1
|
Muhammad N, Khattak P, Liaqat S. The potential of ceramic nanomaterials in preventive dentistry. Nanomedicine (Lond) 2025; 20:243-245. [PMID: 39498595 PMCID: PMC11792846 DOI: 10.1080/17435889.2024.2418286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/15/2024] [Indexed: 02/02/2025] Open
Affiliation(s)
- Nawshad Muhammad
- Department of Dental Materials, Institute of Basic Medical sciences, Khyber Medical University, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Palwasha Khattak
- Department of Dental Materials, Institute of Basic Medical sciences, Khyber Medical University, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Saad Liaqat
- Department of Dental Materials, Institute of Basic Medical sciences, Khyber Medical University, Peshawar, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
2
|
Patthanawijit L, Yanpiset K, Saikaew P, Jantarat J. Fiber post cemented using different adhesive strategies to root canal dentin obturated with calcium silicate-based sealer. BMC Oral Health 2024; 24:1290. [PMID: 39455964 PMCID: PMC11515198 DOI: 10.1186/s12903-024-04963-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Calcium silicate-based sealer has favorable properties for root canal filling, including hydroxyapatite formation during the setting process. However, this process can cause difficulty during post space preparation when the sealer is set. Additionally, the remaining sealer could interfere with the bond strength of fiber post to root canal dentin. The different adhesive strategies and fiber post cementation time may affect the bond strength of the fiber post. Thus, the objective of this study was to evaluate the effect of etching modes of Scotchbond™ Universal Plus adhesive and post cementation time on the push-out bond strength of a fiber post cemented in root canals obturated with calcium silicate-based sealer. METHODS Fifty-four teeth were randomly allocated to 6 groups (n = 9) based on etching modes: self-etch (SE) or etch-and-rinse (ER); post space preparation and cementation time: immediate (Im) or 7-day delayed (De): Im-Im, Im-De, and De-De. The root canals were obturated with calcium silicate-based sealer and the post space preparation was performed. The fiber post was cemented using RelyX™ Universal resin cement according to each group's design. For the push-out bond strength test, 1-mm slices of the coronal, middle, and apical regions were tested using a universal testing machine. The failure mode analysis was determined using a stereomicroscope. The data was analyzed with three-way analysis of variance. RESULTS No negative effects of etching modes, post space preparation or cementation time on push-out bond strength were detected (p > 0.05). Additionally, the root canal region also did not significantly affect the bond strength (p > 0.05). CONCLUSION No significant differences were observed between the etching modes, post space preparation and cementation time and among root canal regions. CLINICAL RELEVANCE The different etching modes of adhesive and post cementation time did not affect the bond strength of fiber post in calcium silicate filled-root canal.
Collapse
Affiliation(s)
- Lalita Patthanawijit
- Department of Operative Dentistry and Endodontics, Faculty of Dentistry, Mahidol University, 6 Yothi street Ratchathewi, Bangkok, 10400, Thailand
| | - Kallaya Yanpiset
- Department of Operative Dentistry and Endodontics, Faculty of Dentistry, Mahidol University, 6 Yothi street Ratchathewi, Bangkok, 10400, Thailand.
