1
|
Wu Q, Deng M, Zhao X, Long J, Zhang J. Screening and validation of optimal real-time PCR reference genes for Abelmoschus Manihot. Sci Rep 2025; 15:11045. [PMID: 40169838 PMCID: PMC11961658 DOI: 10.1038/s41598-025-96110-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 03/26/2025] [Indexed: 04/03/2025] Open
Abstract
Abelmoschus Manihot is an important medicinal and edible plant known for its functional secondary metabolites. However, little is known about the key genes involved in production of secondary metabolites in A. manihot. This is largely due to the lack of effective gene expression detection systems for A. manihot, making the screening of real-time PCR reference genes a prerequisite. In this study, 11 candidate reference genes were screened and cloned from A. manihot, and their expression stability was evaluated in different tissues under different flowering stages using four algorithms: geNorm, NormFinder, BestKeeper, and RefFinder. The expression stability of eIF and PP2A1 was the highest, while that of tubulin alpha (TUA) was the lowest. The combined use of the two most stable reference genes, eIF and PP2A1, met the experimental requirements for normalizing gene expression in A. manihot. Furthermore, the gene expression of transcription factors bHLH147 and bHLH148 was further validated by data normalization. This study identified potential reference genes in different A. manihot tissues, paving the way for functional gene analysis and dissecting metabolite regulation mechanisms in A. manihot.
Collapse
Affiliation(s)
- Qixuan Wu
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Meixin Deng
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaolan Zhao
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Jianmei Long
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Jianxia Zhang
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
2
|
Liu T, Peng J, Dong Z, Liu Y, Wu J, Xiong Y, Zhang C, Yan L, Yu Q, You M, Ma X, Lei X. Genome-Wide Exploration and Characterization of the TCP Gene Family's Expression Patterns in Response to Abiotic Stresses in Siberian Wildrye ( Elymus sibiricus L.). Int J Mol Sci 2025; 26:1925. [PMID: 40076552 PMCID: PMC11900556 DOI: 10.3390/ijms26051925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/16/2025] [Accepted: 02/19/2025] [Indexed: 03/14/2025] Open
Abstract
Siberian wildrye (Elymus sibiricus L.), a model Elymus Gramineae plant, has high eco-economic value but limited seed and forage yield. TCP transcription factors are widely regarded as influencing yield and quality and being crucial for growth and development; still, this gene family in Siberian wildrye remains unexplored. Therefore, this study looked at the Siberian wildrye TCP gene family's reaction to several abiotic stresses, its expression pattern, and its potential evolutionary path. Fifty-four members of the EsTCP gene family were discovered. There are two major subfamilies based on the phylogenetic tree: 27 of Class I (PCF) and 27 of Class II (12 CIN-type and 15 TB1/CYC-type). Gene structure, conserved motif, and sequence alignment analyses further validated this classification. Cis-elements found in the promoter region of EsTCPs are associated with lots of plant hormones and stress-related reactions, covering drought induction and cold tolerance. EsCYC5, EsCYC6, and EsCYC7 may regulate tillering and lateral branch development. EsPCF10's relative expression was significant under five stresses. Additionally, eight EsTCP genes are potential miR319 targets. These findings highlight the critical significance of the TCP gene family in Siberian wildrye, laying the groundwork for understanding the function of the EsTCP protein in abiotic stress studies and high-yield breeding.
Collapse
Affiliation(s)
- Tianqi Liu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (T.L.); (J.P.); (Z.D.); (Y.L.); (J.W.); (Y.X.)
| | - Jinghan Peng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (T.L.); (J.P.); (Z.D.); (Y.L.); (J.W.); (Y.X.)
- Sichuan Academy of Grassland Science, Chengdu 610097, China; (C.Z.); (L.Y.); (Q.Y.); (M.Y.)
| | - Zhixiao Dong
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (T.L.); (J.P.); (Z.D.); (Y.L.); (J.W.); (Y.X.)
| | - Yingjie Liu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (T.L.); (J.P.); (Z.D.); (Y.L.); (J.W.); (Y.X.)
- Sichuan Academy of Grassland Science, Chengdu 610097, China; (C.Z.); (L.Y.); (Q.Y.); (M.Y.)
| | - Jiqiang Wu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (T.L.); (J.P.); (Z.D.); (Y.L.); (J.W.); (Y.X.)
- Sichuan Academy of Grassland Science, Chengdu 610097, China; (C.Z.); (L.Y.); (Q.Y.); (M.Y.)
| | - Yanli Xiong
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (T.L.); (J.P.); (Z.D.); (Y.L.); (J.W.); (Y.X.)
- Sichuan Academy of Grassland Science, Chengdu 610097, China; (C.Z.); (L.Y.); (Q.Y.); (M.Y.)
| | - Changbing Zhang
- Sichuan Academy of Grassland Science, Chengdu 610097, China; (C.Z.); (L.Y.); (Q.Y.); (M.Y.)
| | - Lijun Yan
- Sichuan Academy of Grassland Science, Chengdu 610097, China; (C.Z.); (L.Y.); (Q.Y.); (M.Y.)
| | - Qingqing Yu
- Sichuan Academy of Grassland Science, Chengdu 610097, China; (C.Z.); (L.Y.); (Q.Y.); (M.Y.)
| | - Minghong You
- Sichuan Academy of Grassland Science, Chengdu 610097, China; (C.Z.); (L.Y.); (Q.Y.); (M.Y.)
| | - Xiao Ma
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (T.L.); (J.P.); (Z.D.); (Y.L.); (J.W.); (Y.X.)
| | - Xiong Lei
- Sichuan Academy of Grassland Science, Chengdu 610097, China; (C.Z.); (L.Y.); (Q.Y.); (M.Y.)
| |
Collapse
|
3
|
De Y, Yan W, Gao F, Mu H. Unraveling the signaling pathways of phytohormones underlying salt tolerance in Elymus sibiricus: A transcriptomic and metabolomic approach. Genomics 2024; 116:110893. [PMID: 38944355 DOI: 10.1016/j.ygeno.2024.110893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 06/21/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
Understanding phytohormonal signaling is crucial for elucidating plant defense mechanisms against environmental stressors. However, knowledge regarding phytohormone-mediated tolerance pathways under salt stress in Elymus sibiricus, an important species for forage and ecological restoration, remains limited. In this study, transcriptomic and metabolomic approaches uncover the dynamics of phytohormonal signaling in Elymus sibiricus under salt stress. Notably, four hours after exposure to salt, significant activity was observed in the ABA, JA, IAA, and CTK pathways, with ABA, JA, JA-L-Ile, and IAA identified as key mediators in the response of Elymus sibiricus' to salinity. Moreover, SAPK3, Os04g0167900-like, CAT1, MKK2, and MPK12 were identified as potential central regulators within these pathways. The complex interactions between phytohormones and DEGs are crucial for facilitating the adaptation of Elymus sibiricus to saline environments. These findings enhance our understanding of the salt tolerance mechanisms in Elymus sibiricus and provide a foundation for breeding salt-resistant varieties.
