700490 Iasi, Romania
| |
Collapse
|
34
|
Lapmanee S, Bhubhanil S, Charoenphon N, Inchan A, Bunwatcharaphansakun P, Khongkow M, Namdee K. Cannabidiol-Loaded Lipid Nanoparticles Incorporated in Polyvinyl Alcohol and Sodium Alginate Hydrogel Scaffold for Enhancing Cell Migration and Accelerating Wound Healing. Gels 2024; 10:843. [PMID: 39727600 DOI: 10.3390/gels10120843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 12/06/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024] Open
Abstract
Chronic wounds represent a persistent clinical challenge due to prolonged inflammation and impaired tissue repair mechanisms. Cannabidiol (CBD), recognized for its anti-inflammatory and pro-healing properties, shows therapeutic promise in wound care. However, its delivery via lipid nanoparticles (LNPs) remains challenging due to CBD's inherent instability and low bioavailability. This study developed and characterized a novel hydrogel scaffold composed of CBD-loaded LNPs (CBD/LNPs) integrated into a polyvinyl alcohol (PVA) and sodium alginate (SA) matrix, designed to enhance wound repair and mitigate inflammation. The characteristics of the hydrogel scaffold were observed including the degree of swelling and LNPs' release profiles. Furthermore, in the results, CBD/LNPs displayed enhanced stability and reduced cytotoxicity compared to unencapsulated CBD. In vitro assays demonstrated that CBD/LNPs significantly promoted fibroblast migration in gap-closure wound models and reduced intracellular reactive oxygen species, supporting their potential as a biocompatible and efficacious agent for cellular repair and oxidative stress attenuation. In vivo experiments using adult male Wistar rats with aseptic cutaneous wounds revealed that treatment with CBD/LNP-PVA/SA hydrogel scaffold significantly accelerated wound closure relative to blank hydrogel controls, demonstrating a substantial reduction in the wound area over time. Histological analysis confirms notable improvements in skin morphology in wounds treated with CBD/LNP-PVA/SA hydrogel scaffold with evidence of accelerated epithelialization, enhanced collagen deposition, and increased dermal thickness and vascularization. Additionally, skin histology showed a more organized epidermal layer and reduced inflammatory cell infiltration in CBD/LNP-PVA/SA hydrogel scaffold-treated wounds, corresponding to a 35% increase in the wound closure rate by day 28 post-treatment. These findings suggest that CBD/LNP-PVA/SA hydrogel scaffolds facilitate inflammation resolution and structural wound healing through localized, sustained CBD delivery. The dual anti-inflammatory and wound-healing effects position CBD/LNP-PVA/SA hydrogel scaffold as a promising approach for chronic wound management. Future investigations are warranted to elucidate the mechanistic pathways by which CBD modulates the skin architecture and to explore its translational applications in clinical wound care.
Collapse
Affiliation(s)
- Sarawut Lapmanee
- Chulabhorn International College of Medicine, Thammasat University, Pathumthani 10120, Thailand
| | - Sakkarin Bhubhanil
- Department of Basic Medical Sciences, Faculty of Medicine, Siam University, Bangkok 10160, Thailand
| | - Natthawut Charoenphon
- Department of Anatomy, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Anjaree Inchan
- Faculty of Medicine, Praboromarajchanok Institute, Ministry of Public Health, Nonthaburi 11000, Thailand
| | | | - Mattaka Khongkow
- National Nanotechnology Centre, National Science and Technology Development Agency, Pathumthani 12120, Thailand
| | - Katawut Namdee
- National Nanotechnology Centre, National Science and Technology Development Agency, Pathumthani 12120, Thailand
| |
Collapse
|
35
|
Zubair M, Hussain S, Ur-Rehman M, Hussain A, Akram ME, Shahzad S, Rauf Z, Mujahid M, Ullah A. Trends in protein derived materials for wound care applications. Biomater Sci 2024; 13:130-160. [PMID: 39569610 DOI: 10.1039/d4bm01099j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Natural resource based polymers, especially those derived from proteins, have attracted significant attention for their potential utilization in advanced wound care applications. Protein based wound care materials provide superior biocompatibility, biodegradability, and other functionalities compared to conventional dressings. The effectiveness of various fabrication techniques, such as electrospinning, phase separation, self-assembly, and ball milling, is examined in the context of developing protein-based materials for wound healing. These methods produce a wide range of forms, including hydrogels, scaffolds, sponges, films, and bioinspired nanomaterials, each designed for specific types of wounds and different stages of healing. This review presents a comprehensive analysis of recent research that investigates the transformation of proteins into materials for wound healing applications. Our focus is on essential proteins, such as keratin, collagen, gelatin, silk, zein, and albumin, and we emphasize their distinct traits and roles in wound care management. Protein-based wound care materials show promising potential in biomedical engineering, offering improved healing capabilities and reduced risks of infection. It is crucial to explore the potential use of these materials in clinical settings while also addressing the challenges that may arise from their commercialization in the future.