| | - Pipop Saikaew
- Department of Operative Dentistry and Endodontics, Faculty of Dentistry, Mahidol University, 6 Yothi street Ratchathewi, Bangkok, 10400, Thailand
| | - Jeeraphat Jantarat
- Department of Operative Dentistry and Endodontics, Faculty of Dentistry, Mahidol University, 6 Yothi street Ratchathewi, Bangkok, 10400, Thailand
| |
Collapse
|
3
|
Grazioli G, de León Cáceres E, Tessore R, Lund RG, Monjarás-Ávila AJ, Lukomska-Szymanska M, Hardan L, Bourgi R, Cuevas-Suárez CE. In Vitro Bond Strength of Dentin Treated with Sodium Hypochlorite: Effects of Antioxidant Solutions. Antioxidants (Basel) 2024; 13:1116. [PMID: 39334775 PMCID: PMC11428966 DOI: 10.3390/antiox13091116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/06/2024] [Accepted: 09/08/2024] [Indexed: 09/30/2024] Open
Abstract
This systematic review aims to evaluate whether the application of antioxidant solutions can enhance the bond strength of resin-based materials to sodium hypochlorite (NaOCl)-treated dentin. This study follows the PICOT strategy: population (sodium hypochlorite-treated dentin), intervention (application of antioxidants), control (distilled water), outcome (bond strength), and type of studies (in vitro studies). The systematic review and meta-analysis were conducted following PRISMA guidelines. Electronic databases were searched for in vitro studies evaluating the effects of antioxidants on bond strength to sodium hypochlorite-treated dentin. Two independent reviewers screened articles, extracted data, and assessed risk of bias. Meta-analyses were performed using a random-effects model to compare standardized mean differences in bond strength between antioxidant pretreatment and control groups. Inclusion criteria consisted of in vitro studies that examined the bond strength of resin-based materials to NaOCl-treated dentin with antioxidant application, while exclusion criteria included studies with incomplete data, those not using a control group, or those that did not directly measure bond strength. From 3041 initial records, 29 studies were included in the qualitative analysis and 25 in the meta-analysis. Ascorbic acid, sodium ascorbate, grape seed extract, green tea, and rosmarinic acid significantly improved bond strength to sodium hypochlorite-treated dentin (p < 0.05). The effectiveness of grape seed extract varied with adhesive system type. Hesperidin, p-toluene sulfonic acid, and sodium thiosulfate did not significantly improve bond strength. Most studies had a high risk of bias. This suggests that the conclusions drawn from these studies should be interpreted with caution, and further research with more robust methodologies may be needed to confirm the findings. In conclusion, this systematic review implies that certain antioxidants can improve bond strength to sodium hypochlorite-treated dentin, with efficacy depending on the specific agent and adhesive system used. Further standardized studies are needed to optimize protocols and confirm these findings.
Collapse
Affiliation(s)
- Guillermo Grazioli
- Department of Dental Materials, School of Dentistry, Universidad de la República, Av. General Las Heras 1925, Montevideo 11300, Uruguay; (G.G.); (E.d.L.C.); (R.T.)
| | - Elisa de León Cáceres
- Department of Dental Materials, School of Dentistry, Universidad de la República, Av. General Las Heras 1925, Montevideo 11300, Uruguay; (G.G.); (E.d.L.C.); (R.T.)
| | - Romina Tessore
- Department of Dental Materials, School of Dentistry, Universidad de la República, Av. General Las Heras 1925, Montevideo 11300, Uruguay; (G.G.); (E.d.L.C.); (R.T.)
| | - Rafael Guerra Lund
- Department of Restorative Dentistry, School of Dentistry, Federal University of Pelotas, Pelotas 96010-610, Brazil;
| | - Ana Josefina Monjarás-Ávila
- Dental Materials Laboratory, Academic Area of Dentistry, Autonomous University of Hidalgo State, San Agustín Tlaxiaca 42160, Mexico;
| | | | - Louis Hardan
- Department of Restorative Dentistry, School of Dentistry, Saint-Joseph University, Beirut 1107 2180, Lebanon;
- Department of Digital Dentistry, AI and Evolving Technologies, Saint-Joseph University, Beirut 1107 2180, Lebanon
| | - Rim Bourgi
- Department of Restorative Dentistry, School of Dentistry, Saint-Joseph University, Beirut 1107 2180, Lebanon;
