1
|
Lakhani KG, Salimi M, Idrissi AE, Hamid R, Motamedi E. Nanocellulose-hydrogel hybrids: A review on synthesis and applications in agriculture, food packaging and water remediation. Int J Biol Macromol 2025; 309:143081. [PMID: 40222524 DOI: 10.1016/j.ijbiomac.2025.143081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 04/06/2025] [Accepted: 04/10/2025] [Indexed: 04/15/2025]
Abstract
The growing demand for sustainable and environment-friendly materials has driven extensive research on biopolymers for applications in agriculture, food science, and environmental remediation. Among these, nanocellulose-hydrogel hybrids (NC-HHs) have gained significant attention as an innovative class of bio-based materials that uniquely combine the remarkable physicochemical properties of nanocellulose with the functional versatility of hydrogels. These hybrids are characterised by exceptional water retention, mechanical strength and biodegradability, enabling advances in precision agriculture, smart food preservation and contaminant remediation. This review provides a comprehensive understanding of the synthesis, properties, and multifunctional applications of NC-HHs, emphasising their innovative role in sustainability. In agriculture, NC-HHs enhance soil moisture retention, support plant growth, and serve as carriers for controlled-release fertilizers, optimizing water and nutrient use efficiency. In the food industry, they enable intelligent packaging solutions that extend shelf life, monitor food freshness, and inhibit microbial growth. Additionally, NC-HHs present groundbreaking strategies for environmental remediation by effectively immobilizing pollutants in water and soil. Beyond summarizing recent advances, this review presents an in-depth mechanistic perspective on the interactions between NC and HH, critically evaluating their structure-property relationships, functional adaptability and application-specific performance. By integrating recent advances in nanocellulose functionalisation, polymer chemistry and the development of responsive hydrogels, this review critically examines the key technological innovations and future prospects of NC-HHs, underscoring their transformative potential in addressing global challenges related to food security, environmental sustainability, and sustainable agricultural practices.
Collapse
Affiliation(s)
- Komal G Lakhani
- Department of Biotechnology, Junagadh Agricultural University, Junagadh, Gujarat, India
| | - Mehri Salimi
- Department of Soil and Water Research, Hamedan Agricultural and Natural Resources Research and Education Center, AREEO, Hamedan, Iran
| | - Ayoub El Idrissi
- Special Glass Key Lab of Hainan Province, School of Materials Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Rasmieh Hamid
- Department of Plant Breeding, Cotton Research Institute of Iran (CRII), Agricultural Research, Education and Extension Organization (AREEO), Gorgan, Iran.
| | - Elaheh Motamedi
- Department of Nanotechnology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran.
| |
Collapse
|
2
|
Yan B, Dai Y, Li Y, Xin L, Li M, Long H, Gao X. Preparation of polyethyleneimine modified cellulose/nano-CdS composite aerogel and its photocatalytic properties for organic dyes under visible light. Int J Biol Macromol 2025; 306:141748. [PMID: 40049473 DOI: 10.1016/j.ijbiomac.2025.141748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 02/16/2025] [Accepted: 03/03/2025] [Indexed: 03/10/2025]
Abstract
Organic dyes are extensively used in industries such as textiles and printing, contributing to the increasing discharge of wastewater and posing significant risks to human health. Conventional photocatalysts, including metal oxides and sulfides, often exhibit limited pollutant adsorption capacities and suffer from charge carrier recombination. In this study, we synthesized a novel composite aerogel via the lyophilization of cellulose modified with polyethyleneimine and cadmium sulfide. This composite demonstrated exceptional efficacy in degrading of methyl orange (MO) and methylene blue (MB). The composite exhibits a unique three-dimensional structure characterized by a multitude of uneven pores, providing abundant active sites favorable for catalytic reactions. Furthermore, the material shows significant light absorption within the visible spectrum and has a low band gap. Under optimized conditions, the removal efficiencies of MO and MB reached 99.56 % and 100 %, respectively. After five consecutive cycles, the degradation rates of MO and MB remained high at 83 % and 87 %, respectively, showcasing excellent photocatalytic activity and stability. The amino and hydroxyl groups within the composite act as electron donors during photocatalytic reactions, with reaction kinetics following a quasi-first-order model. The mechanism of dye removal by the composite involves a synergistic interplay between adsorption and photocatalytic reduction, underscoring its potential for efficient wastewater treatment.