Collapse
Affiliation(s)
- Ying De
- Chinese Academy of Agricultural Sciences, Grassland Research Institute, Hohhot 010010, China.
| | - Weihong Yan
- Chinese Academy of Agricultural Sciences, Grassland Research Institute, Hohhot 010010, China
| | - Fengqin Gao
- Chinese Academy of Agricultural Sciences, Grassland Research Institute, Hohhot 010010, China
| | - Huaibin Mu
- Chinese Academy of Agricultural Sciences, Grassland Research Institute, Hohhot 010010, China
| |
Collapse
|
4
|
Wang W, Zhang X, Xu X, Xu X, Fu L, Chen H. Systematic identification of reference genes for qRT-PCR of Ardisia kteniophylla A. DC under different experimental conditions and for anthocyanin-related genes studies. FRONTIERS IN PLANT SCIENCE 2023; 14:1284007. [PMID: 38023897 PMCID: PMC10656778 DOI: 10.3389/fpls.2023.1284007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023]
Abstract
Ardisia kteniophylla A. DC, widely known as folk medicinal herb and ornamental plant, has been extensively investigated due to its unique leaf color, anti-cancer and other pharmacological activities. The quantitative real-time PCR (qRT-PCR) was an excellent tool for the analysis of gene expression with its high sensitivity and quantitative properties. Normalizing gene expression with stable reference genes was essential for qRT-PCR accuracy. In addition, no studies have yet been performed on the selection, verification and stability of internal reference genes suitable for A. kteniophylla, which has greatly hindered the biomolecular researches of this species. In this study, 29 candidate genes were successfully screened according to stable expression patterns of large-scale RNA seq data that from a variety of tissues and the roots of different growth stages in A. kteniophylla. The candidates were then further determined via qRT-PCR in various experimental samples, including MeJA, ABA, SA, NaCl, CuSO4, AgNO3, MnSO4, CoCl2, drought, low temperature, heat, waterlogging, wounding and oxidative stress. To assess the stability of the candidates, five commonly used strategies were employed: delta-CT, geNorm, BestKeeper, NormFinder, and the comprehensive tool RefFinder. In summary, UBC2 and UBA1 were found to be effective in accurately normalizing target gene expression in A. kteniophella regardless of experimental conditions, while PP2A-2 had the lowest stability. Additionally, to verify the reliability of the recommended reference genes under different colored leaf samples, we examined the expression patterns of six genes associated with anthocyanin synthesis and regulation. Our findings suggested that PAP1 and ANS3 may be involved in leaf color change in A. kteniphella. This study successfully identified the ideal reference gene for qRT-PCR analysis in A. kteniphella, providing a foundation for future research on gene function, particularly in the biosynthesis of anthocyanins.
Collapse
Affiliation(s)
- Wentao Wang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- College of Modern Agricultural Sciences, University of Chinese Acadamy of Science, Beijing, China
| | - Xiaohang Zhang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- College of Modern Agricultural Sciences, University of Chinese Acadamy of Science, Beijing, China
| | - Xiaoxia Xu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- College of Modern Agricultural Sciences, University of Chinese Acadamy of Science, Beijing, China
| | - Xingchou Xu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- College of Life Science, Gannan Normal University, Ganzhou, China
| | - Lin Fu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Hongfeng Chen
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
5
|
Wang X, Shu X, Su X, Xiong Y, Xiong Y, Chen M, Tong Q, Ma X, Zhang J, Zhao J. Selection of Suitable Reference Genes for RT-qPCR Gene Expression Analysis in Centipedegrass under Different Abiotic Stress. Genes (Basel) 2023; 14:1874. [PMID: 37895223 PMCID: PMC10606319 DOI: 10.3390/genes14101874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
As a C4 warm-season turfgrass, centipedegrass (Eremochloa ophiuroides (Munro) Hack.) is known for its exceptional resilience to intensive maintenance practices. In this research, the most stably expressed reference genes in the leaves of centipedegrass under different stress treatments, including salt, cold, drought, aluminum (Al), and herbicide, were screened by the quantitative real-time PCR (RT-qPCR) technique. The stability of 13 candidate reference genes was evaluated by software GeNorm V3.4, NormFinder V20, BestKeeper V1.0, and ReFinder V1.0. The results of this experiment demonstrated that the expression of the UBC (ubiquitin-conjugating enzyme) remained the most stable under cold and Al stress conditions. On the other hand, the MD (malate dehydrogenase) gene exhibited the best performance in leaf tissues subjected to salt and drought stresses. Under herbicide stress, the expression level of the RIP (60S ribosomal protein L2) gene ranked the highest. The expression levels of abiotic stress-associated genes such as PIP1, PAL, COR413, ALMT9, and BAR were assessed to validate the reliability of the selected reference genes. This study provides valuable information and reference points for gene expression under abiotic stress conditions in centipedegrass.
Collapse
Affiliation(s)
- Xiaoyun Wang
- College of Grassland Science and Technology, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Xin Shu
- College of Grassland Science and Technology, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Xiaoli Su
- College of Grassland Science and Technology, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Yanli Xiong
- College of Grassland Science and Technology, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Yi Xiong
- College of Grassland Science and Technology, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Minli Chen
- Sichuan Academy of Grassland Sciences, Pidu, Chengdu 611731, China
| | - Qi Tong
- Sichuan Academy of Grassland Sciences, Pidu, Chengdu 611731, China
| | - Xiao Ma
- College of Grassland Science and Technology, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Jianbo Zhang
- Sichuan Academy of Grassland Sciences, Pidu, Chengdu 611731, China
| | - Junming Zhao
- College of Grassland Science and Technology, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| |
Collapse
|
6
|
Yu Q, Xiong Y, Su X, Xiong Y, Dong Z, Zhao J, Shu X, Bai S, Lei X, Yan L, Ma X. Integrating Full-Length Transcriptome and RNA Sequencing of Siberian Wildrye ( Elymus sibiricus) to Reveal Molecular Mechanisms in Response to Drought Stress. PLANTS (BASEL, SWITZERLAND) 2023; 12:2719. [PMID: 37514333 PMCID: PMC10385362 DOI: 10.3390/plants12142719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/13/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023]
Abstract
Drought is one of the most significant limiting factors affecting plant growth and development on the Qinghai-Tibet Plateau (QTP). Mining the drought-tolerant genes of the endemic perennial grass of the QTP, Siberian wildrye (Elymus sibiricus), is of great significance to creating new drought-resistant varieties which can be used in the development of grassland livestock and restoring natural grassland projects in the QTP. To investigate the transcriptomic responsiveness of E. sibiricus to drought stress, PEG-induced short- and long-term drought stress was applied to two Siberian wildrye genotypes (drought-tolerant and drought-sensitive accessions), followed by third- and second-generation transcriptome sequencing analysis. A total of 40,708 isoforms were detected, of which 10,659 differentially expressed genes (DEGs) were common to both genotypes. There were 2107 and 2498 unique DEGs in the drought-tolerant and drought-sensitive genotypes, respectively. Additionally, 2798 and 1850 DEGs were identified in the drought-tolerant genotype only under short- and long-term conditions, respectively. DEGs numbering 1641 and 1330 were identified in the drought-sensitive genotype only under short- and long-term conditions, respectively. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed that all the DEGs responding to drought stress in E. sibiricus were mainly associated with the mitogen-activated protein kinase (MAKP) signaling pathway, plant hormone signal transduction, the linoleic acid metabolism pathway, the ribosome pathway, and plant circadian rhythms. In addition, Nitrate transporter 1/Peptide transporter family protein 3.1 (NPF3.1) and Auxin/Indole-3-Acetic Acid (Aux/IAA) family protein 31(IAA31) also played an important role in helping E. sibiricus resist drought. This study used transcriptomics to investigate how E. sibiricus responds to drought stress, and may provide genetic resources and references for research into the molecular mechanisms of drought resistance in native perennial grasses and for breeding drought-tolerant varieties.