Collapse
Affiliation(s)
- Muhammad Zubair
- Lipids Utilization Lab, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6G 2P5.
| | - Saadat Hussain
- LEJ Nanotechnology Center, HEJ Research Institute of Chemistry, ICCBS, University of Karachi, Karachi-75270, Pakistan
| | - Mujeeb- Ur-Rehman
- LEJ Nanotechnology Center, HEJ Research Institute of Chemistry, ICCBS, University of Karachi, Karachi-75270, Pakistan
| | - Ajaz Hussain
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Punjab, Pakistan
| | - Muhammad Ehtisham Akram
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Punjab, Pakistan
| | - Sohail Shahzad
- Department of Chemistry, University of Sahiwal, Sahiwal 57000, Pakistan
| | - Zahid Rauf
- Pakistan Forest Institute (PFI), Peshawar 25130, Khyber Pakhtunkhwa, Pakistan
| | - Maria Mujahid
- Department of Chemistry, University of Sahiwal, Sahiwal 57000, Pakistan
| | - Aman Ullah
- Lipids Utilization Lab, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6G 2P5.
| |
Collapse
|
36
|
Zvereva M. The Use of AgNP-Containing Nanocomposites Based on Galactomannan and κ-Carrageenan for the Creation of Hydrogels with Antiradical Activity. Gels 2024; 10:800. [PMID: 39727558 DOI: 10.3390/gels10120800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/01/2024] [Accepted: 12/02/2024] [Indexed: 12/28/2024] Open
Abstract
Series of composites containing 2.5-17.0% Ag and consisting of spherical silver nanoparticles with sizes ranging from 5.1 to 18.3 nm and from 6.4 to 21.8 nm for GM- and κ-CG-based composites, respectively, were prepared using the reducing and stabilizing ability of the natural polysaccharides galactomannan (GM) and κ-carrageenan (κ-CG). The antiradical activity of the obtained composites was evaluated using the decolorization of ABTS+· solution. It was found that the IC50 value of a composite's aqueous solution depends on the type of stabilizing ligand, the amount of inorganic phases, and the average size of AgNPs, and varies in the range of 0.015-0.08 mg·mL-1 and 0.03-0.59 mg·mL-1 for GM-AgNPs - κ-CG-AgNPs composites, respectively. GM-AgNPs - κ-CG-AgNPs hydrogels were successfully prepared and characterized on the basis of composites containing 2.5% Ag (demonstrating the most pronounced antiradical activity in terms of IC50 values per mole amount of Ag). It was found that the optimal ratio of composites that provided the best water-holding capacity and prolonged complete release of AgNPs from the hydrogel composition was 1:1. The influence of Ca2+ cations on the co-gel formation of the GM-AgNPs - κ-CG-AgNPs system, as well as the expression of their water-holding capacity and the rate of AgNPs release from the hydrogel carrier, was evaluated.
Collapse
Affiliation(s)
- Marina Zvereva
- A.E. Favorsky Irkutsk Institute of Chemistry, 664033 Irkutsk, Russia
| |
Collapse
|
37
|
Tahir M, Vicini S, Jędrzejewski T, Wrotek S, Sionkowska A. New Composite Materials Based on PVA, PVP, CS, and PDA. Polymers (Basel) 2024; 16:3353. [PMID: 39684095 DOI: 10.3390/polym16233353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/21/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
In this work, new materials based on the blends of polyvinyl alcohol (PVA), polyvinyl pyrrolidone (PVP), chitosan (CS), and polydopamine (PDA) have been prepared. Fourier Transform Infrared Spectra have been conducted to verify the presence of individual components in the composite materials. EDX elemental analysis showed a clear view of the element's presence in the composite materials, with the maximum values for carbon and oxygen. Atomic force microscopy (AFM) was used to observe the surface topography and measure the surface roughness. In the case of the individual polymers, CS presented the higher value of surface roughness (Rq = 3.92 nm and Ra = 3.02 nm), and surface roughness was found to be the lowest in the case of polyvinyl pyrrolidone (PVP), and it was with values (Rq = 2.34 nm and Ra = 0.95 nm). PVA films presented the surface roughness, which was with the value (Rq = 3.38 nm and Ra = 2.11 nm). In the case of composites, surface roughness was highest for the composite based on PVA, PVP, and CS, which presented the value (Rq = 11.91 nm and Ra = 8.71 nm). After the addition of polydopamine to the polymeric composite of PVA, PVP, and CS, a reduction in the surface roughness was observed (Rq = 7.49 nm and Ra = 5.15 nm). The surface roughness for composite materials was higher than that of the individual polymers. The addition of PDA to polymeric composite (PVA/PVP/CS) led to a decrease in Young's modulus. The elongation percentage of the polymeric films based on the PVA/PVP/CS/PDA blend was higher than that of the blend without PDA (9.80% vs. 5.68% for the polymeric composite PVA/PVP/CS). The surface of polymeric films was hydrophilic. The results from the MTT assay showed that all tested specimens are non-toxic, and it was manifested by a significant increase in the viability of L929 cells compared with control cells. However, additional studies are required to check the biocompatibility of tested samples.