Collapse
Affiliation(s)
- Boting Yan
- Key Laboratory of Metallurgical Emission Reduction & Resources Recycling, Anhui University of Technology, Ministry of Education, Maanshan, Anhui 243002, China; School of Metallurgical Engineering, Anhui University of Technology, Maanshan, Anhui 243032, China
| | - Yiming Dai
- Key Laboratory of Metallurgical Emission Reduction & Resources Recycling, Anhui University of Technology, Ministry of Education, Maanshan, Anhui 243002, China; School of Metallurgical Engineering, Anhui University of Technology, Maanshan, Anhui 243032, China
| | - Yixin Li
- Key Laboratory of Metallurgical Emission Reduction & Resources Recycling, Anhui University of Technology, Ministry of Education, Maanshan, Anhui 243002, China; School of Metallurgical Engineering, Anhui University of Technology, Maanshan, Anhui 243032, China
| | - Lili Xin
- Key Laboratory of Metallurgical Emission Reduction & Resources Recycling, Anhui University of Technology, Ministry of Education, Maanshan, Anhui 243002, China
| | - Mingyang Li
- School of Metallurgical Engineering, Anhui University of Technology, Maanshan, Anhui 243032, China
| | - Hongming Long
- Key Laboratory of Metallurgical Emission Reduction & Resources Recycling, Anhui University of Technology, Ministry of Education, Maanshan, Anhui 243002, China; School of Metallurgical Engineering, Anhui University of Technology, Maanshan, Anhui 243032, China
| | - Xiangpeng Gao
- Key Laboratory of Metallurgical Emission Reduction & Resources Recycling, Anhui University of Technology, Ministry of Education, Maanshan, Anhui 243002, China; School of Metallurgical Engineering, Anhui University of Technology, Maanshan, Anhui 243032, China.
| |
Collapse
|
3
|
Călina I, Demeter M, Scărișoreanu A, Abbas A, Raza MA. Role of Ionizing Radiation Techniques in Polymeric Hydrogel Synthesis for Tissue Engineering Applications. Gels 2025; 11:47. [PMID: 39852018 PMCID: PMC11764499 DOI: 10.3390/gels11010047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 12/31/2024] [Accepted: 01/04/2025] [Indexed: 01/26/2025] Open
Abstract
Hydrogels are widely utilized in industrial and scientific applications owing to their ability to immobilize active molecules, cells, and nanoparticles. This capability has led to their growing use in various biomedical fields, including cell culture and transplantation, drug delivery, and tissue engineering. Among the available synthesis techniques, ionizing-radiation-induced fabrication stands out as an environmentally friendly method for hydrogel preparation. In alignment with the current requirements for cleaner technologies, developing hydrogels using gamma and electron beam irradiation technologies represents a promising and innovative approach for their biomedical applications. A key advantage of these methods is their ability to synthesize homogeneous three-dimensional networks in a single step, without the need for chemical initiators or catalysts. Additionally, the fabrication process is controllable by adjusting the radiation dose and dose rate.
Collapse
Affiliation(s)
- Ion Călina
- National Institute for Laser, Plasma and Radiation Physics, 409 Atomiștilor, 077125 Măgurele, Romania; (I.C.); (M.D.); (A.S.)
| | - Maria Demeter
- National Institute for Laser, Plasma and Radiation Physics, 409 Atomiștilor, 077125 Măgurele, Romania; (I.C.); (M.D.); (A.S.)
| | - Anca Scărișoreanu
- National Institute for Laser, Plasma and Radiation Physics, 409 Atomiștilor, 077125 Măgurele, Romania; (I.C.); (M.D.); (A.S.)
