1
|
Attaeyan A, Shahgholi M, Karimipour A. Enhancing Mechanical Properties of Chitosan-Silica Aerogels with Tricalcium Phosphate Nanoparticles: A Molecular Dynamics Study for Bone Tissue Engineering. Polymers (Basel) 2025; 17:755. [PMID: 40292593 PMCID: PMC11944962 DOI: 10.3390/polym17060755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/06/2025] [Accepted: 03/08/2025] [Indexed: 04/30/2025] Open
Abstract
Chitosan-silica aerogel nanocomposites are lightweight materials with a highly porous structure that have a wide range of applications, including drug delivery systems, tissue engineering, and insulation. These materials may be strengthened using tricalcium phosphate in chitosan-silica aerogel nanocomposites. Thus, in the present research projects, the influence of different atomic percentages of TCP (2%, 3%, and 5%) on mechanical parameters such as stress-strain, ultimate strength, and Young's modulus of chitosan-silica aerogel NCs was evaluated using molecular dynamics modeling and LAMMPS software. The findings demonstrate that the addition of tricalcium phosphate (1-3%) enhanced the ultimate strength and Young's modulus of the simulated nanocomposite from 26.968 to 43.468 GPa and from 681.145 to 1053.183 MPa, respectively. The ultimate strength and Young's modulus of the silica aerogel/chitosan nanocomposites, however, decreased to 1021.418 MPa and 42.008 GPa, respectively, with the addition more than 5% TCP.
Collapse
Affiliation(s)
- Ali Attaeyan
- Department of Mechanical Engineering, Najafabad Branch, Islamic Azad University, Najafabad 8514143131, Iran
| | - Mohamad Shahgholi
- Department of Mechanical Engineering, Najafabad Branch, Islamic Azad University, Najafabad 8514143131, Iran
| | - Arash Karimipour
- Department of Civil Engineering, Cihan University-Erbil, Erbil 44001, Iraq
| |
Collapse
|
2
|
McCutchin C, Edgar KJ, Chen CL, Dove PM. Silica-Biomacromolecule Interactions: Toward a Mechanistic Understanding of Silicification. Biomacromolecules 2025; 26:43-84. [PMID: 39382567 PMCID: PMC11733937 DOI: 10.1021/acs.biomac.4c00674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 10/10/2024]
Abstract
Silica-organic composites are receiving renewed attention for their versatility and environmentally benign compositions. Of particular interest is how macromolecules interact with aqueous silica to produce functional materials that confer remarkable physical properties to living organisms. This Review first examines silicification in organisms and the biomacromolecule properties proposed to modulate these reactions. We then highlight findings from silicification studies organized by major classes of biomacromolecules. Most investigations are qualitative, using disparate experimental and analytical methods and minimally characterized materials. Many findings are contradictory and, altogether, demonstrate that a consistent picture of biomacromolecule-Si interactions has not emerged. However, the collective evidence shows that functional groups, rather than molecular classes, are key to understanding macromolecule controls on mineralization. With recent advances in biopolymer chemistry, there are new opportunities for hypothesis-based studies that use quantitative experimental methods to decipher how macromolecule functional group chemistry and configuration influence thermodynamic and kinetic barriers to silicification. Harnessing the principles of silica-macromolecule interactions holds promise for biocomposites with specialized applications from biomedical and clean energy industries to other material-dependent industries.