Collapse
Affiliation(s)
- Muhammad Tahir
- Department of Biomaterials and Cosmetic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100 Torun, Poland
| | - Silvia Vicini
- Department of Chemistry and Industrial Chemistry, University of Genova, 16146 Genoa, Italy
| | - Tomasz Jędrzejewski
- Department of Immunology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100 Torun, Poland
| | - Sylwia Wrotek
- Department of Immunology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100 Torun, Poland
| | - Alina Sionkowska
- Department of Biomaterials and Cosmetic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100 Torun, Poland
| |
Collapse
|
38
|
Pulvirenti A, Boccia AC, Constantin C, Surcel M, Munteanu A, Peteu VE, Neagu M. Single-Component Starch-Based Hydrogels for Therapeutic Delivery. Molecules 2024; 29:5463. [PMID: 39598852 PMCID: PMC11597573 DOI: 10.3390/molecules29225463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/06/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
Hydrogels are interesting materials as delivery systems of various therapeutic agents, mainly due to the water-swollen network and the localized and sustained drug release. Herein, single-component starch-based hydrogels with enhanced degradation rates were produced by applying a facile synthesis and proposed for a novel delivery system of therapeutic molecules. Starch was oxidized with sodium periodate in water and mild conditions to generate aldehyde derivatives that, after a freeze-thaw procedure, were allowed to compact and stable hydrogels. Oxidized starch was also cross-linked with asparagine through a Schiff base reaction to link the active molecule directly to the polysaccharide structure. The materials were structurally and morphologically characterized, and the ability to adsorb and release over time an active molecule was proven by qNMR spectroscopy. The cytotoxicity was evaluated on CAL-27 cell line (oral squamous cell carcinoma). Results indicated that synthesized hydrogels lead to a "frozen proliferative" state on cells due to the swelling capability in the cell medium. This behavior was confirmed by flow cytometry data indicating the hydrogels induced less "early apoptosis" and more "late apoptosis" in the cells, compared to the untreated control. Since the proposed materials are able to control the cell proliferation, they could open a new scenario within the field of precise therapeutic applications.
Collapse
Affiliation(s)
- Alfio Pulvirenti
- Istituto di Scienze e Tecnologie Chimiche (SCITEC) “Giulio Natta”, C.N.R., Via Alfonso Corti 12, 20133 Milano, Italy;
| | - Antonella Caterina Boccia
- Istituto di Scienze e Tecnologie Chimiche (SCITEC) “Giulio Natta”, C.N.R., Via Alfonso Corti 12, 20133 Milano, Italy;
| | - Carolina Constantin
- “Victor Babes” National Institute of Pathology, 99-101 Splaiul Independenței, 050096 Bucharest, Romania; (C.C.); (M.S.); (A.M.); (V.-E.P.); (M.N.)
- Colentina Clinical Hospital, 19-21, Sos Stefan Cel Mare, 020125 Bucharest, Romania
| | - Mihaela Surcel
- “Victor Babes” National Institute of Pathology, 99-101 Splaiul Independenței, 050096 Bucharest, Romania; (C.C.); (M.S.); (A.M.); (V.-E.P.); (M.N.)
| | - Adriana Munteanu
- “Victor Babes” National Institute of Pathology, 99-101 Splaiul Independenței, 050096 Bucharest, Romania; (C.C.); (M.S.); (A.M.); (V.-E.P.); (M.N.)
| | - Victor-Eduard Peteu
- “Victor Babes” National Institute of Pathology, 99-101 Splaiul Independenței, 050096 Bucharest, Romania; (C.C.); (M.S.); (A.M.); (V.-E.P.); (M.N.)
- Doctoral School, Politechnica University of Bucharest, 313 Splaiul Independenței, 060042 Bucharest, Romania
| | - Monica Neagu
- “Victor Babes” National Institute of Pathology, 99-101 Splaiul Independenței, 050096 Bucharest, Romania; (C.C.); (M.S.); (A.M.); (V.-E.P.); (M.N.)
| |
Collapse
|
39
|
Ghosh R, Singh P, Pandit AH, Tariq U, Bhunia BK, Kumar A. Emerging Technological Advancement for Chronic Wound Treatment and Their Role in Accelerating Wound Healing. ACS APPLIED BIO MATERIALS 2024; 7:7101-7132. [PMID: 39466167 DOI: 10.1021/acsabm.4c01064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Chronic wounds are a major healthcare burden and may severely affect the social, mental, and economic status of the patients. Any impairment in wound healing stages due to underlying factors leads to a prolonged healing time and subsequently to chronic wounds. Traditional approaches for the treatment of chronic wounds include dressing free local therapy, dressing therapy, and tissue engineering based scaffold therapies. However, traditional therapies need improvisation and have been advanced through breakthrough technologies. The present review spans traditional therapies and further gives an extensive account of advancements in the treatment of chronic wounds. Cutting edge technologies, such as 3D printing, which includes inkjet printing, fused deposition modeling, digital light processing, extrusion-based printing, microneedle array-based therapies, gene therapy, which includes microRNAs (miRNAs) therapy, and smart wound dressings for real time monitoring of wound conditions through assessment of pH, temperature, oxygen, moisture, metabolites, and their use for planning of better treatment strategies have been discussed in detail. The review further gives the future direction of treatments that will aid in lowering the healthcare burden caused due to chronic wounds.
