1
|
Zhu F, Wei Y, Wang F, Xia Z, Gou M, Tang Y. Enrichment of microbial consortia for MEOR in crude oil phase of reservoir-produced liquid and their response to environmental disturbance. Int Microbiol 2024; 27:1049-1062. [PMID: 38010566 DOI: 10.1007/s10123-023-00458-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/07/2023] [Accepted: 11/17/2023] [Indexed: 11/29/2023]
Abstract
Developing microbial consortiums is necessary for microbial enhanced oil recovery (MEOR) in heavy crude oil production. The aqueous phase of produced fluid has long been considered an ideal source of microorganisms for MEOR. However, it is recently found that rich microorganisms (including hydrocarbon-degrading bacteria) are present in the crude oil phase, which is completely different from the aqueous phase of produced fluid. So, in this study, the microbial consortia from the crude oil phase of produced fluids derived from four wells were enriched, respectively. The microbial community structure during passage was dynamically tracked, and the response of enriched consortia to successive disturbance of environmental factors was investigated. The results showed the crude oil phase had high microbial diversity, and the original microbial community structure from four wells was significantly different. After ten generations of consecutive enrichment, different genera were observed in the four enriched microbial consortia, namely, Geobacillus, Bacillus, Brevibacillus, Chelativorans, Ureibacillus, and Ornithinicoccus. In addition, two enriched consortia (eG1614 and eP30) exhibited robustness to temperature and oxygen perturbations. These results further suggested that the crude oil phase of produced fluids can serve as a potential microbial source for MEOR.
Collapse
Affiliation(s)
- Fangfang Zhu
- College of Architecture and Environment, Sichuan University, No. 24 South Section 1 First Ring Road, Chengdu, 610065, Sichuan Province, China
| | - Yanfeng Wei
- College of Architecture and Environment, Sichuan University, No. 24 South Section 1 First Ring Road, Chengdu, 610065, Sichuan Province, China
| | - Fangzhou Wang
- College of Architecture and Environment, Sichuan University, No. 24 South Section 1 First Ring Road, Chengdu, 610065, Sichuan Province, China
| | - Ziyuan Xia
- College of Architecture and Environment, Sichuan University, No. 24 South Section 1 First Ring Road, Chengdu, 610065, Sichuan Province, China
| | - Min Gou
- College of Architecture and Environment, Sichuan University, No. 24 South Section 1 First Ring Road, Chengdu, 610065, Sichuan Province, China.
| | - Yueqin Tang
- College of Architecture and Environment, Sichuan University, No. 24 South Section 1 First Ring Road, Chengdu, 610065, Sichuan Province, China
| |
Collapse
|
2
|
Cate JD, Sullivan YZ, King MD. Inhibition of Microbial Growth and Biofilm Formation in Pure and Mixed Bacterial Samples. Microorganisms 2024; 12:1500. [PMID: 39065268 PMCID: PMC11278618 DOI: 10.3390/microorganisms12071500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Hydraulic fracturing, or fracking, requires large amounts of water to extract fossil fuel from rock formations. As a result of hydraulic fracturing, the briny wastewater, often termed back-produced fracturing or fracking water (FW), is pumped into holding ponds. One of the biggest challenges with produced water management is controlling microbial activity that could reduce the pond water's reusable layer and pose a significant environmental hazard. This study focuses on the characterization of back-produced water that has been hydraulically fractured using chemical and biological analysis and the development of a high-throughput screening method to evaluate and predict the antimicrobial effect of four naturally and commercially available acidic inhibitors (edetic acid, boric acid, tannic acid, and lactic acid) on the growth of the FW microbiome. Liquid cultures and biofilms of two laboratory model strains, the vegetative Escherichia coli MG1655, and the spore-forming Bacillus atrophaeus (also known as Bacillus globigii, BG) bacteria, were used as reference microorganisms. Planktonic bacteria in FW were more sensitive to antimicrobials than sessile bacteria in biofilms. Spore-forming BG bacteria exhibited more sensitivity to acidic inhibitors than the vegetative E. coli cells. Organic acids were the most effective bacterial growth inhibitors in liquid culture and biofilm.
Collapse
Affiliation(s)
| | | | - Maria D. King
- Biological and Agricultural Engineering, Texas A&M University, College Station, TX 77843, USA; (J.D.C.); (Y.Z.S.)
| |
Collapse
|
3
|
Dutra J, García G, Gomes R, Cardoso M, Côrtes Á, Silva T, de Jesus L, Rodrigues L, Freitas A, Waldow V, Laguna J, Campos G, Américo M, Akamine R, de Sousa M, Groposo C, Figueiredo H, Azevedo V, Góes-Neto A. Effective Biocorrosive Control in Oil Industry Facilities: 16S rRNA Gene Metabarcoding for Monitoring Microbial Communities in Produced Water. Microorganisms 2023; 11:846. [PMID: 37110269 PMCID: PMC10141917 DOI: 10.3390/microorganisms11040846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/04/2023] [Accepted: 03/07/2023] [Indexed: 03/29/2023] Open
Abstract
Microbiologically influenced corrosion (MIC) or biocorrosion is a complex biological and physicochemical process, Strategies for monitoring MIC are frequently based on microbial cultivation methods, while microbiological molecular methods (MMM) are not well-established in the oil industry in Brazil. Thus, there is a high demand for the development of effective protocols for monitoring biocorrosion with MMM. The main aim of our study was to analyze the physico-chemi- cal features of microbial communities occurring in produced water (PW) and in enrichment cultures in oil pipelines of the petroleum industry. In order to obtain strictly comparable results, the same samples were used for both culturing and metabarcoding. PW samples displayed higher phylogenetic diversity of bacteria and archaea whereas PW enrichments cultures showed higher dominance of bacterial MIC-associated genera. All samples had a core community composed of 19 distinct genera, with MIC-associated Desulfovibrio as the dominant genus. We observed significant associations between the PW and cultured PW samples, with a greater number of associations found between the cultured sulfate-reducing bacteria (SRB) samples and the uncultured PW samples. When evaluating the correlation between the physicochemical characteristics of the environment and the microbiota of the uncultivated samples, we suggest that the occurrence of anaerobic digestion metabolism can be characterized by well-defined phases. Therefore, the detection of microorganisms in uncultured PW by metabarcoding, along with physi-cochemical characterization, can be a more efficient method compared to the culturing method, as it is a less laborious and cost-effective method for monitoring MIC microbial agents in oil industry facilities.
