1
|
Kaynarca GB. Characterization and molecular docking of sustainable wine lees and gelatin-based emulsions: innovative fat substitution. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:7429-7440. [PMID: 38702916 DOI: 10.1002/jsfa.13563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 03/30/2024] [Accepted: 04/23/2024] [Indexed: 05/06/2024]
Abstract
BACKGROUND The present study aimed to determine how various amounts (0.00, 0.58, 1.52 and 4.50 g 100 g-1) of wine lees (WL), which contains numerous essential components, impact the emulsifying properties of fish gelatin (FG) at a low concentration (0.5 g 100 g-1) in the high-fat phase (65 g 100 g-1). This study conducted rheology, physicochemical technical and characterization analyses on the emulsions to provide sustainable and innovative approaches for spreadable oils. RESULTS The addition of WL to FG emulsions improved oxidative stability, emulsion stability and bioactive compounds. The zeta potential (-101 ± 5.62 mV) of 0.58 g 100 g-1 WL-containing emulsion (PE1) was found to be high, whereas particle size (347.6 ± 5.25 nm) and polydispersity index (0.50) were statistically low. It was also found that the addition of WL improved the intermolecular interactions, crystallinity and microstructural properties of the emulsions. All these results were supported by simulating the molecular configuration between FG and WL. The compounds gallic acid, caffeic acid, myricetin, quercetin and resveratrol showed a strong affinity to FG, with free binding energies of -5.50, -5.88, -6.53, -6.68 and -6.66 kcal mol-1, respectively. CONCLUSION As a result, WL-supported FG has the potential to be used as an alternative to egg proteins to develop sustainable low-cost spreadable emulsions. © 2024 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Gülce Bedis Kaynarca
- Department of Food Engineering, Faculty of Engineering, Kirklareli University, Kirklareli, Turkey
| |
Collapse
|
2
|
Pawar VU, Dessai AD, Nayak UY. Oleogels: Versatile Novel Semi-Solid System for Pharmaceuticals. AAPS PharmSciTech 2024; 25:146. [PMID: 38937416 DOI: 10.1208/s12249-024-02854-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/28/2024] [Indexed: 06/29/2024] Open
Abstract
Oleogels is a novel semi-solid system, focusing on its composition, formulation, characterization, and diverse pharmaceutical applications. Due to their stability, smoothness, and controlled release qualities, oleogels are frequently utilized in food, cosmetics, and medicinal products. Oleogels are meticulously formulated by combining oleogelators like waxes, fatty acids, ethyl cellulose, and phytosterols with edible oils, leading to a nuanced understanding of their impact on rheological characteristics. They can be characterized by methods like visual inspection, texture analysis, rheological measurements, gelation tests, and microscopy. The applications of oleogels are explored in diverse fields such as nutraceuticals, cosmetics, food, lubricants, and pharmaceutics. Oleogels have applications in topical, transdermal, and ocular drug delivery, showcasing their potential for revolutionizing drug administration. This review aims to enhance the understanding of oleogels, contributing to the evolving landscape of pharmaceutical formulations. Oleogels emerge as a versatile and promising solution, offering substantial potential for innovation in drug delivery and formulation practices.
Collapse
Affiliation(s)
- Vaishnavi U Pawar
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Akanksha D Dessai
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Usha Y Nayak
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| |
Collapse
|
3
|
Dimakopoulou-Papazoglou D, Zampouni K, Prodromidis P, Moschakis T, Katsanidis E. Microstructure, Physical Properties, and Oxidative Stability of Olive Oil Oleogels Composed of Sunflower Wax and Monoglycerides. Gels 2024; 10:195. [PMID: 38534613 DOI: 10.3390/gels10030195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 03/28/2024] Open
Abstract
The utilization of natural waxes to form oleogels has emerged as a new and efficient technique for structuring liquid edible oil into solid-like structures for diverse food applications. The objective of this study was to investigate the interaction between sunflower wax (SW) and monoglycerides (MGs) in olive oil oleogels and assess their physical characteristics and storage stability. To achieve this, pure SW and a combination of SW with MGs in a 1:1 ratio were examined within a total concentration range of 6-12% w/w. The formed oleogels were characterized based on their microstructure, melting and crystallization properties, textural characteristics, and oxidative stability during storage. All the oleogels were self-standing, and, as the concentration increased, the hardness of the oleogels also increased. The crystals of SW oleogels were long needle-like, while the combination of SW and MGs led to the formation of crystal aggregates and rosette-like crystals. Differential scanning calorimetry and FTIR showed that the addition of MGs led to different crystal structures. The oxidation results revealed that oleogels had low peroxide and TBARS values throughout the 28-day storage period. These results provide useful insights about the utilization of SW and MGs oleogels for potential applications in the food industry.