| | - Awn Abbas
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Muhammad Asim Raza
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
4
|
Sajjadi M, Nasrollahzadeh M, Sattari MR, Ghafuri H, Jaleh B. Sulfonic acid functionalized cellulose-derived (nano)materials: Synthesis and application. Adv Colloid Interface Sci 2024; 328:103158. [PMID: 38718629 DOI: 10.1016/j.cis.2024.103158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 03/01/2024] [Accepted: 04/10/2024] [Indexed: 05/26/2024]
Abstract
The preparation/application of heterogeneous (nano)materials from natural resources has currently become increasingly fascinating for researchers. Cellulose is the most abundant renewable polysaccharide on earth. The unique physicochemical, structural, biological, and environmental properties of this natural biopolymer have led to its increased application in many fields. The more desirable features of cellulose-based (nano)materials such as biodegradability, renewability, biocompatibility, cost-effectiveness, simplicity of preparation, environmentally friendly nature, and widespread range of applications have converted them into promising compounds in medicine, catalysis, biofuel cells, and water/wastewater treatment processes. Functionalized cellulose-based (nano)materials containing sulfonic acid groups may prove to be one of the most promising sustainable bio(nano)materials of modern times in the field of cellulose science and (nano)technology owing to their intrinsic features, high crystallinity, high specific surface area, abundance, reactivity, and recyclability. In this review, the developments in the application of sulfonated cellulose-based (nano)materials containing sulfonic acid (-SO3H) groups in catalysis, water purification, biological/biomedical, environmental, and fuel cell applications have been reported. This review provides an overview of the methods used to chemically modify cellulose and/or cellulose derivatives in different forms, including nanocrystals, hydrogels, films/membranes, and (nano)composites/blends by introducing sulfonate groups on the cellulose backbone, focusing on diverse sulfonating agents utilized and substitution regioselectivity, and highlights their potential applications in different industries for the generation of alternative energies and products.
Collapse
Affiliation(s)
- Mohaddeseh Sajjadi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | | | | | - Hossein Ghafuri
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Babak Jaleh
- Department of Physics, Faculty of Science, Bu-Ali Sina University, Hamedan 65174, Iran
| |
Collapse
|
5
|
Nguyen BC, Truong TM, Nguyen NT, Dinh DN, Hollmann D, Nguyen MN. Advanced cellulose-based hydrogel TiO 2 catalyst composites for efficient photocatalytic degradation of organic dye methylene blue. Sci Rep 2024; 14:10935. [PMID: 38740877 DOI: 10.1038/s41598-024-61724-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024] Open
Abstract
Sustainable cellulose-based hydrogels are used in medicine and environmental science. Hydrogels' porosity makes them excellent adsorbents and stable substrates for immobilizing photocatalysts to remove organic dyes. Despite their potential, the implementation of hydrogels for this purpose is still limited due to their high synthesis temperature and low cellulose content. To overcome these challenges, this study develops cellulose-based hydrogels, which have a high cellulose content and can be easily synthesized under ambient conditions. Containing a higher cellulose concentration than previous hydrogels, the synthesized hydrogels are more stable and can be reused numerous times in treatment operations. The hydrogel properties were investigated using Fourier transform infrared spectroscopy, X-ray diffraction and thermal analysis. Scanning electronic microscopy revealed that TiO2 nanoparticles were homogeneously distributed throughout the hydrogel's matrices. In addition, transparent hydrogels allow light to pass through, making them suitable substrates to remove organic dye. The results showed that the hydrogel with TiO2 was able to degrade nearly 90% of organic dye within 180 min. Furthermore, the hydrogel with the embedded catalyst exhibits the potential for reusability with a regeneration efficiency of 80.01% after five runs. These findings suggest that this novel hydrogel is a promising candidate for water pollution remediation.
Collapse
Affiliation(s)
- Bang Cong Nguyen
- School of Chemistry and Life Sciences, Hanoi University of Science and Technology, No. 1 Dai Co Viet Street, 10000, Hanoi, Vietnam
| | - Thu Minh Truong
- School of Chemistry and Life Sciences, Hanoi University of Science and Technology, No. 1 Dai Co Viet Street, 10000, Hanoi, Vietnam
| | - Ngoc Thi Nguyen
- School of Chemistry and Life Sciences, Hanoi University of Science and Technology, No. 1 Dai Co Viet Street, 10000, Hanoi, Vietnam
| | - Duong Ngoc Dinh
- School of Chemistry and Life Sciences, Hanoi University of Science and Technology, No. 1 Dai Co Viet Street, 10000, Hanoi, Vietnam
| | - Dirk Hollmann
- Department of Chemistry, University of Rostock, Albert-Einstein-Straße 3A, 18059, Rostock, Germany
- Department Life, Light & Matter, Faculty for Interdisciplinary Research, University of Rostock, Albert-Einstein-Straße 25, 18059, Rostock, Germany
| | - Mai Ngoc Nguyen
- School of Chemistry and Life Sciences, Hanoi University of Science and Technology, No. 1 Dai Co Viet Street, 10000, Hanoi, Vietnam.