Collapse
Affiliation(s)
- Qingqing Yu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Sichuan Academy of Grassland Science, Chengdu 610097, China
| | - Yi Xiong
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaoli Su
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Yanli Xiong
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhixiao Dong
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Junming Zhao
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Xin Shu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Shiqie Bai
- Sichuan Academy of Grassland Science, Chengdu 610097, China
| | - Xiong Lei
- Sichuan Academy of Grassland Science, Chengdu 610097, China
| | - Lijun Yan
- Sichuan Academy of Grassland Science, Chengdu 610097, China
| | - Xiao Ma
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
7
|
Wang Y, Zhang YQ, Wu ZW, Fang T, Wang F, Zhao H, Du ZQ, Yang CX. Selection of reference genes for RT-qPCR analysis in developing chicken embryonic ovary. Mol Biol Rep 2023; 50:3379-3387. [PMID: 36729208 DOI: 10.1007/s11033-023-08280-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/12/2023] [Indexed: 02/03/2023]
Abstract
BACKGROUND Normalization of the expression profiling of target genes, in a tissue-specific manner and under different experimental conditions, requires stably expressed gene(s) to be used as internal reference(s). However, to study the molecular regulation of oocyte meiosis initiation during ovary development in chicken embryos, stable reference gene(s) still need to be compared and confirmed. METHODS AND RESULTS Six candidate genes previously used as internal references for the chicken embryo (Actb, Cvh, Dazl, Eef1a, Gapdh and Rpl15) were chosen, and their expression profiles in left ovaries dissected at five chicken embryonic days (E12.5, E15.5, E17.5, E18.5 and E20.5) were evaluated, respectively. Separately, GeNorm, NormFinder, BestKeeper and Comparative ΔCt methods were used to assess the stability of candidate reference genes, and all results were combined to give the final rank by RefFinder. All methods identified that Eef1a and Rpl15 were the two most stable internal reference genes, whereas Cvh is the most unstable one. Moreover, expression levels of three marker genes for chicken oocyte meiosis entry (Stra8, Scp3 and Dmc1) were normalized, based on Eef1a, Rpl15, or their combinations, respectively. CONCLUSION Our findings provide the most suitable internal reference genes (Eef1a and Rpl15), to investigate further molecular regulation of ovary development and oocyte meiosis initiation in chicken embryos.
Collapse
Affiliation(s)
- Yi Wang
- College of Animal Science, Yangtze University, 434025, Jingzhou, Hubei, China
| | - Yu-Qing Zhang
- College of Animal Science, Yangtze University, 434025, Jingzhou, Hubei, China
| | - Zi-Wei Wu
- College of Animal Science, Yangtze University, 434025, Jingzhou, Hubei, China
| | - Ting Fang
- College of Animal Science, Yangtze University, 434025, Jingzhou, Hubei, China
| | - Fang Wang
- College of Animal Science, Yangtze University, 434025, Jingzhou, Hubei, China
| | - Han Zhao
- College of Animal Science, Yangtze University, 434025, Jingzhou, Hubei, China
| | - Zhi-Qiang Du
- College of Animal Science, Yangtze University, 434025, Jingzhou, Hubei, China.
| | - Cai-Xia Yang
- College of Animal Science, Yangtze University, 434025, Jingzhou, Hubei, China.
| |
Collapse
|
8
|
Ferreira MJ, Silva J, Pinto SC, Coimbra S. I Choose You: Selecting Accurate Reference Genes for qPCR Expression Analysis in Reproductive Tissues in Arabidopsis thaliana. Biomolecules 2023; 13:biom13030463. [PMID: 36979397 PMCID: PMC10046263 DOI: 10.3390/biom13030463] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/24/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023] Open
Abstract
Quantitative real-time polymerase chain reaction (qPCR) is a widely used method to analyse the gene expression pattern in the reproductive tissues along with detecting gene levels in mutant backgrounds. This technique requires stable reference genes to normalise the expression level of target genes. Nonetheless, a considerable number of publications continue to present qPCR results normalised to a single reference gene and, to our knowledge, no comparative evaluation of multiple reference genes has been carried out in specific reproductive tissues of Arabidopsis thaliana. Herein, we assessed the expression stability levels of ten candidate reference genes (UBC9, ACT7, GAPC-2, RCE1, PP2AA3, TUA2, SAC52, YLS8, SAMDC and HIS3.3) in two conditional sets: one across flower development and the other using inflorescences from different genotypes. The stability analysis was performed using the RefFinder tool, which combines four statistical algorithms (geNorm, NormFinder, BestKeeper and the comparative ΔCt method). Our results showed that RCE1, SAC52 and TUA2 had the most stable expression in different flower developmental stages while YLS8, HIS3.3 and ACT7 were the top-ranking reference genes for normalisation in mutant studies. Furthermore, we validated our results by analysing the expression pattern of genes involved in reproduction and examining the expression of these genes in published mutant backgrounds. Overall, we provided a pool of appropriate reference genes for expression studies in reproductive tissues of A. thaliana, which will facilitate further gene expression studies in this context. More importantly, we presented a framework that will promote a consistent and accurate analysis of gene expression in any scientific field. Simultaneously, we highlighted the relevance of clearly defining and describing the experimental conditions associated with qPCR to improve scientific reproducibility.
Collapse
Affiliation(s)
- Maria João Ferreira
- LAQV/REQUIMTE, Biology Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Jessy Silva
- LAQV/REQUIMTE, Biology Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
- School of Sciences, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Sara Cristina Pinto
- LAQV/REQUIMTE, Biology Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Sílvia Coimbra
- LAQV/REQUIMTE, Biology Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
- Correspondence:
| |
Collapse
|
9
|
Mouton W, Conrad A, Alcazer V, Boccard M, Bodinier M, Oriol G, Subtil F, Labussière-Wallet H, Ducastelle-Lepretre S, Barraco F, Balsat M, Fossard G, Brengel-Pesce K, Ader F, Trouillet-Assant S. Distinct Immune Reconstitution Profiles Captured by Immune Functional Assays at 6 Months Post Allogeneic Hematopoietic Stem Cell Transplantation. Transplant Cell Ther 2023; 29:94.e1-94.e13. [PMID: 36336259 DOI: 10.1016/j.jtct.2022.10.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/27/2022] [Accepted: 10/27/2022] [Indexed: 11/05/2022]
Abstract
Immune reconstitution after allogeneic-hematopoietic-stem-cell transplantation (allo-HSCT) is a complex and individual process. In this cross-sectional study, whole-blood (WB) immune functional assay (IFA) was used to characterize immune function by assessing immune-related gene/pathway alterations. The usefulness of this tool in the context of infection, 6 months after transplantation, was evaluated. Sixty allo-HSCT recipients at 6 months after transplantation and 10 healthy volunteers (HV) were included. WB was stimulated in standardized TruCulture tubes using lipopolysaccharides and Staphylococcal enterotoxin B. Gene expression was quantified using a custom 144-gene panel using NanoString nCounter technology and analyzed using Ingenuity Pathway Analysis. The relationships between immune function and clinical characteristics, immune cell counts, and post-transplantation infections were assessed. Allo-HSCT recipients were able to activate similar networks of the innate and adaptive immune response compared to HV, with, nevertheless, a lower intensity. A reduced number and a lower expression of genes associated with immunoregulatory and inflammatory processes were observed in allo-HSCT recipients. The use of immunosuppressive treatments was associated with a protracted immune reconstitution revealed by transcriptomic immunoprofiling. No difference in immune cell counts was observed among patients receiving or not receiving immunosuppressive treatments using a large immunophenotyping panel. Moreover, the expression of a set of genes, including CCL3/CCL4, was significantly lower in patients with Herpesviridae reactivation (32%, 19/60), which once again was not identified using classical immune cell counts. Transcriptional IFA revealed the heterogeneity among allo-HSCT recipients with a reduced immune function, a result that could not be captured by circulating immune cell counts. This highlights the potential added value of this tool for the personalized care of immunocompromised patients.