- Department of Biomaterials and Bioengineering, INSERM UMR_S 1121, University of Strasbourg, 67000 Strasbourg, France
| | | |
Collapse
|
4
|
Kunert M, Piwonski I, Hardan L, Bourgi R, Sauro S, Inchingolo F, Lukomska-Szymanska M. Dentine Remineralisation Induced by "Bioactive" Materials through Mineral Deposition: An In Vitro Study. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:274. [PMID: 38334546 PMCID: PMC10857417 DOI: 10.3390/nano14030274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/10/2024]
Abstract
This study aimed to assess the ability of modern resin-based "bioactive" materials (RBMs) to induce dentine remineralisation via mineral deposition and compare the results to those obtained with calcium silicate cements (CSMs). The following materials were employed for restoration of dentine cavities: CSMs: ProRoot MTA (Dentsply Sirona), MTA Angelus (Angelus), Biodentine (Septodont), and TheraCal LC (Bisco); RBMs: ACTIVA BioACTIVE Base/Liner (Pulpdent), ACTIVA Presto (Pulpdent), and Predicta Bioactive Bulk (Parkell). The evaluation of the mineral deposition was performed through scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX) on the material and dentine surfaces, as well as at the dentine-material interface after immersion in simulated body fluid. Additionally, the Ca/P ratios were also calculated in all the tested groups. The specimens were analysed after setting (baseline) and at 24 h, 7, 14, and 28 days. ProRoot MTA, MTA Angelus, Biodentine, and TheraCal LC showed significant surface precipitation, which filled the gap between the material and the dentine. Conversely, the three RBMs showed only a slight ability to induce mineral precipitation, although none of them was able to remineralise the dentine-material interface. In conclusion, in terms of mineral precipitation, modern "bioactive" RBMs are not as effective as CSMs in inducing dentine remineralisation; these latter represent the only option to induce a possible reparative process at the dentin-material interface.
Collapse
Affiliation(s)
- Marta Kunert
- Department of General Dentistry, Medical University of Lodz, 251 Pomorska St., 92-213 Lodz, Poland;
| | - Ireneusz Piwonski
- Department of Materials Technology and Chemistry, Faculty of Chemistry, University of Lodz, 163 Pomorska St., 90-236 Lodz, Poland;
| | - Louis Hardan
- Department of Restorative Dentistry, School of Dentistry, Saint-Joseph University, Beirut 1107 2180, Lebanon; (L.H.); (R.B.)
| | - Rim Bourgi
- Department of Restorative Dentistry, School of Dentistry, Saint-Joseph University, Beirut 1107 2180, Lebanon; (L.H.); (R.B.)
- Department of Biomaterials and Bioengineering, INSERM UMR_S 1121, University of Strasbourg, 67000 Strasbourg, France
| | - Salvatore Sauro
- Dental Biomaterials and Minimally Invasive Dentistry, Departamento de Odontología, Facultad de Ciencias de la Salud, Universidad CEU-Cardenal Herrera C/Del Pozo ss/n, Alfara del Patriarca, 46115 Valencia, Spain
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Francesco Inchingolo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | | |
Collapse
|
5
|
Makhlouf MP, El Helou JD, Zogheib CE, Makhlouf ACP, Karam ME, Khalil IT. Comparative Evaluation of Push-out Bond Strength of Three Different Root Canal Sealers: An In Vitro Study. J Contemp Dent Pract 2024; 25:15-19. [PMID: 38514426 DOI: 10.5005/jp-journals-10024-3610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
AIM The aim of this present study was to compare the dislodgement resistance of calcium silicate-based sealer, zinc oxide sealer, and a new sealer combining both zinc oxide and calcium silicate-based sealer in vitro. MATERIALS AND METHODS 60 single-rooted human teeth were instrumented with F3 Protaper Gold. All endodontic canals were filled using gutta percha cones using the cold lateral condensation technique in combination using one of the mentioned sealers (n = 20 per group). The teeth were divided into three groups: group A consisted of Sealite® Ultra, group B consisted of K-Sealer®, and group C consisted of BioRoot® RC. After 2 months of incubation (37°C, 100% humidity) and after cutting out 2 mm from the most apical portion of the root apex, six slices of 1 mm thickness were generated. Mechanical dislodgement resistance was examined using a universal pressure-testing