| |
Collapse
|
6
|
Majeed F, Razzaq A, Rehmat S, Azhar I, Mohyuddin A, Rizvi NB. Enhanced dye sequestration with natural polysaccharides-based hydrogels: A review. Carbohydr Polym 2024; 330:121820. [PMID: 38368085 DOI: 10.1016/j.carbpol.2024.121820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/28/2023] [Accepted: 01/10/2024] [Indexed: 02/19/2024]
Abstract
Due to the expansion of industrial activities, the concentration of dyes in water has been increasing. The dire need to remove these pollutants from water has been heavily discussed. This study focuses on the reproducible and sustainable solution for wastewater treatment and dye annihilation challenges. Adsorption has been rated the most practical way of the several decolorization procedures due to its minimal initial investment, convenient utility, and high-performance caliber. Hydrogels, which are three-dimensional polymer networks, are notable because of their potential to regenerate, biodegrade, absorb bulky amounts of water, respond to stimuli, and have unique morphologies. Natural polysaccharide hydrogels are chosen over synthetic ones because they are robust, bioresorbable, non-toxic, and cheaply accessible. This study has covered six biopolymers, including chitosan, cellulose, pectin, sodium alginate, guar gum, and starch, consisting of their chemical architecture, origins, characteristics, and uses. The next part describes these polysaccharide-based hydrogels, including their manufacturing techniques, chemical alterations, and adsorption effectiveness. It is deeply evaluated how size and shape affect the adsorption rate, which has not been addressed in any prior research. To assist the readers in identifying areas for further research in this subject, limitations of these hydrogels and future views are provided in the conclusion.
Collapse
Affiliation(s)
- Fiza Majeed
- Department of Chemistry, University of Narowal, Narowal 51600, Pakistan
| | - Ammarah Razzaq
- Department of Chemistry, University of Narowal, Narowal 51600, Pakistan
| | - Shabnam Rehmat
- Department of Chemistry, University of Narowal, Narowal 51600, Pakistan; School of Chemistry, University of the Punjab, Lahore 54590, Pakistan.
| | - Irfan Azhar
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Abrar Mohyuddin
- Department of Chemistry, The Emerson University Multan, Multan 60000, Pakistan
| | | |
Collapse
|
7
|
Jayan SS, Jayan JS, Saritha A. A review on recent advances towards sustainable development of bio-inspired agri-waste based cellulose aerogels. Int J Biol Macromol 2023; 248:125928. [PMID: 37481183 DOI: 10.1016/j.ijbiomac.2023.125928] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 06/25/2023] [Accepted: 07/19/2023] [Indexed: 07/24/2023]
Abstract
Cellulose aerogel (CA) is considered to be the most promising material due to its extraordinary properties like unique microstructure, porosity, large specific surface area, biodegradability, renewable nature and lightweight. Cellulosic aerogels are thus found to have potential applications in different fields especially in water purification and biomedical field. Agricultural waste based cellulose aerogels are recently getting wider attention owing to its sustainability. The synthesis methods of agri-waste based cellulose aerogels, its properties and application in different fields especially in the field of water purification are detailed in a comprehensive manner. This review tries to bring light into the commercialization of value-added products from sustainable, cheap agricultural waste material and tries to motivate young researchers.