Collapse
Affiliation(s)
- William Mouton
- Joint Research Unit Hospices Civils de Lyon-bioMérieux, Hospices Civils de Lyon, Lyon Sud Hospital, Pierre-Bénite, France; Virology and Human Pathology - Virpath Team, International Centre for Research in Infectiology (CIRI), Claude Bernard Lyon 1 University, Lyon, France
| | - Anne Conrad
- Legionella Pathogenesis Team, International Centre for Research in Infectiology (CIRI), Claude Bernard Lyon 1 University, Lyon, France; Infectious and Tropical Diseases Department, Hospices Civils de Lyon, Croix-Rousse Hospital, Lyon, France; Claude Bernard Lyon I University, Villeurbanne, France
| | - Vincent Alcazer
- Clinical Hematology Department, Hospices Civils de Lyon, Lyon Sud Hospital, Pierre-Bénite, France; LIB TEAM, International Centre for Research in Infectiology (CIRI), Oullins, France
| | - Mathilde Boccard
- Joint Research Unit Hospices Civils de Lyon-bioMérieux, Hospices Civils de Lyon, Lyon Sud Hospital, Pierre-Bénite, France; Legionella Pathogenesis Team, International Centre for Research in Infectiology (CIRI), Claude Bernard Lyon 1 University, Lyon, France; Infectious and Tropical Diseases Department, Hospices Civils de Lyon, Croix-Rousse Hospital, Lyon, France
| | - Maxime Bodinier
- Joint Research Unit Hospices Civils de Lyon-bioMérieux, Hospices Civils de Lyon, Lyon Sud Hospital, Pierre-Bénite, France
| | - Guy Oriol
- Joint Research Unit Hospices Civils de Lyon-bioMérieux, Hospices Civils de Lyon, Lyon Sud Hospital, Pierre-Bénite, France
| | - Fabien Subtil
- Biostatistics Department, Hospices Civils de Lyon, Lyon France, Lyon 1 University, Villeurbanne, France; CNRS, Biometrics and Evolutionary Biology Laboratory UMR, Villeurbanne, France
| | - Hélène Labussière-Wallet
- Clinical Hematology Department, Hospices Civils de Lyon, Lyon Sud Hospital, Pierre-Bénite, France
| | | | - Fiorenza Barraco
- Clinical Hematology Department, Hospices Civils de Lyon, Lyon Sud Hospital, Pierre-Bénite, France
| | - Marie Balsat
- Clinical Hematology Department, Hospices Civils de Lyon, Lyon Sud Hospital, Pierre-Bénite, France
| | - Gaëlle Fossard
- Clinical Hematology Department, Hospices Civils de Lyon, Lyon Sud Hospital, Pierre-Bénite, France
| | - Karen Brengel-Pesce
- Joint Research Unit Hospices Civils de Lyon-bioMérieux, Hospices Civils de Lyon, Lyon Sud Hospital, Pierre-Bénite, France
| | - Florence Ader
- Legionella Pathogenesis Team, International Centre for Research in Infectiology (CIRI), Claude Bernard Lyon 1 University, Lyon, France; Infectious and Tropical Diseases Department, Hospices Civils de Lyon, Croix-Rousse Hospital, Lyon, France; Claude Bernard Lyon I University, Villeurbanne, France.
| | - Sophie Trouillet-Assant
- Joint Research Unit Hospices Civils de Lyon-bioMérieux, Hospices Civils de Lyon, Lyon Sud Hospital, Pierre-Bénite, France; Virology and Human Pathology - Virpath Team, International Centre for Research in Infectiology (CIRI), Claude Bernard Lyon 1 University, Lyon, France
| |
Collapse
|
10
|
Zheng H, Zhao H, Zhang X, Liang Z, He Q. Systematic Identification and Validation of Suitable Reference Genes for the Normalization of Gene Expression in Prunella vulgaris under Different Organs and Spike Development Stages. Genes (Basel) 2022; 13:1947. [PMID: 36360184 PMCID: PMC9689956 DOI: 10.3390/genes13111947] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/19/2022] [Accepted: 10/24/2022] [Indexed: 08/01/2023] Open
Abstract
The quantitative real-time PCR (qRT-PCR) is an efficient and sensitive method for determining gene expression levels, but the accuracy of the results substantially depends on the stability of the reference gene (RG). Therefore, choosing an appropriate reference gene is a critical step in normalizing qRT-PCR data. Prunella vulgaris L. is a traditional Chinese medicine herb widely used in China. Its main medicinal part is the fruiting spike which is termed Spica Prunellae. However, thus far, few studies have been conducted on the mechanism of Spica Prunellae development. Meanwhile, no reliable RGs have been reported in P. vulgaris. The expression levels of 14 candidate RGs were analyzed in this study in various organs and at different stages of Spica Prunellae development. Four statistical algorithms (Delta Ct, BestKeeper, NormFinder, and geNorm) were utilized to identify the RGs' stability, and an integrated stability rating was generated via the RefFinder website online. The final ranking results revealed that eIF-2 was the most stable RG, whereas VAB2 was the least suitable as an RG. Furthermore, eIF-2 + Histon3.3 was identified as the best RG combination in different periods and the total samples. Finally, the expressions of the PvTAT and Pv4CL2 genes related to the regulation of rosmarinic acid synthesis in different organs were used to verify the stable and unstable RGs. The stable RGs in P. vulgaris were originally identified and verified in this work. This achievement provides strong support for obtaining a reliable qPCR analysis and lays the foundation for in-depth research on the developmental mechanism of Spica Prunellae.