Collapse
Affiliation(s)
| | - Kevin J. Edgar
- Department
of Sustainable Biomaterials, Virginia Tech, Blacksburg, Virginia 24061, United States
- Macromolecules
Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Chun-Long Chen
- Physical
Sciences Division, Pacific Northwest National
Laboratory, Richland, Washington 99354, United States
- Department
of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Patricia M. Dove
- Department
of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
- Macromolecules
Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
- Department
of Geosciences, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
3
|
Bonde S, Chandarana C, Prajapati P, Vashi V. A comprehensive review on recent progress in chitosan composite gels for biomedical uses. Int J Biol Macromol 2024; 272:132723. [PMID: 38825262 DOI: 10.1016/j.ijbiomac.2024.132723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/04/2024]
Abstract
Chitosan (CS) composite gels have emerged as promising materials with diverse applications in biomedicine. This review provides a concise overview of recent advancements and key aspects in the development of CS composite gels. The unique properties of CS, such as biocompatibility, biodegradability, and antimicrobial activity, make it an attractive candidate for gel-based composites. Incorporating various additives, such as nanoparticles, polymers, and bioactive compounds, enhances the mechanical, thermal, and biological and other functional properties of CS gels. This review discusses the fabrication methods employed for CS composite gels, including blending and crosslinking, highlighting their influence on the final properties of the gels. Furthermore, the uses of CS composite gels in tissue engineering, wound healing, drug delivery, and 3D printing highlight their potential to overcome a number of the present issues with drug delivery. The biocompatibility, antimicrobial properties, electroactive, thermosensitive and pH responsive behavior and controlled release capabilities of these gels make them particularly suitable for biomedical applications. In conclusion, CS composite gels represent a versatile class of materials with significant potential for a wide range of applications. Further research and development efforts are necessary to optimize their properties and expand their utility in pharmaceutical and biomedical fields.
Collapse
Affiliation(s)
- Smita Bonde
- SSR College of Pharmacy, Sayli, Silvassa 396230, UT of Dadra and Nagar Haveli, India.
| | - Chandani Chandarana
- SSR College of Pharmacy, Sayli, Silvassa 396230, UT of Dadra and Nagar Haveli, India
| | - Parixit Prajapati
- SSR College of Pharmacy, Sayli, Silvassa 396230, UT of Dadra and Nagar Haveli, India
| | - Vidhi Vashi
- SSR College of Pharmacy, Sayli, Silvassa 396230, UT of Dadra and Nagar Haveli, India
| |
Collapse
|
4
|
Li SL, Wang YT, Zhang SJ, Sun MZ, Li J, Chu LQ, Hu CX, Huang YL, Gao DL, Schiraldi DA. A Novel, Controllable, and Efficient Method for Building Highly Hydrophobic Aerogels. Gels 2024; 10:121. [PMID: 38391450 PMCID: PMC10888267 DOI: 10.3390/gels10020121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/20/2023] [Accepted: 01/09/2024] [Indexed: 02/24/2024] Open
Abstract
Aerogels prepared using freeze-drying methods have the potential to be insulation materials or absorbents in the fields of industry, architecture, agriculture, etc., for their low heat conductivity, high specific area, low density, degradability, and low cost. However, their native, poor water resistance caused by the hydrophilicity of their polymer matrix limits their practical application. In this work, a novel, controllable, and efficient templating method was utilized to construct a highly hydrophobic surface for freeze-drying aerogels. The influence of templates on the macroscopic morphology and hydrophobic properties of materials was investigated in detail. This method provided the economical and rapid preparation of a water-resistant aerogel made from polyvinyl alcohol (PVA) and montmorillonite (MMT), putting forward a new direction for the research and development of new, environmentally friendly materials.
Collapse
Affiliation(s)
- Shu-Liang Li
- SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd., 14 Beisanhuan East Road, Chaoyang District, Beijing 100013, China
| | - Yu-Tao Wang
- SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd., 14 Beisanhuan East Road, Chaoyang District, Beijing 100013, China
| | - Shi-Jun Zhang
- SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd., 14 Beisanhuan East Road, Chaoyang District, Beijing 100013, China