machine and the push-out bond strength (POBS) was calculated. Specimens were examined under 20× magnification to define the bond failure mode. Statistical analysis was executed using ANOVA, post hoc Turkey test for pairwise comparisons and Kruskal-Wallis tests. RESULTS The POBS of BioRoot® was significantly higher than the POBS of the two other sealers with a mean of 10.54 MPa ± 2.10 and 5.73 MPa ± 2.34, respectively (p < 0.001). Sealite® and K-Sealer® showed similar results in the median and coronal part. K-Sealer® revealed highest POBS compared with Sealite® in the apical part (p < 0.05). CONCLUSION The POBS of the zinc oxide and calcium silicate-based sealer was significantly lower compared with calcium silicate. Sealite® and K-Sealer® exhibited almost same results. BioRoot showed the highest POBS of all sealers. CLINICAL SIGNIFICANCE The current study was needed to evaluate the bond strength of three different cements to dentinal walls, by evaluating their respective POBS in vitro. The findings of this study may provide guidance for the clinician in the selection of an adequate endodontic sealer that guarantees an enhanced adhesive seal between the Gutta-percha and the dentinal canal walls. How to cite this article: Makhlouf MP, El Helou JD, Zogheib CE, et al. Comparative Evaluation of Push-out Bond Strength of Three Different Root Canal Sealers: An In Vitro Study. J Contemp Dent Pract 2024;25(1):15-19.
Collapse
Affiliation(s)
- Michèle Paul Makhlouf
- Department of Endodontics, Faculty of Dentistry, Saint Joseph University, Beirut, Lebanon, Phone: +961-1-(2800)-421000, e-mail:
| | - Joe David El Helou
- Department of Orthodontics - Dentofacial Medicine, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Carla Elias Zogheib
- Department of Endodontics, Faculty of Dentistry, Saint Joseph University, Beirut, Lebanon
| | | | - Mariana Elie Karam
- Department of Endodontics, Faculty of Dentistry, Saint Joseph University, Beirut, Lebanon
| | - Issam Tanios Khalil
- Department of Endodontics, Faculty of Dentistry, Saint Joseph University, Beirut, Lebanon
| |
Collapse
|
6
|
Candan M, Altinay Karaca FK, Öznurhan F. Evaluation of the Shear Bond Strength of Immediate and Delayed Restorations of Various Calcium Silicate-Based Materials with Fiber-Reinforced Composite Resin Materials. Polymers (Basel) 2023; 15:3971. [PMID: 37836020 PMCID: PMC10575331 DOI: 10.3390/polym15193971] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/17/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
Due to significant tissue loss in teeth requiring pulp treatments, hermetic restoration of the remaining dental tissues is one of the most crucial factors in determining the treatment's success. The adhesion of composite resins to calcium silicate cements (CSCs) is considered challenging. Consequently, it is crucial to identify the optimal method for obtaining optimal adhesion. The aim of the present study is to evaluate the shear bond strength (SBS) values of immediate and delayed restorations with fiber-reinforced composites on powder-liquid, premixed, and resin-containing flowable CSCs. In the present study, the SBS values obtained after immediate (14 min) and delayed (7 days) restorations of three different CSCs (NeoMTA2, NeoPutty, and TheraCal PT) with three different resin composite materials (EverX FlowTM, EverX PosteriorTM, and Filtek Z550) were compared. The fracture types were evaluated using a stereomicroscope and SEM. TheraCal PT had the highest SBS values for both immediate and delayed restorations, and the comparison with other materials showed a statistically significant difference (p = 0.001). In contrast, there was no statistically significant difference between the SBS values of NeoMTA and NeoPutty (p > 0.05). In both immediate and delayed restorations, there was no statistically significant difference between nanohybrid and fiber-reinforced composites (p > 0.05). The simple use and strong bonding ability of TheraCal PT with composite resins may provide support for the idea that it is suitable for pulpal interventions. Nevertheless, due to the in vitro nature of this study, additional in vitro and clinical studies are required to investigate the material's physical, mechanical, and biological properties for use in clinical applications.