Collapse
Affiliation(s)
- Hui Zheng
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Hongguang Zhao
- Tasly Botanical Pharmaceutical Co., Ltd., Shangluo 726000, China
| | - Xuemin Zhang
- Tasly R&D Institute, Tasly Holding Group Co., Ltd., Tianjin 300410, China
| | - Zongsuo Liang
- Shaoxing Academy of Biomedicine, Zhejiang Sci-Tech University, Shaoxing 312000, China
| | - Qiuling He
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
11
|
Validation of Appropriate Reference Genes for qRT–PCR Normalization in Oat (Avena sativa L.) under UV-B and High-Light Stresses. Int J Mol Sci 2022; 23:ijms231911187. [PMID: 36232488 PMCID: PMC9570368 DOI: 10.3390/ijms231911187] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/13/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
Oat is a food and forage crop species widely cultivated worldwide, and it is also an important forage grass in plateau regions of China, where there is a high level of ultraviolet radiation and sunlight. Screening suitable reference genes for oat under UV-B and high-light stresses is a prerequisite for ensuring the accuracy of real-time quantitative PCR (qRT–PCR) data used in plant adaptation research. In this study, eight candidate reference genes (sulfite oxidase, SUOX; victorin binding protein, VBP; actin-encoding, Actin1; protein PSK SIMULATOR 1-like, PSKS1; TATA-binding protein 2-like, TBP2; ubiquitin-conjugating enzyme E2, UBC2; elongation factor 1-alpha, EF1-α; glyceraldehyde-3-phosphate dehydrogenase 1, GAPDH1;) were selected based on previous studies and our oat transcriptome data. The expression stability of these reference genes in oat roots, stems, and leaves under UV-B and high-light stresses was first calculated using three frequently used statistical software (geNorm, NormFinder, and BestKeeper), and then the comprehensive stability of these genes was evaluated using RefFinder. The results showed that the most stably expressed reference genes in the roots, stems, and leaves of oat under UV-B stress were EF1-α, TBP2, and PSKS1, respectively; the most stably expressed reference genes in the roots, stems, and leaves under high-light stress were PSKS1, UBC2, and PSKS1, respectively. PSKS1 was the most stably expressed reference gene in all the samples. The reliability of the selected reference genes was further validated by analysis of the expression of the phenylalanine ammonia-lyase (PAL) gene. This study highlights reference genes for accurate quantitative analysis of gene expression in different tissues of oat under UV-B and high-light stresses.
Collapse
|
12
|
Liu X, Wang P, An Y, Wang CM, Hao Y, Zhou Y, Zhou Q, Wang P. Endodermal apoplastic barriers are linked to osmotic tolerance in meso-xerophytic grass Elymus sibiricus. FRONTIERS IN PLANT SCIENCE 2022; 13:1007494. [PMID: 36212320 PMCID: PMC9539332 DOI: 10.3389/fpls.2022.1007494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/05/2022] [Indexed: 06/16/2023]
Abstract
Drought is the most serious adversity faced by agriculture and animal husbandry industries. One strategy that plants use to adapt to water deficits is modifying the root growth and architecture. Root endodermis has cell walls reinforced with apoplastic barriers formed by the Casparian strip (CS) and suberin lamellae (SL) deposits, regulates radial nutrient transport and protects the vascular cylinder from abiotic threats. Elymus sibiricus is an economically important meso-xerophytic forage grass, characterized by high nutritional quality and strong environmental adaptability. The purpose of this study was to evaluate the drought tolerance of E. sibiricus genotypes and investigate the root structural adaptation mechanism of drought-tolerant genotypes' responding to drought. Specifically, a drought tolerant (DT) and drought sensitive (DS) genotype were screened out from 52 E. sibiricus genotypes. DT showed less apoplastic bypass flow of water and solutes than DS under control conditions, as determined with a hydraulic conductivity measurement system and an apoplastic fluorescent tracer, specifically PTS trisodium-8-hydroxy-1,3,6-pyrenetrisulphonic acid (PTS). In addition, DT accumulated less Na, Mg, Mn, and Zn and more Ni, Cu, and Al than DS, regardless of osmotic stress. Further study showed more suberin deposition in DT than in DS, which could be induced by osmotic stress in both. Accordingly, the CS and SL were deposited closer to the root tip in DT than in DS. However, osmotic stress induced their deposition closer to the root tips in DS, while likely increasing the thickness of the CS and SL in DT. The stronger and earlier formation of endodermal barriers may determine the radial transport pathways of water and solutes, and contribute to balance growth and drought response in E. sibiricus. These results could help us better understand how altered endodermal apoplastic barriers in roots regulate water and mineral nutrient transport in plants that have adapted to drought environments. Moreover, the current findings will aid in improving future breeding programs to develop drought-tolerant grass or crop cultivars.
Collapse
Affiliation(s)
- Xin Liu
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, China
- National Key Laboratory of Crop Genetic Improvement, Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ping Wang
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, China
| | - Yongping An
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, China
| | - Chun-Mei Wang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yanbo Hao
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, China
| | - Yue Zhou
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, China
| | - Qingping Zhou
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, China
| | - Pei Wang
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, China
| |
Collapse
|
13
|
Zhao J, Yang J, Wang X, Xiong Y, Xiong Y, Dong Z, Lei X, Yan L, Ma X. Selection and Validation of Reference Genes for qRT-PCR Gene Expression Analysis in Kengyilia melanthera. Genes (Basel) 2022; 13:genes13081445. [PMID: 36011356 PMCID: PMC9408421 DOI: 10.3390/genes13081445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022] Open
Abstract
Kengyilia is a newly established genus. Most species in this genus survive in hash environment, which might be an indicator of an acquirement of stress resistance genes and the potential for molecular breeding in Triticeae species. Quantitative real-time PCR (qRT-PCR) is a widely used technique with varied sensitivity heavily dependent on the optimal level of the reference genes. K. melanthera is a typical psammophyte species which has high drought resistance. The reference genes of K. melanthera are not yet reported. This study aims to evaluate the expression stability of 14 candidate reference genes (EF1A, GAPDH, ACT1, UBI, TUBB3, TIPRL, CACS, PPP2R1B, TUBA1A, EIF4A1, CYPA3, TCTP, ABCG11L, and FBXO6L) under five treatments (drought, heat, cold, salt, and ABA) and find the most stable and suitable one even upon stressed conditions. The software NormFinder, GeNorm, BestKeeper, and RefFinder were used for data analysis. In general, the genes CACS and PPP2R1B are concluded to have the best overall performance under the various treatments. With the ABA treatment, TCTP and TIPRL show the best stability. CACS and TCTP, as well as TIPRL and CYPA3, were most stable under the treatments of cold and salt, respectively. CACS and FBXO6L were ranked the highest with the heat treatment and drought treatment, respectively. Finally, the Catalase-1 (CAT1) gene was used to verify the reliability of the above reference genes. Accordingly, CAT1’s expression pattern remained unchanged after normalization with stable reference genes. This study provides beneficial information about the stability and reliability of potential reference genes for qRT-PCR in K. melanthera.
Collapse
Affiliation(s)
- Junming Zhao
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Jian Yang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaoyun Wang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Yanli Xiong
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Yi Xiong
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhixiao Dong
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiong Lei
- Sichuan Academy of Grassland Science, Chengdu 611731, China
| | - Lijun Yan
- Sichuan Academy of Grassland Science, Chengdu 611731, China
- Correspondence: (L.Y.); (X.M.)
| | - Xiao Ma
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence: (L.Y.); (X.M.)
| |
Collapse
|
14
|
Systematic screening and validation of reliable reference genes for qRT-PCR analysis in Okra (Abelmoschus esculentus L.). Sci Rep 2022; 12:12913. [PMID: 35902620 PMCID: PMC9334609 DOI: 10.1038/s41598-022-16124-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 07/05/2022] [Indexed: 11/26/2022] Open
Abstract
Quantitative real-time polymerase chain reaction (qRT-PCR) is a sensitive and widely used technique for quantifying gene expression levels, and its accuracy depends on the reference genes used for data normalization. To date, no reference gene has been reported in the nutritious and functional vegetable okra (Abelmoschus esculentus L.). Herein, 11 candidates of reference genes were selected and evaluated for their expression stability in okra in different tissues at different developmental stages by using three software algorithms (geNorm, NormFinder, BestKeeper) and a web-based tool (RefFinder). Among them, eukaryotic initiation factor 4 alpha (eIF4A) and protein phosphatase 2A (PP2A) showed the highest stability, while TUA5 had the lowest stability. The combined usage of these two most stable reference genes was sufficient to normalize gene expression in okra. Then, the above results were further validated by normalizing the expression of the cellulose synthase gene CesA4. This work provides appropriate reference genes for transcript normalization in okra, which will facilitate subsequent functional gene research on this vegetable crop.