Collapse
Affiliation(s)
- Rupita Ghosh
- Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
| | - Prerna Singh
- Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
| | - Ashiq Hussain Pandit
- Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
| | - Ubaid Tariq
- Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
| | - Bibhas Kumar Bhunia
- Centre of Excellence for Materials in Medicine, Gangwal School of Medical Sciences and Technology, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
| | - Ashok Kumar
- Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
- Centre for Nanosciences, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
- The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
- Centre of Excellence for Materials in Medicine, Gangwal School of Medical Sciences and Technology, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
| |
Collapse
|
40
|
Trindade GADM, Alves LA, Lazo REL, Dallabrida KG, Reolon JB, Bonini JS, Nunes KC, Garcia FP, Nakamura CV, Rego FGDM, Pontarolo R, Sari MHM, Ferreira LM. Polysaccharide-Stabilized Semisolid Emulsion with Vegetable Oils for Skin Wound Healing: Impact of Composition on Physicochemical and Biological Properties. Pharmaceutics 2024; 16:1426. [PMID: 39598549 PMCID: PMC11597777 DOI: 10.3390/pharmaceutics16111426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/02/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024] Open
Abstract
Background/Objectives: The demand for natural-based formulations in chronic wound care has increased, driven by the need for biocompatible, safe, and effective treatments. Natural polysaccharide-based emulsions enriched with vegetable oils present promising benefits for skin repair, offering structural support and protective barriers suitable for sensitive wound environments. This study aimed to develop and evaluate semisolid polysaccharide-based emulsions for wound healing, incorporating avocado (Persea gratissima) and blackcurrant (Ribes nigrum) oils (AO and BO, respectively). Both gellan gum (GG) and kappa-carrageenan (KC) were used as stabilizers due to their biocompatibility and gel-forming abilities. Methods: Four formulations were prepared (F1-GG-AO; F2-KC-AO; F3-GG-BO; F4-KC-BO) and evaluated for physicochemical properties, spreadability, rheology, antioxidant activity, occlusive and bioadhesion potential, biocompatibility, and wound healing efficacy using an in vitro scratch assay. Results: The pH values (4.74-5.06) were suitable for skin application, and FTIR confirmed excipient compatibility. The formulations showed reduced occlusive potential, pseudoplastic behavior with thixotropy, and adequate spreadability (7.13-8.47 mm2/g). Lower bioadhesion indicated ease of application and removal, enhancing user comfort. Formulations stabilized with KC exhibited superior antioxidant activity (DPPH scavenging) and fibroblast biocompatibility (CC50% 390-589 µg/mL) and were non-hemolytic. Both F2-KC-AO and F4-KC-BO significantly improved in vitro wound healing by promoting cell migration compared to other formulations. Conclusions: These findings underscore the potential of these emulsions for effective wound treatment, providing a foundation for developing skin care products that harness the therapeutic properties of polysaccharides and plant oils in a natural approach to wound care.
Collapse
Affiliation(s)
- Giovanna Araujo de Morais Trindade
- Center for Studies in Biopharmacy, Pos-Graduate Program in Pharmaceutical Sciences, Department of Pharmacy, Federal University of Paraná, Curitiba 80210-170, PR, Brazil; (G.A.d.M.T.); (L.A.A.); (R.E.L.L.); (R.P.)
| | - Laiene Antunes Alves
- Center for Studies in Biopharmacy, Pos-Graduate Program in Pharmaceutical Sciences, Department of Pharmacy, Federal University of Paraná, Curitiba 80210-170, PR, Brazil; (G.A.d.M.T.); (L.A.A.); (R.E.L.L.); (R.P.)
| | - Raul Edison Luna Lazo
- Center for Studies in Biopharmacy, Pos-Graduate Program in Pharmaceutical Sciences, Department of Pharmacy, Federal University of Paraná, Curitiba 80210-170, PR, Brazil; (G.A.d.M.T.); (L.A.A.); (R.E.L.L.); (R.P.)
| | - Kamila Gabrieli Dallabrida
- Department of Pharmacy, Midwestern State University, Guarapuava 85040-167, PR, Brazil; (K.G.D.); (J.B.R.); (J.S.B.)
| | - Jéssica Brandão Reolon
- Department of Pharmacy, Midwestern State University, Guarapuava 85040-167, PR, Brazil; (K.G.D.); (J.B.R.); (J.S.B.)
| | - Juliana Sartori Bonini
- Department of Pharmacy, Midwestern State University, Guarapuava 85040-167, PR, Brazil; (K.G.D.); (J.B.R.); (J.S.B.)
| | - Karine Campos Nunes
- Laboratory of Technological Innovation in the Development of Pharmaceuticals and Cosmetics, Department of Basic Health Sciences, State University of Maringá, Maringá 87020-900, PR, Brazil; (K.C.N.); (F.P.G.); (C.V.N.)
| | - Francielle Pelegrin Garcia
- Laboratory of Technological Innovation in the Development of Pharmaceuticals and Cosmetics, Department of Basic Health Sciences, State University of Maringá, Maringá 87020-900, PR, Brazil; (K.C.N.); (F.P.G.); (C.V.N.)
| | - Celso Vataru Nakamura
- Laboratory of Technological Innovation in the Development of Pharmaceuticals and Cosmetics, Department of Basic Health Sciences, State University of Maringá, Maringá 87020-900, PR, Brazil; (K.C.N.); (F.P.G.); (C.V.N.)
| | | | - Roberto Pontarolo
- Center for Studies in Biopharmacy, Pos-Graduate Program in Pharmaceutical Sciences, Department of Pharmacy, Federal University of Paraná, Curitiba 80210-170, PR, Brazil; (G.A.d.M.T.); (L.A.A.); (R.E.L.L.); (R.P.)
| | | | - Luana Mota Ferreira
- Center for Studies in Biopharmacy, Pos-Graduate Program in Pharmaceutical Sciences, Department of Pharmacy, Federal University of Paraná, Curitiba 80210-170, PR, Brazil; (G.A.d.M.T.); (L.A.A.); (R.E.L.L.); (R.P.)