Collapse
Affiliation(s)
- Dafni Dimakopoulou-Papazoglou
- Department of Food Science and Technology, School of Agriculture, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Konstantina Zampouni
- Department of Food Science and Technology, School of Agriculture, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Prodromos Prodromidis
- Department of Food Science and Technology, School of Agriculture, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Thomas Moschakis
- Department of Food Science and Technology, School of Agriculture, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Eugenios Katsanidis
- Department of Food Science and Technology, School of Agriculture, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
4
|
Puşcaş A, Mureşan V. The Feasibility of Shellac Wax Emulsion Oleogels as Low-Fat Spreads Analyzed by Means of Multidimensional Statistical Analysis. Gels 2022; 8:749. [PMID: 36421571 PMCID: PMC9689311 DOI: 10.3390/gels8110749] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022] Open
Abstract
Shellac wax-based oleogel emulsions were studied with a three level two factorial design in order to find an optimal formulation for a spread formulation. Rheological, textural, colorimetry, and stability analysis were conducted to assess the performance of oleogel emulsions. FTIR spectra were also compared. The similarities between the samples were studied using cluster analysis. Analysis of variance (ANOVA) demonstrates that (i) the texture is influenced by the wax concentration, (ii) the rheology and stability by both the considered numeric factors (wax and water concentration) and their interaction, and (iii) the color by both factors. The emulsions containing 7% (m/m) shellac oleogels behaved like the strongest systems, (G′ & GLVR > 30,000 Pa) and exhibited the highest value of the G′-G″ cross-over. The lowest oil binding capacity (OBC) was 99.88% for the sample with 3% (m/m) shellac and 20% (m/m) water. The whiteness index (Windex) varied between 58.12 and 78.50. The optimization process indicated that a formulation based on 4.29% (m/m) shellac wax and 24.13% (m/m) water was suitable as a low-fat spread.
Collapse
Affiliation(s)
- Andreea Puşcaş
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăştur Street, No. 3-5, 400372 Cluj-Napoca, Romania
- Technological Transfer Center “CTT-BioTech”, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Floreşti Street, No. 64, 400509 Cluj-Napoca, Romania
| | - Vlad Mureşan
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăştur Street, No. 3-5, 400372 Cluj-Napoca, Romania
- Technological Transfer Center “CTT-BioTech”, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Floreşti Street, No. 64, 400509 Cluj-Napoca, Romania
| |
Collapse
|
5
|
Oleogels and Organogels: A Promising Tool for New Functionalities. Gels 2022; 8:gels8060349. [PMID: 35735693 PMCID: PMC9222402 DOI: 10.3390/gels8060349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 05/28/2022] [Indexed: 11/17/2022] Open
|
6
|
Yılmaz E, Toksöz B. Flaxseed oil-wax oleogels replacement for tallowfat in sucuk samples provided higher concentrations of polyunsaturated fatty acids and aromatic volatiles. Meat Sci 2022; 192:108875. [PMID: 35671628 DOI: 10.1016/j.meatsci.2022.108875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/20/2022] [Accepted: 05/28/2022] [Indexed: 10/18/2022]
Abstract
The aims of the present study were to partially replace tallowfat with oleogels in sucuk formulations, and compare the samples. Flaxseed oil-sunflower wax (SWO) and beeswax oleogels (BWO) were included at 17.17% in the same recipe against control with tallowfat. Sucuk-BWO had higher fat and lower moisture contents. There were color and pH differences, and weight (16.56%) and cooking loss (16.03%) values were highest in the control sample. Sucuk-SWO and Sucuk-BWO had around 32.20% and 33.32% of polyunsaturated fatty acids, while it was only 1.86% in the control sample. The instrumental texture values of oleogel-containing samples were usually lower. The number of volatiles were 11, 14, and 20 in control, Sucuk-SWO, and Sucuk-BWO samples. Almost all sensory descriptive attributes (appearance, hardness, chewiness, fattiness, juiciness, aroma, and flavor) were lower in the oleogel-containing samples. Likewise, consumer hedonic scores of the oleogel-containing samples were lower. Overall, oleogel replacement in sucuk yielded some nutritional benefits, but improvements are required for other quality traits.
Collapse
Affiliation(s)
- Emin Yılmaz
- Çanakkale Onsekiz Mart University, Faculty of Engineering, Department of Food Engineering, 17020 Çanakkale, Turkey.
| | - Buse Toksöz
- Çanakkale Onsekiz Mart University, Faculty of Engineering, Department of Food Engineering, 17020 Çanakkale, Turkey
| |
Collapse
|
7
|
Principato L, Carullo D, Bassani A, Gruppi A, Duserm Garrido G, Dordoni R, Spigno G. Effect of Dietary Fiber and Thermal Conditions on Rice Bran Wax-Based Structured Edible Oils. Foods 2021; 10:foods10123072. [PMID: 34945623 PMCID: PMC8701372 DOI: 10.3390/foods10123072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 11/16/2022] Open
Abstract
In this work, extra-virgin olive oil (EVO)- and sunflower oil (SFO)-based oleogels were structured using rice bran wax (RBW) at 10% by weight (w/w). Bamboo fiber milled with 40 (BF40), 90 (BF90) and 150 (BF150) µm of average size was added as a structuring agent. The effect of fiber addition and cooling temperature (0, 4, and 25 °C) on thermal and structural parameters of achieved gels was assessed by rheological (both in rotational and oscillatory mode), texture, and differential scanning calorimetry tests. Oleogelation modified the rheological behavior of EVO and SFO, thus shifting from a Newtonian trend typical of oils to a pseudoplastic non-Newtonian behavior in gels. Moreover, oleogels behaved as solid-like systems with G′ > G″, regardless of the applied condition. All samples exhibit a thermal-reversible behavior, even though the presence of hysteresis suggests a partial reduction in structural properties under stress. Decreasing in cooling temperature negatively contributed to network formation, despite being partially recovered by low-granulometry fiber addition. The latter dramatically improved either textural, rheological, or stability parameters of gels, as compared with only edible oil-based systems. Finally, wax/gel compatibility affected the crystallization enthalpy and final product stability (gel strength) due to different gelator–gelator and gelator–solvent interactions.
Collapse
|