Collapse
|
15
|
Zheng Y, Wang N, Zhang Z, Liu W, Xie W. Identification of Flowering Regulatory Networks and Hub Genes Expressed in the Leaves of Elymus sibiricus L. Using Comparative Transcriptome Analysis. FRONTIERS IN PLANT SCIENCE 2022; 13:877908. [PMID: 35651764 PMCID: PMC9150504 DOI: 10.3389/fpls.2022.877908] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/19/2022] [Indexed: 05/10/2023]
Abstract
Flowering is a significant stage from vegetative growth to reproductive growth in higher plants, which impacts the biomass and seed yield. To reveal the flowering time variations and identify the flowering regulatory networks and hub genes in Elymus sibiricus, we measured the booting, heading, and flowering times of 66 E. sibiricus accessions. The booting, heading, and flowering times varied from 136 to 188, 142 to 194, and 148 to 201 days, respectively. The difference in flowering time between the earliest- and the last-flowering accessions was 53 days. Furthermore, transcriptome analyses were performed at the three developmental stages of six accessions with contrasting flowering times. A total of 3,526 differentially expressed genes (DEGs) were predicted and 72 candidate genes were identified, including transcription factors, known flowering genes, and plant hormone-related genes. Among them, four candidate genes (LATE, GA2OX6, FAR3, and MFT1) were significantly upregulated in late-flowering accessions. LIMYB, PEX19, GWD3, BOR7, PMEI28, LRR, and AIRP2 were identified as hub genes in the turquoise and blue modules which were related to the development time of flowering by weighted gene co-expression network analysis (WGCNA). A single-nucleotide polymorphism (SNP) of LIMYB found by multiple sequence alignment may cause late flowering. The expression pattern of flowering candidate genes was verified in eight flowering promoters (CRY, COL, FPF1, Hd3, GID1, FLK, VIN3, and FPA) and four flowering suppressors (CCA1, ELF3, Ghd7, and COL4) under drought and salt stress by qRT-PCR. The results suggested that drought and salt stress activated the flowering regulation pathways to some extent. The findings of the present study lay a foundation for the functional verification of flowering genes and breeding of new varieties of early- and late-flowering E. sibiricus.
Collapse
Affiliation(s)
- Yuying Zheng
- The State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Na Wang
- The State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Zongyu Zhang
- The State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Wenhui Liu
- Key Laboratory of Superior Forage Germplasm in the Qinghai-Tibetan Plateau, Qinghai Academy of Animal Science and Veterinary Medicine, Xining, China
| | - Wengang Xie
- The State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
- *Correspondence: Wengang Xie
| |
Collapse
|
16
|
Wu Y, Zhang C, Yang H, Lyu L, Li W, Wu W. Selection and Validation of Candidate Reference Genes for Gene Expression Analysis by RT-qPCR in Rubus. Int J Mol Sci 2021; 22:ijms221910533. [PMID: 34638877 PMCID: PMC8508773 DOI: 10.3390/ijms221910533] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/19/2021] [Accepted: 09/27/2021] [Indexed: 11/16/2022] Open
Abstract
Due to the lack of effective and stable reference genes, studies on functional genes in Rubus, a genus of economically important small berry crops, have been greatly limited. To select the best internal reference genes of different types, we selected four representative cultivars of blackberry and raspberry (red raspberry, yellow raspberry, and black raspberry) as the research material and used RT-qPCR technology combined with three internal stability analysis software programs (geNorm, NormFinder, and BestKeeper) to analyze 12 candidate reference genes for the stability of their expression. The number of most suitable internal reference genes for different cultivars, tissues, and fruit developmental stages of Rubus was calculated by geNorm software to be two. Based on the results obtained with the three software programs, the most stable genes in the different cultivars were RuEEF1A and Ru18S. Finally, to validate the reliability of selected reference genes, the expression pattern of the RuCYP73A gene was analyzed, and the results highlighted the importance of appropriate reference gene selection. RuEEF1A and Ru18S were screened as reference genes for their relatively stable expression, providing a reference for the further study of key functional genes in blackberry and raspberry and an effective tool for the analysis of differential gene expression.
Collapse
Affiliation(s)
- Yaqiong Wu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Qian Hu Hou Cun No. 1, Nanjing 210014, China; (Y.W.); (C.Z.); (H.Y.); (L.L.)
| | - Chunhong Zhang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Qian Hu Hou Cun No. 1, Nanjing 210014, China; (Y.W.); (C.Z.); (H.Y.); (L.L.)
| | - Haiyan Yang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Qian Hu Hou Cun No. 1, Nanjing 210014, China; (Y.W.); (C.Z.); (H.Y.); (L.L.)
| | - Lianfei Lyu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Qian Hu Hou Cun No. 1, Nanjing 210014, China; (Y.W.); (C.Z.); (H.Y.); (L.L.)
| | - Weilin Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
- Correspondence: (W.L.); (W.W.); Tel.: +86-25-8542-8531 (W.L.); +86-25-8434-7063 (W.W.)
| | - Wenlong Wu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Qian Hu Hou Cun No. 1, Nanjing 210014, China; (Y.W.); (C.Z.); (H.Y.); (L.L.)
- Correspondence: (W.L.); (W.W.); Tel.: +86-25-8542-8531 (W.L.); +86-25-8434-7063 (W.W.)
| |
Collapse
|
17
|
Kwon N, Lee KE, Singh M, Kang SG. Suitable primers for GAPDH reference gene amplification in quantitative RT-PCR analysis of human gene expression. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Chen Y, Luo B, Liu C, Zhang Z, Zhou C, Zhou T, Peng G, Wang X, Li W, Wu C, Rao L, Wang Q. Identification of reliable reference genes for quantitative real-time PCR analysis of the Rhus chinensis Mill. leaf response to temperature changes. FEBS Open Bio 2021; 11:2763-2773. [PMID: 34403204 PMCID: PMC8487043 DOI: 10.1002/2211-5463.13275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/25/2021] [Accepted: 08/16/2021] [Indexed: 11/24/2022] Open
Abstract
Rhus chinensis Mill. (RCM) is the host plant of Galla chinensis, which is valued in traditional medicine. Environmental temperature directly determines the probability of gallnut formation and RCM growth. At present, there is no experiment to systematically analyse the stability of internal reference gene (RG) expression in RCM. In this experiment, leaves that did not form gallnuts were used as the control group, while leaves that formed gallnuts were used as the experimental group. First, we conducted transcriptome experiments on RCM leaves to obtain 45 103 differential genes and functional enrichment annotations between the two groups. On this basis, this experiment established a transcriptional gene change model of leaves in the process of gallnut formation after being bitten by aphids, and RCM reference candidate genes were screened from RNA sequencing (RNA‐seq) data. This study is based on RCM transcriptome data and evaluates the stability of 11 potential reference genes under cold stress (4 °C) and heat stress (34 °C), using three statistical algorithms (geNorm, NormFinder, and BestKeeper). The results show that GAPDH1 + PP2A2/UBQ are stable reference genes under heat stress, while GAPDH1 + ACT are the most stable under cold stress. This study is the first to screen candidate reference genes in RCM and could help guide future molecular studies in this genus.