| |
Collapse
|
41
|
Xu S, Wang Y, Han P, Yan S, You J, Guo C, Wu X. Etamsylate-loaded hydrogel composed of carboxymethyl chitosan and oxidized tannic acid for improved wound healing. Int J Biol Macromol 2024; 279:135270. [PMID: 39233162 DOI: 10.1016/j.ijbiomac.2024.135270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/27/2024] [Accepted: 08/31/2024] [Indexed: 09/06/2024]
Abstract
Proper wound dressing is essential to facilitate skin wound healing, stop bleeding, and prevent infections. Herein, carboxymethyl chitosan (CMC) was crosslinked with oxidized tannic acid (OTA) to form an adhesive and self-healing OTA/CMC hydrogel, and etamsylate was loaded to enhance the hemostatic effect of the hydrogel dressing. The resultant OTA/CMC/E hydrogel exhibited a spectrum of noteworthy attributes including excellent cell compatibility, high antioxidant activity, effective anti-bacterium, and excellent hemorrhage control. Functionally, it mitigated intracellular ROS levels, hindered the proliferation of Staphylococcus aureus, while also significantly reducing hemostasis duration and total blood loss. In vivo full-thickness skin incision results showed that the OTA/CMC/E hydrogel could efficiently accelerate in vivo wound closure and healing, promising as an advanced wound healing material.
Collapse
Affiliation(s)
- Shuo Xu
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yu Wang
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Ping Han
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Shaorong Yan
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jun You
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Youyi Road 368, Wuhan 430062, China
| | - Chuanlong Guo
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xiaochen Wu
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| |
Collapse
|
42
|
Choi H, Choi WS, Jeong JO. A Review of Advanced Hydrogel Applications for Tissue Engineering and Drug Delivery Systems as Biomaterials. Gels 2024; 10:693. [PMID: 39590049 PMCID: PMC11594258 DOI: 10.3390/gels10110693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/28/2024] Open
Abstract
Hydrogels are known for their high water retention capacity and biocompatibility and have become essential materials in tissue engineering and drug delivery systems. This review explores recent advancements in hydrogel technology, focusing on innovative types such as self-healing, tough, smart, and hybrid hydrogels, each engineered to overcome the limitations of conventional hydrogels. Self-healing hydrogels can autonomously repair structural damage, making them well-suited for applications in dynamic biomedical environments. Tough hydrogels are designed with enhanced mechanical properties, enabling their use in load-bearing applications such as cartilage regeneration. Smart hydrogels respond to external stimuli, including changes in pH, temperature, and electromagnetic fields, making them ideal for controlled drug release tailored to specific medical needs. Hybrid hydrogels, made from both natural and synthetic polymers, combine bioactivity and mechanical resilience, which is particularly valuable in engineering complex tissues. Despite these innovations, challenges such as optimizing biocompatibility, adjusting degradation rates, and scaling up production remain. This review provides an in-depth analysis of these emerging hydrogel technologies, highlighting their transformative potential in both tissue engineering and drug delivery while outlining future directions for their development in biomedical applications.
Collapse
Affiliation(s)
- Hoon Choi
- Department of Anesthesiology and Pain Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea;
| | - Wan-Sun Choi
- Department of Orthopaedic Surgery, Ajou University School of Medicine, Suwon 16499, Republic of Korea;
| | - Jin-Oh Jeong
- Wake Forest Institute for Regenerative Medicine (WFIRM), Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| |
Collapse
|
43
|
Ferreira LMDMC, da Cruz NF, Lynch DG, da Costa PF, Salgado CG, Silva-Júnior JOC, Rossi A, Ribeiro-Costa RM. Hydrogel Containing Propolis: Physical Characterization and Evaluation of Biological Activities for Potential Use in the Treatment of Skin Lesions. Pharmaceuticals (Basel) 2024; 17:1400. [PMID: 39459039 PMCID: PMC11510207 DOI: 10.3390/ph17101400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/12/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Skin injury affects the integrity of the skin structure and induces the wound healing process, which is defined by a well-coordinated series of cellular and molecular reactions that aim to recover or replace the injured tissue. Hydrogels are a group of promising biomaterials that are able to incorporate active ingredients for use as dressings. This study aimed to synthesize hydrogels with and without propolis extract and evaluate their physical characteristics and biological activities in vitro for potential use as active dressings in the treatment of skin lesions. METHODS The antifungal [Candida albicans (C. albicans) and Candida tropicalis (C. tropicalis)] and antibacterial [Staphylococcus aureus (S. aureus), Pseudomonas aeruginosas (P. aeruginosas) and Escherichia coli (E. coli)] activity was assessed by the microdilution method in plates and antioxidant potential by the reduction of the phosphomolybdate complex. RESULTS The hydrogels showed good water absorption capacity, high solubility, and high gel fraction, as well as good porosity, water retention, and vapor transmission rates. They revealed a totally amorphous structure. The extract and the hydrogels containing the propolis extract (1.0% and 2.5%) did not inhibit fungal growth. However, they showed antibacterial activity against strains of S. aureus and P. aeruginosas. Regarding the E. coli strain, only the extract inhibited its growth. It showed good antioxidant activity by the evaluation method used. CONCLUSIONS Therefore, the hydrogels containing propolis extract can be a promising alternative with antibacterial and antioxidant action for use as dressings for the treatment of skin lesions.