Collapse
Affiliation(s)
- Sajitha S Jayan
- Department of Chemistry, Bishop Moore College, Mavelikkara, Kerala, India
| | - Jitha S Jayan
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, Kerala, India; Department of Chemistry, National Institute of Technology, Calicut, Kerala, India.
| | - Appukuttan Saritha
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, Kerala, India.
| |
Collapse
|
8
|
Weon SH, Han J, Choi YK, Park S, Lee SH. Development of Blended Biopolymer-Based Photocatalytic Hydrogel Beads for Adsorption and Photodegradation of Dyes. Gels 2023; 9:630. [PMID: 37623085 PMCID: PMC10454056 DOI: 10.3390/gels9080630] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 07/28/2023] [Accepted: 08/04/2023] [Indexed: 08/26/2023] Open
Abstract
Blended biopolymer-based photocatalytic hydrogel beads were synthesized by dissolving the biopolymers in 1-ethyl-3-methylimidazolium acetate ([Emim][Ac]), adding TiO2, and reconstituting the beads with ethanol. The incorporation of modifying biopolymer significantly enhanced the adsorption capacity of the cellulose/TiO2 beads. Cellulose/carrageenan/TiO2 beads exhibited a 7.0-fold increase in adsorption capacity for methylene blue (MB). In contrast, cellulose/chitosan/TiO2 beads showed a 4.8-fold increase in adsorption capacity for methyl orange (MO) compared with cellulose/TiO2 beads. In addition, cellulose/TiO2 microbeads were prepared through the sol-gel transition of the [Emim][Ac]-in-oil emulsion to enhance photodegradation activity. These microbeads displayed a 4.6-fold higher adsorption capacity and 2.8-fold higher photodegradation activity for MB than the millimeter-sized beads. Furthermore, they exhibited superior dye removal efficiencies for various dyes such as Congo red, MO, MB, crystal violet, and rhodamine B, surpassing the performance of larger beads. To expand the industrial applicability of the microbeads, biopolymer/TiO2 magnetic microbeads were developed by incorporating Fe2O3. These magnetic microbeads outperformed millimeter-sized beads regarding the efficiency and time required for MB removal from aqueous solutions. Furthermore, the physicochemical properties of magnetic microbeads can be easily controlled by adjusting the type of biopolymer modifier, the TiO2 and magnetic particle content, and the ratio of each component based on the target molecule. Therefore, biopolymer-based photocatalytic magnetic microbeads have great potential not only in environmental fields but also in biomedical fields.
Collapse
Affiliation(s)
- Seung Hyeon Weon
- Department of Biological Engineering, Konkuk University, Seoul 05029, Republic of Korea; (S.H.W.); (J.H.); (Y.-K.C.)
| | - Jiwoo Han
- Department of Biological Engineering, Konkuk University, Seoul 05029, Republic of Korea; (S.H.W.); (J.H.); (Y.-K.C.)
| | - Yong-Keun Choi
- Department of Biological Engineering, Konkuk University, Seoul 05029, Republic of Korea; (S.H.W.); (J.H.); (Y.-K.C.)
- R&D Center, ChoiLab Inc., Seoul 01811, Republic of Korea
| | - Saerom Park
- Department of Biological Engineering, Konkuk University, Seoul 05029, Republic of Korea; (S.H.W.); (J.H.); (Y.-K.C.)
- R&D Center, ChoiLab Inc., Seoul 01811, Republic of Korea
| | - Sang Hyun Lee
- Department of Biological Engineering, Konkuk University, Seoul 05029, Republic of Korea; (S.H.W.); (J.H.); (Y.-K.C.)
| |
Collapse
|
9
|
Singh AK, Itkor P, Lee YS. State-of-the-Art Insights and Potential Applications of Cellulose-Based Hydrogels in Food Packaging: Advances towards Sustainable Trends. Gels 2023; 9:433. [PMID: 37367104 DOI: 10.3390/gels9060433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/17/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023] Open
Abstract
Leveraging sustainable packaging resources in the circular economy framework has gained significant attention in recent years as a means of minimizing waste and mitigating the negative environmental impact of packaging materials. In line with this progression, bio-based hydrogels are being explored for their potential application in a variety of fields including food packaging. Hydrogels are three-dimensional, hydrophilic networks composed of a variety of polymeric materials linked by chemical (covalent bonds) or physical (non-covalent interactions) cross-linking. The unique hydrophilic nature of hydrogels provides a promising solution for food packaging systems, specifically in regulating moisture levels and serving as carriers for bioactive substances, which can greatly affect the shelf life of food products. In essence, the synthesis of cellulose-based hydrogels (CBHs) from cellulose and its derivatives has resulted in hydrogels with several appealing features such as flexibility, water absorption, swelling capacity, biocompatibility, biodegradability, stimuli sensitivity, and cost-effectiveness. Therefore, this review provides an overview of the most recent trends and applications of CBHs in the food packaging sector including CBH sources, processing methods, and crosslinking methods for developing hydrogels through physical, chemical, and polymerization. Finally, the recent advancements in CBHs, which are being utilized as hydrogel films, coatings, and indicators for food packaging applications, are discussed in detail. These developments have great potential in creating sustainable packaging systems.