Collapse
Affiliation(s)
- Merve Candan
- Department of Pedodontics, Faculty of Dentistry, Eskişehir Osmangazi University, Eskişehir 26040, Turkey
| | | | - Fatih Öznurhan
- Department of Pedodontics, Faculty of Dentistry, Sivas Cumhuriyet University, Sivas 58140, Turkey
| |
Collapse
|
7
|
Ashi T, Mancino D, Hardan L, Bourgi R, Zghal J, Macaluso V, Al-Ashkar S, Alkhouri S, Haikel Y, Kharouf N. Physicochemical and Antibacterial Properties of Bioactive Retrograde Filling Materials. Bioengineering (Basel) 2022; 9:bioengineering9110624. [PMID: 36354535 PMCID: PMC9687475 DOI: 10.3390/bioengineering9110624] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 12/02/2022] Open
Abstract
The purpose of the present study was to evaluate the physicochemical properties and antibacterial activity of three calcium silicate cements. Mineral trioxide aggregate (MTA Biorep “BR”), Biodentine (BD) and Well-Root PT (WR) materials were investigated using scanning electron microscopy (SEM) at 24, 72 and 168 h of immersion in phosphate buffered saline (PBS). The antibacterial activity against Enterococcus faecalis (E. faecalis), the solubility, roughness, pH changes and water contact angle were also analyzed. All results were statistically analyzed using a one-way analysis of variance test. Statistically significant lower pH was detected for BD than WR and BR (p < 0.05). No statistical difference was found among the three materials for the efficacy of kill against E. faecalis (p > 0.05). Good antibacterial activity was observed (kill 50% of bacteria) after 24 h of contact. The wettability and the roughness of BR were higher than for the other cements (p < 0.05). BD was more soluble than WR and BR (p < 0.05). In conclusion, the use of bioceramic cements as retrograde materials may play an important role in controlling bacterial growth and in the development of calcium phosphate surface layer to support healing. Moreover, the premixed cement was easier to use than powder−liquid cement.
Collapse
Affiliation(s)
- Tarek Ashi
- Department of Biomaterials and Bioengineering, INSERM UMR_S 1121, Biomaterials and Bioengineering, 67000 Strasbourg, France
- Department of Endodontics, Faculty of Dental Medicine, Strasbourg University, 67000 Strasbourg, France
| | - Davide Mancino
- Department of Biomaterials and Bioengineering, INSERM UMR_S 1121, Biomaterials and Bioengineering, 67000 Strasbourg, France
- Department of Endodontics, Faculty of Dental Medicine, Strasbourg University, 67000 Strasbourg, France
- Pôle de Médecine et Chirurgie Bucco-Dentaire, Hôpital Civil, Hôpitaux Universitaire de Strasbourg, 67000 Strasbourg, France
| | - Louis Hardan
- Department of Restorative Dentistry, School of Dentistry, Saint-Joseph University, Beirut 1107 2180, Lebanon
| | - Rim Bourgi
- Department of Restorative Dentistry, School of Dentistry, Saint-Joseph University, Beirut 1107 2180, Lebanon
| | - Jihed Zghal
- Laboratoire Energetique Mecanique Electromagnetisme, University of Paris Ouest, 50 Rue de Sèvres, 92410 Ville d’Avray, France
- ICube Laboratory, UMR 7357 CNRS, Mechanics Department, University of Strasbourg, 67000 Strasbourg, France
| | | | - Sharif Al-Ashkar
- Faculty of Dentistry, Al Sham Private University (ASPU), Damascus 0100, Syria
| | - Sleman Alkhouri
- Division Regenerative Orofacial Medicine, Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Youssef Haikel
- Department of Biomaterials and Bioengineering, INSERM UMR_S 1121, Biomaterials and Bioengineering, 67000 Strasbourg, France
- Department of Endodontics, Faculty of Dental Medicine, Strasbourg University, 67000 Strasbourg, France
- Pôle de Médecine et Chirurgie Bucco-Dentaire, Hôpital Civil, Hôpitaux Universitaire de Strasbourg, 67000 Strasbourg, France
| | - Naji Kharouf
- Department of Biomaterials and Bioengineering, INSERM UMR_S 1121, Biomaterials and Bioengineering, 67000 Strasbourg, France
- Department of Endodontics, Faculty of Dental Medicine, Strasbourg University, 67000 Strasbourg, France
- Correspondence: ; Tel.: +33-667522841