Collapse
Affiliation(s)
- Yanchao Chen
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China.,Hunan Engineering Laboratory for Good Agricultural Practice and Comprehensive Utilization of Famous-Region Medicinal Plants, Changsha, China
| | - Biao Luo
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China.,Hunan Engineering Laboratory for Good Agricultural Practice and Comprehensive Utilization of Famous-Region Medicinal Plants, Changsha, China
| | - Chuwei Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China.,Hunan Engineering Laboratory for Good Agricultural Practice and Comprehensive Utilization of Famous-Region Medicinal Plants, Changsha, China
| | - Zhengfeng Zhang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Chi Zhou
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China.,Hunan Engineering Laboratory for Good Agricultural Practice and Comprehensive Utilization of Famous-Region Medicinal Plants, Changsha, China
| | - Ting Zhou
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China.,Hunan Engineering Laboratory for Good Agricultural Practice and Comprehensive Utilization of Famous-Region Medicinal Plants, Changsha, China
| | - Guoping Peng
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China.,Hunan Engineering Laboratory for Good Agricultural Practice and Comprehensive Utilization of Famous-Region Medicinal Plants, Changsha, China
| | - Xujun Wang
- Hunan Academy of Forestry, Changsha, China
| | - Waichin Li
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, China
| | - Chuan Wu
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, China.,School of Metallurgy and Environment, Central South University, Changsha, China
| | - Liqun Rao
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China.,Hunan Engineering Laboratory for Good Agricultural Practice and Comprehensive Utilization of Famous-Region Medicinal Plants, Changsha, China
| | - Qiming Wang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China.,Hunan Engineering Laboratory for Good Agricultural Practice and Comprehensive Utilization of Famous-Region Medicinal Plants, Changsha, China
| |
Collapse
|
19
|
De Y, Shi F, Gao F, Mu H, Yan W. Siberian Wildrye ( Elymus sibiricus L.) Abscisic Acid-Insensitive 5 Gene Is Involved in Abscisic Acid-Dependent Salt Response. PLANTS 2021; 10:plants10071351. [PMID: 34371554 PMCID: PMC8309358 DOI: 10.3390/plants10071351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 01/22/2023]
Abstract
Siberian wildrye (Elymus sibiricus L.) is a salt-tolerant, high-quality forage grass that plays an important role in forage production and ecological restoration. Abscisic acid (ABA)-insensitive 5 (ABI5) is essential for the normal functioning of the ABA signal pathway. However, the role of ABI5 from Siberian wildrye under salt stress remains unclear. Here, we evaluated the role of Elymus sibiricus L. abscisic acid-insensitive 5 (EsABI5) in the ABA-dependent regulation of the response of Siberian wildrye to salt stress. The open reading frame length of EsABI5 isolated from Siberian wildrye was 1170 bp, and it encoded a 389 amino acid protein, which was localized to the nucleus, with obvious coiled coil areas. EsABI5 had high homology, with ABI5 proteins from Hordeum vulgare, Triticum monococcum, Triticum aestivum, and Aegilops tauschii. The conserved domains of EsABI5 belonged to the basic leucine zipper domain superfamily. EsABI5 had 10 functional interaction proteins with credibility greater than 0.7. EsABI5 expression was upregulated in roots and leaves under NaCl stress and was upregulated in leaves and downregulated in roots under ABA treatment. Notably, tobacco plants overexpressing the EsABI5 were more sensitive to salt stress, as confirmed by the determining of related physiological indicators. EsABI5 expression affected the ABA and mitogen-activated protein kinase pathways. Therefore, EsABI5 is involved in antisalt responses in these pathways and plays a negative regulatory role during salt stress.
Collapse
Affiliation(s)
- Ying De
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010011, China;
- Chinese Academy of Agricultural Sciences, Grassland Research Institute, Hohhot 010010, China; (F.G.); (H.M.); (W.Y.)
| | - Fengling Shi
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010011, China;
- Correspondence: ; Tel.: +86-04714308458
| | - Fengqin Gao
- Chinese Academy of Agricultural Sciences, Grassland Research Institute, Hohhot 010010, China; (F.G.); (H.M.); (W.Y.)
| | - Huaibin Mu
- Chinese Academy of Agricultural Sciences, Grassland Research Institute, Hohhot 010010, China; (F.G.); (H.M.); (W.Y.)
| | - Weihong Yan
- Chinese Academy of Agricultural Sciences, Grassland Research Institute, Hohhot 010010, China; (F.G.); (H.M.); (W.Y.)
| |
Collapse
|
20
|
Ramezani A. CtNorm: Real time PCR cycle of threshold (Ct) normalization algorithm. J Microbiol Methods 2021; 187:106267. [PMID: 34116107 DOI: 10.1016/j.mimet.2021.106267] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/05/2021] [Accepted: 06/06/2021] [Indexed: 11/25/2022]
Abstract
In relative quantification with Real Time PCR (qRT-PCR,), accurate analysis requires equal amplification efficiency for both genes (Gene of interest and reference gene) and equal threshold values for all the samples. In this quantification method the expression level in treated samples will be calculated in comparison to the control group. We conducted the present study to design an algorithm for converting the data obtained from different runs containing identical standard samples into one run with the same amplification efficiency and threshold value. For this purpose, two formulas were designed; one to convert the amplification efficiency of the each run to 100%, and the other one for converting data from different runs into one run. Utilizing these two formulas, an algorithm was developed and named CtNorm. The online version of CtNorm algorithm is available at http://ctnorm.sums.ac.ir/. We used qRT-PCR technique to validate the accuracy of the designed algorithm for the normalization of four different human internal control genes. Normalizing the Ct values obtained from separate runs with the CtNorm algorithm has eliminated the differences and the average of the Ct values has become similar to the condition in which all the samples were amplified in a single run. The CtNorm algorithm could be utilized for equalizing the Ct values of several qRT-PCR runs with the same standard samples. The algorithm has also the ability to convert the amplification efficiency to 100% which is useful in absolute and relative quantification.
Collapse
Affiliation(s)
- Amin Ramezani
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Science, Shiraz, Iran; Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
21
|
Torres S, Lama C, Mantecón L, Flemetakis E, Infante C. Selection and validation of reference genes for quantitative real-time PCR in the green microalgae Tetraselmis chui. PLoS One 2021; 16:e0245495. [PMID: 33444403 PMCID: PMC7808622 DOI: 10.1371/journal.pone.0245495] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 12/30/2020] [Indexed: 01/08/2023] Open
Abstract
Quantitative real-time reverse transcription PCR (RT-qPCR) is a highly sensitive technique that can be applied to analyze how genes are modulated by culture conditions, but identification of appropriate reference genes for normalization is a critical factor to be considered. For this reason, the expression stability of 18 candidate reference genes was evaluated for the green microalgae Tetraselmis chui using the widely employed algorithms geNorm, NormFinder, BestKeeper, the comparative ΔCT method, and RefFinder. Microalgae samples were collected from large scale outdoor photobioreactors during the growing phase (OUT_GP), and during the semi-continuous phase at different times of the day (OUT_DC). Samples from standard indoor cultures under highly controlled conditions (IND) were also collected to complement the other data. Different rankings for the candidate reference genes were obtained depending on the culture conditions and the algorithm employed. After comparison of the achieved ranks with the different methods, the references genes selected for samples from specific culture conditions were ALD and EFL in OUT_GP, RPL32 and UBCE in OUT_DC, and cdkA and UBCE in IND. Moreover, the genes EFL and cdkA or EFL and UBCE appeared as appropriate combinations for pools generated from all samples (ALL). Examination in the OUT_DC cultures of genes encoding the large and small subunits of ADP-glucose pyrophosphorylase (AGPL and AGPS, respectively) confirmed the reliability of the identified reference genes, RPL32 and UBCE. The present study represents a useful contribution for studies of gene expression in T. chui, and also represents the first step to set-up an RT-qPCR platform for quality control of T. chui biomass production in industrial facilities.