Collapse
Affiliation(s)
| | - Naila Ferreira da Cruz
- Institute of Biological Sciences, Federal University of Pará, Belem 66075-110, Brazil; (N.F.d.C.); (P.F.d.C.); (C.G.S.)
| | - Desireé Gyles Lynch
- School of Pharmacy, College of Health Sciences, University of Technology, Jamaica, 237 Old Hope Road, Kinston 6, Jamaica;
| | - Patrícia Fagundes da Costa
- Institute of Biological Sciences, Federal University of Pará, Belem 66075-110, Brazil; (N.F.d.C.); (P.F.d.C.); (C.G.S.)
| | - Claudio Guedes Salgado
- Institute of Biological Sciences, Federal University of Pará, Belem 66075-110, Brazil; (N.F.d.C.); (P.F.d.C.); (C.G.S.)
| | - José Otávio Carréra Silva-Júnior
- Cosmetic R&D Laboratory, Department Pharmaceutical, Faculty of Pharmaceutical Sciences, Federal University of Pará, Belem 66075-110, Brazil;
| | - Alessandra Rossi
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy;
| | | |
Collapse
|
44
|
Andjic M, Bradic J, Kocovic A, Simic M, Krstonosic V, Capo I, Jakovljevic V, Lazarevic N. Immortelle Essential-Oil-Enriched Hydrogel for Diabetic Wound Repair: Development, Characterization, and In Vivo Efficacy Assessment. Pharmaceutics 2024; 16:1309. [PMID: 39458638 PMCID: PMC11510981 DOI: 10.3390/pharmaceutics16101309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/08/2024] [Accepted: 09/19/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Alarming data revealed that 19% to 34% of adults with diabetes mellitus develop chronic wounds, which are characterized by impaired healing and a higher risk of infections. Inspired by the traditional use of immortelle for wound healing and the lack of scientific evidence regarding how it thoroughly influences tissue regeneration, we aimed to formulate a hydrogel loaded with immortelle essential oil and assess its effectiveness on diabetic excision wounds. Methods: The rheological properties of the hydrogel, an in vivo safety test, as well as wound healing capacity, were determined in rats with induced diabetes and excision wounds. Diabetic rats were divided into four groups: untreated, treated with 1% silver sulfadiazine ointment, treated with a gel base, and treated with the immortelle essential oil-based hydrogel. Results: It was revealed that the hydrogel exerts pseudoplastic behavior and has no potential to act as an irritant, thus highlighting its suitability for skin application. Moreover, analysis of macroscopic, biochemical, and histopathological data revealed that the immortelle essential oil-based hydrogel significantly improves wound repair. Superior re-epithelialization, scar maturation, and increased collagen fiber density were achieved after immortelle essential oil-based gel application. Conclusions: These findings suggest that the immortelle essential oil-based hydrogel could be a natural, safe, and effective wound-healing dressing.
Collapse
Affiliation(s)
- Marijana Andjic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (M.A.); (M.S.); (N.L.)
- Center of Excellence for Redox Balance Research in Cardiovascular and Metabolic Disorders, 34000 Kragujevac, Serbia;
| | - Jovana Bradic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (M.A.); (M.S.); (N.L.)
- Center of Excellence for Redox Balance Research in Cardiovascular and Metabolic Disorders, 34000 Kragujevac, Serbia;
| | - Aleksandar Kocovic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (M.A.); (M.S.); (N.L.)
- Center of Excellence for Redox Balance Research in Cardiovascular and Metabolic Disorders, 34000 Kragujevac, Serbia;
| | - Marko Simic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (M.A.); (M.S.); (N.L.)
| | - Veljko Krstonosic
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia;
| | - Ivan Capo
- Department of Histology and Embryology, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia;
- Center for Medical and Pharmaceutical Investigations and Quality Control, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Vladimir Jakovljevic
- Center of Excellence for Redox Balance Research in Cardiovascular and Metabolic Disorders, 34000 Kragujevac, Serbia;
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- Department of Human Pathology, 1st Moscow State Medical, University IM Sechenov, 119991 Moscow, Russia
| | - Nevena Lazarevic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (M.A.); (M.S.); (N.L.)
- Center of Excellence for Redox Balance Research in Cardiovascular and Metabolic Disorders, 34000 Kragujevac, Serbia;
- Department of Human Pathology, 1st Moscow State Medical, University IM Sechenov, 119991 Moscow, Russia
| |
Collapse
|
45
|
Zhang Y, Chen Y, Shao P, Luo Y, Liu X, Xu T. Baicalin derivative dynamically cross-linked natural polysaccharide hydrogel for diabetic wound healing. CHEMICAL ENGINEERING JOURNAL 2024; 497:154803. [DOI: 10.1016/j.cej.2024.154803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
46
|
Parvin N, Kumar V, Joo SW, Mandal TK. Cutting-Edge Hydrogel Technologies in Tissue Engineering and Biosensing: An Updated Review. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4792. [PMID: 39410363 PMCID: PMC11477805 DOI: 10.3390/ma17194792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/22/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024]
Abstract
Hydrogels, known for their unique ability to retain large amounts of water, have emerged as pivotal materials in both tissue engineering and biosensing applications. This review provides an updated and comprehensive examination of cutting-edge hydrogel technologies and their multifaceted roles in these fields. Initially, the chemical composition and intrinsic properties of both natural and synthetic hydrogels are discussed, highlighting their biocompatibility and biodegradability. The manuscript then probes into innovative scaffold designs and fabrication techniques such as 3D printing, electrospinning, and self-assembly methods, emphasizing their applications in regenerating bone, cartilage, skin, and neural tissues. In the realm of biosensing, hydrogels' responsive nature is explored through their integration into optical, electrochemical, and piezoelectric sensors. These sensors are instrumental in medical diagnostics for glucose monitoring, pathogen detection, and biomarker identification, as well as in environmental and industrial applications like pollution and food quality monitoring. Furthermore, the review explores cross-disciplinary innovations, including the use of hydrogels in wearable devices, and hybrid systems, and their potential in personalized medicine. By addressing current challenges and future directions, this review aims to underscore the transformative impact of hydrogel technologies in advancing healthcare and industrial practices, thereby providing a vital resource for researchers and practitioners in the field.