| |
Collapse
|
8
|
The Cytotoxicity and Genotoxicity of Bioactive Dental Materials. Cells 2022; 11:cells11203238. [PMID: 36291107 PMCID: PMC9600439 DOI: 10.3390/cells11203238] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/01/2022] [Accepted: 10/12/2022] [Indexed: 12/31/2022] Open
Abstract
The promotion of biologically based treatment strategies in restorative dentistry is of paramount importance, as invasive treatments should be avoided to maintain the tooth's vitality. This study aimed to assess the biocompatibility of commercially available bioactive materials that can be used for dental pulp capping. The study was performed with a monocyte/macrophage peripheral blood SC cell line (ATCC CRL-9855) on the following six specific bioactive materials: ProRoot MTA (Dentsply Sirona), MTA Angelus (Angelus), Biodentine (Septodont), TheraCal LC (Bisco), ACTIVA BioACTIVE (Pulpdent) and Predicta Bioactive Bulk (Parkell). The cytotoxicity of the investigated agents was measured using a resazurin-based cell viability assay, while the genotoxicity was evaluated using an alkaline comet assay. Additionally, flow cytometry (FC) apoptosis detection was conducted with a FITC (fluorescein isothiocyanate) Annexin V Apoptosis Detection Kit I. FC cell-cycle arrest assessment was carried out with propidium iodide staining. The results of this study showed no significant cytotoxicity and genotoxicity (p > 0.05) in ProRoot MTA, MTA Angelus, Biodentine, ACTIVA BioACTIVE and Predicta Bioactive. Conversely, TheraCal LC presented a significant decrease (p < 0.001). In conclusion, due to excellent biocompatibility and low cytotoxicity, MTA, Biodentine, ACTIVA BioACTIVE and Predicta Bioactive may be suitable for pulp capping treatments. On the other hand, due to the high cytotoxicity of TheraCal LC, its use should be avoided in vital pulp therapies.
Collapse
|
9
|
Hachem CE, Chedid JCA, Nehme W, Kaloustian MK, Ghosn N, Sahnouni H, Mancino D, Haikel Y, Kharouf N. Physicochemical and Antibacterial Properties of Conventional and Two Premixed Root Canal Filling Materials in Primary Teeth. J Funct Biomater 2022; 13:jfb13040177. [PMID: 36278646 PMCID: PMC9589963 DOI: 10.3390/jfb13040177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 09/30/2022] [Accepted: 09/30/2022] [Indexed: 10/31/2022] Open
Abstract
In this study, some physicochemical and antibacterial properties of three root canal filling materials for primary teeth, Calplus “CP” (Prevest DenPro, Lewes, DE, USA), Bio-C Pulpecto “Bio-CP” (Angelus, Basil, Londrina, Paraná, Brazil), and Zinc Oxide and Eugenol “ZOE” (Prevest DenPro, Lewes, DE, USA) were compared. For each material, the pH, solubility, contact angle, and crystalline microstructure under SEM were evaluated. Their antibacterial activity against Enterococcus faecalis was determined through direct tests. The Kruskal−Wallis test was used to analyze the results using a one-way analysis of variance on ranks. All the materials had an alkaline pH at 3, 24, and 72 h, with CalPlus having the highest (p < 0.05). Bio-CP was more soluble during the evaluation period (24 h) than ZOE and CalPlus (p < 0.05). Bio-CP and ZOE demonstrated the creation of crystallite structures on their surfaces after immersion in PBS at 37 °C, whereas CalPlus showed none. The lowest contact angle was observed for Bio-CP (53 ± 1.5°); contact angles of (86 ± 4°) and (96 ± 1°), respectively, were observed after 10 s of the deposition of the water drop for CalPlus and ZOE. In conclusion, according to this study, there is still a need to develop new filling materials for primary teeth. ZOE, CalPlus and Bio-CP demonstrated different physicochemical and antibacterial properties, but none of the materials had optimal properties and could be considered the most suitable filling material for primary teeth pulpectomy. Bioceramics in their current state are not an alternative. The physicochemical and antibacterial properties still need improvement to fit the intricate anatomy of primary teeth.