Collapse
Affiliation(s)
- Sonia Torres
- Fitoplancton Marino, S.L., El Puerto de Santa María, Cádiz, Spain
| | - Carmen Lama
- Fitoplancton Marino, S.L., El Puerto de Santa María, Cádiz, Spain
| | - Lalia Mantecón
- Fitoplancton Marino, S.L., El Puerto de Santa María, Cádiz, Spain
| | - Emmanouil Flemetakis
- Laboratory of Molecular Biology, Department of Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Carlos Infante
- Fitoplancton Marino, S.L., El Puerto de Santa María, Cádiz, Spain
| |
Collapse
|
22
|
Carex muskingumensis and Osmotic Stress: Identification of Reference Genes for Transcriptional Profiling by RT-qPCR. Genes (Basel) 2020; 11:genes11091022. [PMID: 32878033 PMCID: PMC7563777 DOI: 10.3390/genes11091022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/21/2020] [Accepted: 08/25/2020] [Indexed: 01/16/2023] Open
Abstract
Carex muskingumensis is a highly valued perennial ornamental grass cultivated worldwide. However, there is limited genetic data regarding this species. Selection of proper reference genes (RGs) for reverse transcription quantitative PCR (RT-qPCR) data normalization has become an essential step in gene expression analysis. In this study, we aimed to examine expression stability of nine candidate RGs in C. muskingumensis plants, subjected to osmotic stress, generated either by salinity or PEG treatment. The identification of genes exhibiting high expression stability was performed by four algorithms (geNorm, NormFinder, BestKeeper and deltaCt method). The results showed that the combination of two genes would be sufficient for reliable expression data normalization. ADP (ADP-ribosylation factor) and TBP (TATA-box-binding protein) were identified as the most stably expressed under salinity treatment, while eIF4A (eukaryotic initiation factor 4A) and TBP were found to show the highest stability under PEG-induced drought. A set of three genes (ADP, eIF4A and TBP) displayed the highest expression stability across all experimental samples tested in this study. To our best knowledge, this is the first report regarding RGs selection in C. muskingumensis. It will provide valuable starting point information for conducting further analyses in this and related species concerning their responses to water shortage and salinity stress.
Collapse
|
23
|
Liu YN, Liu BY, Ma YC, Yang HL, Liu GQ. Analysis of reference genes stability and histidine kinase expression under cold stress in Cordyceps militaris. PLoS One 2020; 15:e0236898. [PMID: 32785280 PMCID: PMC7423124 DOI: 10.1371/journal.pone.0236898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/15/2020] [Indexed: 11/17/2022] Open
Abstract
The development of fungal fruiting bodies from a hyphal thallus is inducible under low temperature (cold stress). The molecular mechanism has been subject to surprisingly few studies. Analysis of gene expression level has become an important means to study gene function and its regulation mechanism. But identification of reference genes (RGs) stability under cold stress have not been reported in famous medicinal mushroom-forming fungi Cordyceps militaris. Herein, 12 candidate RGs had been systematically validated under cold stress in C. militaris. Three different algorithms, geNorm, NormFinder and BestKeeper were applied to evaluate the expression stability of the RGs. Our results showed that UBC and UBQ were the most stable RGs for cold treatments in short and long periods, respectively. 2 RGs (UBC and PP2A) and 3 RGs (UBQ, TUB and CYP) were the suitable RGs for cold treatments in short and long periods, respectively. Moreover, target genes, two-component-system histidine kinase genes, were selected to validate the most and least stable RGs under cold treatment, which indicated that use of unstable expressed genes as RGs leads to biased results. Our results provide a good starting point for accurate reverse transcriptase quantitative polymerase chain reaction normalization by using UBC and UBQ in C. militaris under cold stress and better support for understanding the mechanism of response to cold stress and fruiting body formation in C. militaris and other mushroom-forming fungi in future research.
Collapse
Affiliation(s)
- Yong-Nan Liu
- Hunan Provincial Key Laboratory for Forestry Biotechnology & International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, China
| | - Bi-Yang Liu
- Hunan Provincial Key Laboratory for Forestry Biotechnology & International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, China
| | - You-Chu Ma
- Hunan Provincial Key Laboratory for Forestry Biotechnology & International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, China
| | - Hai-Long Yang
- College of Environmental & Life Science, Wenzhou University, Wenzhou, China
| | - Gao-Qiang Liu
- Hunan Provincial Key Laboratory for Forestry Biotechnology & International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, China
| |
Collapse
|
24
|
Yang J, Yang X, Kuang Z, Li B, Lu X, Cao X, Kang J. Selection of suitable reference genes for qRT-PCR expression analysis of Codonopsis pilosula under different experimental conditions. Mol Biol Rep 2020; 47:4169-4181. [PMID: 32410139 DOI: 10.1007/s11033-020-05501-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 05/06/2020] [Indexed: 11/28/2022]
Abstract
Codonopsis pilosula is a well-known medicinal plant. Although its transcriptome sequence has been published, suitable reference genes have not been systematically identified for conducting expression analyses via quantitative real-time polymerase chain reaction (qRT-PCR). To screen appropriate genes for use with this species, we applied four different methods-GeNorm, NormFinder, BestKeeper, and RefFinder-to evaluate the stability of 13 candidates: CpiEF1Bb, CpiCACS, CpiF-Box, Cpiβ-Tubulin, CpiGAPDH, CpiActin2, CpiAPT1, CpiActin7, CpiActin8, CpiRPL6, CpiHAF1, CpiTubulin6, and CpiUBQ12. Expression was examined by qRT-PCR for various tissue types, chemical treatments, and developmental stages. For all tested samples, CpiGAPDH proved to be the most stable. Comprehensive analysis indicated that the most stable internal reference genes were CpiF-Box and CpiCACS in different tissues and at different developmental stages, respectively. Under NaCl stress, CpiAPT1 was the best internal reference gene. For methyl jasmonate and abscisic acid treatments, CpiGAPDH and CpiF-Box, respectively, presented the highest degree of expression stability. Based on these findings, we chose CpiSPL9 as the target gene for validating the suitability of these selected reference genes. All of these results provide a foundation for accurate quantification of expression levels by genes of interest in C. pilosula.
Collapse
Affiliation(s)
- Jing Yang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University, Xi'an, 710062, China.,Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Xiaozeng Yang
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Zheng Kuang
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.,State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences and School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China
| | - Bin Li
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University, Xi'an, 710062, China
| | - Xiayang Lu
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University, Xi'an, 710062, China.,Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Xiaoyan Cao
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University, Xi'an, 710062, China.
| | - Jiefang Kang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University, Xi'an, 710062, China.
| |
Collapse
|