| | - Ming-Ze Sun
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH 44106-7202, USA
| | - Jie Li
- SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd., 14 Beisanhuan East Road, Chaoyang District, Beijing 100013, China
| | - Li-Qiu Chu
- SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd., 14 Beisanhuan East Road, Chaoyang District, Beijing 100013, China
| | - Chen-Xi Hu
- SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd., 14 Beisanhuan East Road, Chaoyang District, Beijing 100013, China
| | - Yi-Lun Huang
- SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd., 14 Beisanhuan East Road, Chaoyang District, Beijing 100013, China
| | - Da-Li Gao
- SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd., 14 Beisanhuan East Road, Chaoyang District, Beijing 100013, China
| | - David A Schiraldi
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH 44106-7202, USA
| |
Collapse
|
5
|
Gholap AD, Rojekar S, Kapare HS, Vishwakarma N, Raikwar S, Garkal A, Mehta TA, Jadhav H, Prajapati MK, Annapure U. Chitosan scaffolds: Expanding horizons in biomedical applications. Carbohydr Polym 2024; 323:121394. [PMID: 37940287 DOI: 10.1016/j.carbpol.2023.121394] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/30/2023] [Accepted: 09/12/2023] [Indexed: 11/10/2023]
Abstract
Chitosan, a natural polysaccharide from chitin, shows promise as a biomaterial for various biomedical applications due to its biocompatibility, biodegradability, antibacterial activity, and ease of modification. This review overviews "chitosan scaffolds" use in diverse biomedical applications. It emphasizes chitosan's structural and biological properties and explores fabrication methods like gelation, electrospinning, and 3D printing, which influence scaffold architecture and mechanical properties. The review focuses on chitosan scaffolds in tissue engineering and regenerative medicine, highlighting their role in bone, cartilage, skin, nerve, and vascular tissue regeneration, supporting cell adhesion, proliferation, and differentiation. Investigations into incorporating bioactive compounds, growth factors, and nanoparticles for improved therapeutic effects are discussed. The review also examines chitosan scaffolds in drug delivery systems, leveraging their prolonged release capabilities and ability to encapsulate medicines for targeted and controlled drug delivery. Moreover, it explores chitosan's antibacterial activity and potential for wound healing and infection management in biomedical contexts. Lastly, the review discusses challenges and future objectives, emphasizing the need for improved scaffold design, mechanical qualities, and understanding of interactions with host tissues. In summary, chitosan scaffolds hold significant potential in various biological applications, and this review underscores their promising role in advancing biomedical science.
Collapse
Affiliation(s)
- Amol D Gholap
- Department of Pharmaceutics, St. John Institute of Pharmacy and Research, Palghar 401404, Maharashtra, India
| | - Satish Rojekar
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Harshad S Kapare
- Department of Pharmaceutics, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pune 411018, Maharashtra, India
| | - Nikhar Vishwakarma
- Department of Pharmacy, Gyan Ganga Institute of Technology and Sciences, Jabalpur 482003, Madhya Pradesh, India
| | - Sarjana Raikwar
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Central University, Sagar 470003, Madhya Pradesh, India
| | - Atul Garkal
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujrat, India
| | - Tejal A Mehta
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujrat, India
| | - Harsh Jadhav
- Department of Food Engineering and Technology, Institute of Chemical Technology (ICT), Mumbai 400 019, Maharashtra, India
| | - Mahendra Kumar Prajapati
- Department of Pharmaceutics, School of Pharmacy and Technology Management, SVKM's NMIMS, Shirpur 425405, Maharashtra, India.
| | - Uday Annapure
- Institute of Chemical Technology, Marathwada Campus, Jalna 431203, Maharashtra, India; Department of Food Engineering and Technology, Institute of Chemical Technology (ICT), Mumbai 400 019, Maharashtra, India.
| |
Collapse
|
6
|
Lázár I, Menelaou M. Editorial for the Special Issue: "Aerogel Hybrids and Nanocomposites". Gels 2023; 9:812. [PMID: 37888385 PMCID: PMC10606802 DOI: 10.3390/gels9100812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 10/07/2023] [Indexed: 10/28/2023] Open
Abstract
Aerogel materials are porous ultralight solid materials obtained from gels, wherein a gas, commonly air, replaces the liquid component [...].