Collapse
Affiliation(s)
- Claire El Hachem
- Department of Pediatric Dentistry, Faculty of Dentistry, Saint Joseph University, Beirut 1107 2180, Lebanon
| | - Jean Claude Abou Chedid
- Department of Pediatric Dentistry, Faculty of Dentistry, Saint Joseph University, Beirut 1107 2180, Lebanon
| | - Walid Nehme
- Department of Endodontics, Arthur A. Dugoni School of Dentistry, University of the Pacific, 155 5th Street, San Francisco, CA 94103, USA
| | - Marc Krikor Kaloustian
- Department of Endodontics, Faculty of Dentistry, Saint Joseph University, Beirut 1107 2180, Lebanon
| | - Nabil Ghosn
- Craniofacial Research Laboratory, Faculty of Dental Medicine, Saint Joseph University, Beirut 1107 2180, Lebanon
| | - Hafsa Sahnouni
- Department of Biomaterials and Bioengineering, INSERM UMR_S 1121, Biomaterials and Bioengineering, 67000 Strasbourg, France
| | - Davide Mancino
- Department of Biomaterials and Bioengineering, INSERM UMR_S 1121, Biomaterials and Bioengineering, 67000 Strasbourg, France
- Department of Endodontics, Faculty of Dental Medicine, Strasbourg University, 67000 Strasbourg, France
- Pôle de Médecine et Chirurgie Bucco-Dentaire, Hôpital Civil, Hôpitaux Universitaire de Strasbourg, 67000 Strasbourg, France
| | - Youssef Haikel
- Department of Biomaterials and Bioengineering, INSERM UMR_S 1121, Biomaterials and Bioengineering, 67000 Strasbourg, France
- Department of Endodontics, Faculty of Dental Medicine, Strasbourg University, 67000 Strasbourg, France
- Pôle de Médecine et Chirurgie Bucco-Dentaire, Hôpital Civil, Hôpitaux Universitaire de Strasbourg, 67000 Strasbourg, France
| | - Naji Kharouf
- Department of Biomaterials and Bioengineering, INSERM UMR_S 1121, Biomaterials and Bioengineering, 67000 Strasbourg, France
- Department of Endodontics, Faculty of Dental Medicine, Strasbourg University, 67000 Strasbourg, France
- Correspondence: ; Tel.: +33-667522841
| |
Collapse
|
10
|
Radwanski M, Caporossi C, Lukomska-Szymanska M, Luzi A, Sauro S. Complicated Crown Fracture of Permanent Incisors: A Conservative Treatment Case Report and a Narrative Review. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9090481. [PMID: 36135027 PMCID: PMC9495796 DOI: 10.3390/bioengineering9090481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/04/2022] [Accepted: 09/13/2022] [Indexed: 12/03/2022]
Abstract
Dental trauma may have a severe impact on the social and psychological wellbeing of a patient. Most cases of dental injuries involve anterior teeth, especially the maxillary upper incisors. Crown fractures, with or without pulp exposure, are the most common trauma in permanent dentition. There are many methods of management, in which the initial state of the pulp, the time since the injury, and the presence of an accompanying injury play a key role. This case report aimed at showing a possible conservative treatment after complicated tooth fracture that consisted of partial pulpotomy followed by adhesive reattachment of the tooth fragment using a technique based on heated resin composite. Such a specific procedure represents a conservative approach to traumatic coronal lesions, providing a suitable opportunity to maintain the tooth vitality, aesthetics, and function. Indeed, reattachment of tooth fragment using a composite/adhesive is a simple technique to achieve excellent results in terms of aesthetic and function.