Collapse
Affiliation(s)
| | | | - Sang Woo Joo
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea; (N.P.); (V.K.)
| | - Tapas Kumar Mandal
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea; (N.P.); (V.K.)
| |
Collapse
|
47
|
Pornpitchanarong C, Aye KC, Arunprasert K, Opanasopit P, Patrojanasophon P. Computational Designed and Optimized Liposomal Curcumin-Embedded Bifunctional Cross-Linked Hydrogels for Wound Healing. Gels 2024; 10:598. [PMID: 39330200 PMCID: PMC11431055 DOI: 10.3390/gels10090598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/14/2024] [Accepted: 09/15/2024] [Indexed: 09/28/2024] Open
Abstract
Curcumin (CUR) bifunctional cross-linked nanocomposite hydrogels are presented as an efficient method for CUR delivery in wound healing. CUR-loaded liposomes (CUR-Ls) were optimized using the Box-Behnken design to augment particle size, size distribution, zeta potential, and CUR concentration. The antioxidant activity and cytotoxicity of CUR-Ls were assessed. Hyaluronic acid (HA)/poly(vinyl alcohol) (PVA) hydrogels were optimized with a central composite design; then, poly(N-vinylpyrrolidone-co-itaconic acid) (PNVP-ITA) was synthesized to enrich the properties of the hydrogels. The drug release kinetics of the CUR-L@HA/PVA/PNVP-ITA hydrogels were studied. Skin recovery was investigated in vivo on rat dorsal skin. The optimized CUR-Ls were constructed from 2.7% Tween® 20, 0.04% oleic acid, and 8.1% CUR, yielding nano-CUR-L with a narrow size distribution, negative surface charge, and CUR content of 19.92 ± 0.54 µg/mg. CUR-Ls improved the antioxidant effects of CUR. The optimized hydrogel contained 5% HA and 10% PVA. PNVP-ITA improved the properties of the hydrogels via enhanced cross-linking. CUR-Ls exhibited a more rapid release than CUR, whereas the hydrogels enhanced CUR release via a diffusion-controlled mechanism. CUR-L@HA/PVA/PNVP-ITA hydrogels improved the skin recovery rate compared to the commercial patch after 5 days. Therefore, the optimized CUR-L@HA/PVA/PNVP-ITA hydrogels facilitated skin recovery and could be a promising nanocomposite for wound dressings.
Collapse
Affiliation(s)
- Chaiyakarn Pornpitchanarong
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Research and Innovation Center for Advanced Therapy Medicinal Products, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Khin Cho Aye
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Kwanputtha Arunprasert
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Health Intervention and Technology Assessment Program (HITAP), Ministry of Public Health, Nonthaburi 11000, Thailand
| | - Praneet Opanasopit
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Research and Innovation Center for Advanced Therapy Medicinal Products, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Prasopchai Patrojanasophon
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Research and Innovation Center for Advanced Therapy Medicinal Products, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| |
Collapse
|
48
|
Ostróżka-Cieślik A, Strasser C, Dolińska B. Insulin-Loaded Chitosan-Cellulose-Derivative Hydrogels: In Vitro Permeation of Hormone through Strat-M ® Membrane and Rheological and Textural Analysis. Polymers (Basel) 2024; 16:2619. [PMID: 39339083 PMCID: PMC11435918 DOI: 10.3390/polym16182619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/12/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
This work is part of the current research trend to develop a hydrogel carrier of insulin to promote wound healing. Topically applied insulin promotes keratinocyte proliferation and migration, increases collagen synthesis, reduces inflammation and oxidative stress, and exhibits antimicrobial activity. The aim of this study was to design an insulin hydrogel matrix based on selected cellulose derivatives (methylcellulose, hydroxyethylcellulose, and hydroxypropylmethylcellulose) and chitosan. Rheological parameters of the formulations were evaluated using rotational rheometry and an oscillation test. Textural tests were performed. In vitro pharmaceutical insulin availability studies were carried out using the innovative Strat-M® membrane to imitate the skin barrier. It was found that the pharmaceutical formulation of insulin based on chitosan and methylcellulose showed an acceptable balance between rheological and textural parameters and ease of application. The API was released from the carrier in a prolonged manner, eliminating the need to apply the formulation several times per day. The developed hydrogel shows potential for use in clinical practice.