Collapse
Affiliation(s)
- István Lázár
- Department of Inorganic and Analytical Chemistry, University of Debrecen, 4032 Debrecen, Hungary
| | - Melita Menelaou
- Department of Chemical Engineering, Cyprus University of Technology, Limassol 3036, Cyprus
| |
Collapse
|
7
|
Lázár I, Čelko L, Menelaou M. Aerogel-Based Materials in Bone and Cartilage Tissue Engineering-A Review with Future Implications. Gels 2023; 9:746. [PMID: 37754427 PMCID: PMC10530393 DOI: 10.3390/gels9090746] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/09/2023] [Accepted: 09/11/2023] [Indexed: 09/28/2023] Open
Abstract
Aerogels are fascinating solid materials known for their highly porous nanostructure and exceptional physical, chemical, and mechanical properties. They show great promise in various technological and biomedical applications, including tissue engineering, and bone and cartilage substitution. To evaluate the bioactivity of bone substitutes, researchers typically conduct in vitro tests using simulated body fluids and specific cell lines, while in vivo testing involves the study of materials in different animal species. In this context, our primary focus is to investigate the applications of different types of aerogels, considering their specific materials, microstructure, and porosity in the field of bone and cartilage tissue engineering. From clinically approved materials to experimental aerogels, we present a comprehensive list and summary of various aerogel building blocks and their biological activities. Additionally, we explore how the complexity of aerogel scaffolds influences their in vivo performance, ranging from simple single-component or hybrid aerogels to more intricate and organized structures. We also discuss commonly used formulation and drying methods in aerogel chemistry, including molding, freeze casting, supercritical foaming, freeze drying, subcritical, and supercritical drying techniques. These techniques play a crucial role in shaping aerogels for specific applications. Alongside the progress made, we acknowledge the challenges ahead and assess the near and far future of aerogel-based hard tissue engineering materials, as well as their potential connection with emerging healing techniques.
Collapse
Affiliation(s)
- István Lázár
- Department of Inorganic and Analytical Chemistry, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
| | - Ladislav Čelko
- Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, 612 00 Brno, Czech Republic;
| | - Melita Menelaou
- Department of Chemical Engineering, Cyprus University of Technology, 30 Arch. Kyprianos Str., Limassol 3036, Cyprus
| |
Collapse
|
8
|
Souto-Lopes M, Fernandes MH, Monteiro FJ, Salgado CL. Bioengineering Composite Aerogel-Based Scaffolds That Influence Porous Microstructure, Mechanical Properties and In Vivo Regeneration for Bone Tissue Application. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4483. [PMID: 37374666 PMCID: PMC10305395 DOI: 10.3390/ma16124483] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/13/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023]
Abstract
Tissue regeneration of large bone defects is still a clinical challenge. Bone tissue engineering employs biomimetic strategies to produce graft composite scaffolds that resemble the bone extracellular matrix to guide and promote osteogenic differentiation of the host precursor cells. Aerogel-based bone scaffold preparation methods have been increasingly improved to overcome the difficulties in balancing the need for an open highly porous and hierarchically organized microstructure with compression resistance to withstand bone physiological loads, especially in wet conditions. Moreover, these improved aerogel scaffolds have been implanted in vivo in critical bone defects, in order to test their bone regeneration potential. This review addresses recently published studies on aerogel composite (organic/inorganic)-based scaffolds, having in mind the various cutting-edge technologies and raw biomaterials used, as well as the improvements that are still a challenge in terms of their relevant properties. Finally, the lack of 3D in vitro models of bone tissue for regeneration studies is emphasized, as well as the need for further developments to overcome and minimize the requirement for studies using in vivo animal models.
Collapse
Affiliation(s)
- Mariana Souto-Lopes
- i3S—Instituto de Investigação e Inovação em Saúde da Universidade do Porto, 4200-135 Porto, Portugal; (M.S.-L.); (F.J.M.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
- Departamento de Engenharia Metalúrgica e de Materiais, Faculdade de Engenharia da Universidade do Porto, 4200-465 Porto, Portugal
| | - Maria Helena Fernandes
- Bonelab–Laboratory for Bone Metabolism and Regeneration, Faculdade de Medicina Dentária da Universidade do Porto, 4200-393 Porto, Portugal
- LAQV/REQUIMTE—Laboratório Associado para a Química Verde/Rede de Química e Tecnologia, 4169-007 Porto, Portugal
| | - Fernando Jorge Monteiro
- i3S—Instituto de Investigação e Inovação em Saúde da Universidade do Porto, 4200-135 Porto, Portugal; (M.S.-L.); (F.J.M.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
- Departamento de Engenharia Metalúrgica e de Materiais, Faculdade de Engenharia da Universidade do Porto, 4200-465 Porto, Portugal
- Porto Comprehensive Cancer Center (P.CCC), R. Dr. António Bernardino de Almeida, 4200–072 Porto, Portugal
| | - Christiane Laranjo Salgado
- i3S—Instituto de Investigação e Inovação em Saúde da Universidade do Porto, 4200-135 Porto, Portugal; (M.S.-L.); (F.J.M.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| |
Collapse
|