Collapse
Affiliation(s)
- Mateusz Radwanski
- Department of Endodontics Chair, Conservative Dentistry, Endodontics Medical University of Lodz, 251 Pomorska Str., 92-213 Lodz, Poland
| | | | - Monika Lukomska-Szymanska
- Department of General Dentistry, Medical University of Lodz, 251 Pomorska Str., 92-213 Lodz, Poland
- Correspondence: (M.L.-S.); (S.S.); Tel.: +48-426-757461 (M.L.-S.)
| | - Arlinda Luzi
- Group of Dental Biomaterials and Minimally Invasive Dentistry, Department of Dentistry, Cardenal Herrera-CEU Universities, C/Santiago Ramón y Cajal, s/n., Alfara del Patriarca, 46115 Valencia, Spain
| | - Salvatore Sauro
- Group of Dental Biomaterials and Minimally Invasive Dentistry, Department of Dentistry, Cardenal Herrera-CEU Universities, C/Santiago Ramón y Cajal, s/n., Alfara del Patriarca, 46115 Valencia, Spain
- Department of Therapeutic Dentistry, I. M. Sechenov First Moscow State Medical University, 119146 Moscow, Russia
- Correspondence: (M.L.-S.); (S.S.); Tel.: +48-426-757461 (M.L.-S.)
| |
Collapse
|
11
|
Evaluation of the Shear Bond Strength of Four Bioceramic Materials with Different Restorative Materials and Timings. MATERIALS 2022; 15:ma15134668. [PMID: 35806792 PMCID: PMC9267194 DOI: 10.3390/ma15134668] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 02/05/2023]
Abstract
The objectives of this study were to evaluate the shear bond strength (SBS) of a resin composite (RC) and a resin-modified glass ionomer (RMGI) to four different bioceramic materials and to compare the effects of the immediate vs. delayed placement of restoration on the SBS. A total of 160 Teflon blocks and 40 blocks/material, were randomly filled with one of the bioceramic materials (NeoPUTTY®, NeoMTA2®, TotalFill® BC RRM™ Fast Set Putty, and ProRoot® MTA). The restoration was performed immediately or in a delayed time frame (after 7 days) using a Filtek™ Z350 XT Flowable composite (bonded to the bioceramic materials using Single bond universal 3M) or GC Fuji II LC® RMGI. The SBS test was performed at a crosshead speed of 1 mm/min, and the failure mode was evaluated under a digital microscope by one blinded examiner. One-way analysis of variance (ANOVA) with the Games–Howell post hoc test was used to compare the mean SBS between the groups. The mean SBS of the bioceramic materials to RC was significantly higher than to RMGI except for ProRoot MTA (p-value 0.65). The SBS values to RC were as follows: ProRoot MTA (7.64 MPa); NeoMTA2 (8.57 MPa) which was significantly higher than both NeoPUTTY (4.04 MPa) and TotalFill® BC RRM™ Fast Set Putty (4.38 MPa). For RMGI groups, ProRoot MTA showed the highest SBS (7.18 MPa), followed by NeoMTA2 (4.15 MPa), NeoPUTTY (1.62 MPa), and TotalFill® BC RRM™ Fast Set Putty (1.54 MPa). The delayed timing restoration showed a significantly higher SBS than the immediate, except for the immediate RMGI restoration with MTA. To conclude, the SBS of RC to the bioceramic materials was significantly higher than RMGI, except for ProRoot MTA. Both restorative materials had a significantly higher SBS to the MTA groups in comparison to premixed bioceramics. Delayed RC restoration had a higher SBS than immediate restoration. Similarly, delayed RMGI restoration had a higher SBS than immediate restoration with premixed bioceramic but not with MTA.
Collapse
|