Collapse
Affiliation(s)
- Ajit Kumar Singh
- Department of Packaging, Yonsei University, Wonju 26393, Republic of Korea
| | - Pontree Itkor
- Department of Packaging, Yonsei University, Wonju 26393, Republic of Korea
| | - Youn Suk Lee
- Department of Packaging, Yonsei University, Wonju 26393, Republic of Korea
| |
Collapse
|
10
|
Monteiro CJP, Neves MGPMS, Nativi C, Almeida A, Faustino MAF. Porphyrin Photosensitizers Grafted in Cellulose Supports: A Review. Int J Mol Sci 2023; 24:3475. [PMID: 36834886 PMCID: PMC9967812 DOI: 10.3390/ijms24043475] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/30/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
Cellulose is the most abundant natural biopolymer and owing to its compatibility with biological tissues, it is considered a versatile starting material for developing new and sustainable materials from renewable resources. With the advent of drug-resistance among pathogenic microorganisms, recent strategies have focused on the development of novel treatment options and alternative antimicrobial therapies, such as antimicrobial photodynamic therapy (aPDT). This approach encompasses the combination of photoactive dyes and harmless visible light, in the presence of dioxygen, to produce reactive oxygen species that can selectively kill microorganisms. Photosensitizers for aPDT can be adsorbed, entrapped, or linked to cellulose-like supports, providing an increase in the surface area, with improved mechanical strength, barrier, and antimicrobial properties, paving the way to new applications, such as wound disinfection, sterilization of medical materials and surfaces in different contexts (industrial, household and hospital), or prevention of microbial contamination in packaged food. This review will report the development of porphyrinic photosensitizers supported on cellulose/cellulose derivative materials to achieve effective photoinactivation. A brief overview of the efficiency of cellulose based photoactive dyes for cancer, using photodynamic therapy (PDT), will be also discussed. Particular attention will be devoted to the synthetic routes behind the preparation of the photosensitizer-cellulose functional materials.
Collapse
Affiliation(s)
- Carlos J. P. Monteiro
- LAQV-Requimte and Department of Chemistry, University of Aveiro, 3010-193 Aveiro, Portugal
| | | | - Cristina Nativi
- Department of Chemistry “Ugo Schiff”, University of Florence, via della Lastruccia, 3-13, 50019 Sesto Fiorentino, Italy
| | - Adelaide Almeida
- CESAM and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | | |
Collapse
|
11
|
Bonetti L, Demitri C, Riva L. Editorial on the Special Issue "Advances in Cellulose-Based Hydrogels". Gels 2022; 8:gels8120790. [PMID: 36547314 PMCID: PMC9778484 DOI: 10.3390/gels8120790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Cellulose is one of the most ubiquitous and naturally abundant biopolymers found on Earth and is primarily obtained from plants and other biomass sources [...].
Collapse
Affiliation(s)
- Lorenzo Bonetti
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, Via Luigi Mancinelli 7, 20131 Milan, Italy
- Correspondence: ; Tel.: +39-02-2399-4741
| | - Christian Demitri
- Department of Engineering for Innovation, Campus University Ecotekne, Università del Salento, Via per Monteroni, 73100 Lecce, Italy
| | - Laura Riva
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, Via Luigi Mancinelli 7, 20131 Milan, Italy
| |
Collapse
|
12
|
Recent Advances in Smart Hydrogels Prepared by Ionizing Radiation Technology for Biomedical Applications. Polymers (Basel) 2022; 14:polym14204377. [PMID: 36297955 PMCID: PMC9608571 DOI: 10.3390/polym14204377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/27/2022] [Accepted: 10/12/2022] [Indexed: 11/23/2022] Open
Abstract
Materials with excellent biocompatibility and targeting can be widely used in the biomedical field. Hydrogels are an excellent biomedical material, which are similar to living tissue and cannot affect the metabolic process of living organisms. Moreover, the three-dimensional network structure of hydrogel is conducive to the storage and slow release of drugs. Compared to the traditional hydrogel preparation technologies, ionizing radiation technology has high efficiency, is green, and has environmental protection. This technology can easily adjust mechanical properties, swelling, and so on. This review provides a classification of hydrogels and different preparation methods and highlights the advantages of ionizing radiation technology in smart hydrogels used for biomedical applications.