Collapse
Affiliation(s)
- Aneta Ostróżka-Cieślik
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Jedności Street 10, 41-200 Sosnowiec, Poland
| | - Claire Strasser
- NETZSCH-Geratebau GmbH, Wittelsbacherstraße 42, 95100 Selb, Germany
| | - Barbara Dolińska
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Jedności Street 10, 41-200 Sosnowiec, Poland
| |
Collapse
|
49
|
Aye KC, Rojanarata T, Ngawhirunpat T, Opanasopit P, Pornpitchanarong C, Patrojanasophon P. Development and characterization of curcumin nanosuspension-embedded genipin-crosslinked chitosan/polyvinylpyrrolidone hydrogel patch for effective wound healing. Int J Biol Macromol 2024; 274:133519. [PMID: 38960235 DOI: 10.1016/j.ijbiomac.2024.133519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/10/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024]
Abstract
This study investigated the development of a genipin-crosslinked chitosan (CS)-based polyvinylpyrrolidone (PVP) hydrogel containing curcumin nanosuspensions (Cur-NSs) to promote wound healing in an excisional wound model. Cur-NSs were prepared, and a simplex centroid mixture design was employed to optimize hydrogel properties for high water absorption, degree of crosslinking, and sufficient toughness. The in vivo wound healing effect was tested in Wistar rats. The optimized hydrogel consisted of a 70:30 ratio of CS:PVP, crosslinked with a 2 % w/w genipin solution. It exhibited high swelling capability (486 %) while maintaining solidity, robustness, and durability. Incorporating 5 % w/w Cur-NSs resulted in a more compact structure, although with a reduction in swelling properties. The release kinetics of Cur from the hydrogel followed the Korsmeyer-Peppas Fickian diffusion model. In vitro biocompatibility studies demonstrated that the hydrogel was non-toxic to skin fibroblast cells. The in vivo experiment revealed a desirable wound healing rate with over 80 % recovery by day 7. Cur-NSs likely aided wound healing by reducing the inflammatory response and stimulating fibroblast proliferation. Additionally, the CS-based hydrogel provided a moist wound environment with hydration and gas transfer, further accelerating wound closure. These findings suggest that the Cur-NS-embedded hydrogel shows promise as a wound dressing material.
Collapse
Affiliation(s)
- Khin Cho Aye
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Theerasak Rojanarata
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Tanasait Ngawhirunpat
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Praneet Opanasopit
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Chaiyakarn Pornpitchanarong
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Prasopchai Patrojanasophon
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand.
| |
Collapse
|
50
|
Cao Y, Sun J, Qin S, Zhou Z, Xu Y, Liu C. Advances and Challenges in Immune-Modulatory Biomaterials for Wound Healing Applications. Pharmaceutics 2024; 16:990. [PMID: 39204335 PMCID: PMC11360739 DOI: 10.3390/pharmaceutics16080990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/12/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024] Open
Abstract
Wound healing progresses through three distinct stages: inflammation, proliferation, and remodeling. Immune regulation is a central component throughout, crucial for orchestrating inflammatory responses, facilitating tissue repair, and restraining scar tissue formation. Elements such as mitochondria, reactive oxygen species (ROS), macrophages, autophagy, ferroptosis, and cytokines collaboratively shape immune regulation in this healing process. Skin wound dressings, recognized for their ability to augment biomaterials' immunomodulatory characteristics via antimicrobial, antioxidative, pro- or anti-inflammatory, and tissue-regenerative capacities, have garnered heightened attention. Notwithstanding, a lack of comprehensive research addressing how these dressings attain immunomodulatory properties and the mechanisms thereof persists. Hence, this paper pioneers a systematic review of biomaterials, emphasizing immune regulation and their underlying immunological mechanisms. It begins by highlighting the importance of immune regulation in wound healing and the peculiarities and obstacles faced in skin injury recovery. This segment explores the impact of wound metabolism, infections, systemic illnesses, and local immobilization on the immune response during healing. Subsequently, the review examines a spectrum of biomaterials utilized in skin wound therapy, including hydrogels, aerogels, electrospun nanofiber membranes, collagen scaffolds, microneedles, sponges, and 3D-printed constructs. It elaborates on the immunomodulatory approaches employed by these materials, focusing on mitochondrial and ROS modulation, autophagic processes, ferroptosis, macrophage modulation, and the influence of cytokines on wound healing. Acknowledging the challenge of antibiotic resistance, the paper also summarizes promising plant-based alternatives for biomaterial integration, including curcumin. In its concluding sections, the review charts recent advancements and prospects in biomaterials that accelerate skin wound healing via immune modulation. This includes exploring mitochondrial transplantation materials, biomaterial morphology optimization, metal ion incorporation, electrostimulation-enabled immune response control, and the benefits of composite materials in immune-regulatory wound dressings. The ultimate objective is to establish a theoretical foundation and guide future investigations in the realm of skin wound healing and related materials science disciplines.
Collapse
Affiliation(s)
- Yuqi Cao
- School Basic Medical Sciences, Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin 150040, China; (Y.C.); (J.S.); (Z.Z.); (Y.X.)
| | - Jiagui Sun
- School Basic Medical Sciences, Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin 150040, China; (Y.C.); (J.S.); (Z.Z.); (Y.X.)
| | - Shengao Qin
- Beijing Laboratory of Oral Health, Capital Medical University, 10 Xitoutiao, Beijing 100054, China;
| | - Zhengshu Zhou
- School Basic Medical Sciences, Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin 150040, China; (Y.C.); (J.S.); (Z.Z.); (Y.X.)
| | - Yanan Xu
- School Basic Medical Sciences, Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin 150040, China; (Y.C.); (J.S.); (Z.Z.); (Y.X.)
| | - Chenggang Liu
- School Basic Medical Sciences, Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin 150040, China; (Y.C.); (J.S.); (Z.Z.); (Y.X.)
| |
Collapse
|