Collapse
|
13
|
Enhanced Development of Sweat Latent Fingerprints Based on Ag-Loaded CMCS/PVA Composite Hydrogel Film by Electron Beam Radiation. Gels 2022; 8:gels8070446. [PMID: 35877531 PMCID: PMC9321100 DOI: 10.3390/gels8070446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/08/2022] [Accepted: 07/15/2022] [Indexed: 02/01/2023] Open
Abstract
Over time, difficulties have been encountered in detecting potential fingerprints. In this study, an Ag/CMCS/PVA(ACP) hydrogel film was developed for fingerprint development by electron beam radiation method. The chemical bond, thermostability, chemical components, microstructure, and micromorphology of the CMCS/PVA composite hydrogel film were characterized by FT-IR, TG, XRD, and SEM, respectively. Swelling behaviors and mechanical performance of the CMCS/PVA composite hydrogel were also investigated at different irradiation doses, pH, media, and NaCl contents to obtain the optimum preparation conditions. Through experimental exploration, we found that the fingerprints appeared more obvious when the irradiated prepared ACP hydrogel film was sprayed with 0.6 mg/mL of Ag+ and the excitation wavelength was about 254 nm with UV lamp irradiation for 20 min. The cytotoxicity the CMCS/PVA composite hydrogel on mouse skin fibroblasts L929 cells was also studied, confirming its biological security. Sweat latent fingerprint manifestation has important scientific significance with respect to the development of new processes and functional materials in the field of fingerprint manifestation, enriching and complementing the application of composite hydrogels.
Collapse
|
14
|
Liu X, Zhang M, Song W, Zhang Y, Yu DG, Liu Y. Electrospun Core (HPMC-Acetaminophen)-Shell (PVP-Sucralose) Nanohybrids for Rapid Drug Delivery. Gels 2022; 8:357. [PMID: 35735701 PMCID: PMC9223299 DOI: 10.3390/gels8060357] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/03/2022] [Accepted: 06/04/2022] [Indexed: 02/07/2023] Open
Abstract
The gels of cellulose and its derivatives have a broad and deep application in pharmaceutics; however, limited attention has been paid to the influences of other additives on the gelation processes and their functional performances. In this study, a new type of electrospun core-shell nanohybrid was fabricated using modified, coaxial electrospinning which contained composites of hydroxypropyl methyl cellulose (HPMC) and acetaminophen (AAP) in the core sections and composites of PVP and sucralose in the shell sections. A series of characterizations demonstrated that the core-shell hybrids had linear morphology with clear core-shell nanostructures, and AAP and sucralose distributed in the core and shell section in an amorphous state separately due to favorable secondary interactions such as hydrogen bonding. Compared with the electrospun HPMC-AAP nanocomposites from single-fluid electrospinning of the core fluid, the core-shell nanohybrids were able to promote the water absorbance and HMPC gelation formation processes, which, in turn, ensured a faster release of AAP for potential orodispersible drug delivery applications. The mechanisms of the drug released from these nanofibers were demonstrated to be a combination of erosion and diffusion mechanisms. The presented protocols pave a way to adjust the properties of electrospun, cellulose-based, fibrous gels for better functional applications.
Collapse
Affiliation(s)
- Xinkuan Liu
- School of Materials & Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (X.L.); (M.Z.); (W.S.)
| | - Mingxin Zhang
- School of Materials & Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (X.L.); (M.Z.); (W.S.)
| | - Wenliang Song
- School of Materials & Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (X.L.); (M.Z.); (W.S.)
| | - Yu Zhang
- School of Pharmacy, Shanghai University of Medicine & Health Sciences, Shanghai 201318, China;
| | - Deng-Guang Yu
- School of Materials & Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (X.L.); (M.Z.); (W.S.)
| | - Yanbo Liu
- School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| |
Collapse
|