Collapse
Affiliation(s)
- Joyce Dutra
- Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (J.D.); (R.G.); (V.A.)
- Department of Genetics Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (Á.C.); (T.S.); (L.d.J.); (A.F.); (J.L.); (G.C.); (M.A.)
| | - Glen García
- Departments of Bioinformatic, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (G.G.); (M.C.)
| | - Rosimeire Gomes
- Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (J.D.); (R.G.); (V.A.)
| | - Mariana Cardoso
- Departments of Bioinformatic, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (G.G.); (M.C.)
| | - Árley Côrtes
- Department of Genetics Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (Á.C.); (T.S.); (L.d.J.); (A.F.); (J.L.); (G.C.); (M.A.)
| | - Tales Silva
- Department of Genetics Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (Á.C.); (T.S.); (L.d.J.); (A.F.); (J.L.); (G.C.); (M.A.)
| | - Luís de Jesus
- Department of Genetics Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (Á.C.); (T.S.); (L.d.J.); (A.F.); (J.L.); (G.C.); (M.A.)
| | - Luciano Rodrigues
- Department of Veterinary Medicine, Faculty of Veterinary, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (L.R.); (H.F.)
| | - Andria Freitas
- Department of Genetics Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (Á.C.); (T.S.); (L.d.J.); (A.F.); (J.L.); (G.C.); (M.A.)
| | - Vinicius Waldow
- Petrobras Research and Development Center (CENPES), Petrobras, Rio de Janeiro 21941-915, RJ, Brazil; (V.W.); (R.A.); (M.d.S.); (C.G.)
| | - Juliana Laguna
- Department of Genetics Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (Á.C.); (T.S.); (L.d.J.); (A.F.); (J.L.); (G.C.); (M.A.)
| | - Gabriela Campos
- Department of Genetics Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (Á.C.); (T.S.); (L.d.J.); (A.F.); (J.L.); (G.C.); (M.A.)
| | - Monique Américo
- Department of Genetics Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (Á.C.); (T.S.); (L.d.J.); (A.F.); (J.L.); (G.C.); (M.A.)
| | - Rubens Akamine
- Petrobras Research and Development Center (CENPES), Petrobras, Rio de Janeiro 21941-915, RJ, Brazil; (V.W.); (R.A.); (M.d.S.); (C.G.)
| | - Maíra de Sousa
- Petrobras Research and Development Center (CENPES), Petrobras, Rio de Janeiro 21941-915, RJ, Brazil; (V.W.); (R.A.); (M.d.S.); (C.G.)
| | - Claudia Groposo
- Petrobras Research and Development Center (CENPES), Petrobras, Rio de Janeiro 21941-915, RJ, Brazil; (V.W.); (R.A.); (M.d.S.); (C.G.)
| | - Henrique Figueiredo
- Department of Veterinary Medicine, Faculty of Veterinary, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (L.R.); (H.F.)
| | - Vasco Azevedo
- Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (J.D.); (R.G.); (V.A.)
- Department of Genetics Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (Á.C.); (T.S.); (L.d.J.); (A.F.); (J.L.); (G.C.); (M.A.)
- Departments of Bioinformatic, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (G.G.); (M.C.)
| | - Aristóteles Góes-Neto
- Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (J.D.); (R.G.); (V.A.)
- Departments of Bioinformatic, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (G.G.); (M.C.)
| |
Collapse
|
4
|
Dutra J, Gomes R, Yupanqui García GJ, Romero-Cale DX, Santos Cardoso M, Waldow V, Groposo C, Akamine RN, Sousa M, Figueiredo H, Azevedo V, Góes-Neto A. Corrosion-influencing microorganisms in petroliferous regions on a global scale: systematic review, analysis, and scientific synthesis of 16S amplicon metagenomic studies. PeerJ 2023; 11:e14642. [PMID: 36655046 PMCID: PMC9841911 DOI: 10.7717/peerj.14642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 12/05/2022] [Indexed: 01/15/2023] Open
Abstract
The objective of the current systematic review was to evaluate the taxonomic composition and relative abundance of bacteria and archaea associated with the microbiologically influenced corrosion (MIC), and the prediction of their metabolic functions in different sample types from oil production and transport structures worldwide. To accomplish this goal, a total of 552 published studies on the diversity of microbial communities using 16S amplicon metagenomics in oil and gas industry facilities indexed in Scopus, Web of Science, PubMed and OnePetro databases were analyzed on 10th May 2021. The selection of articles was performed following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Only studies that performed amplicon metagenomics to obtain the microbial composition of samples from oil fields were included. Studies that evaluated oil refineries, carried out amplicon metagenomics directly from cultures, and those that used DGGE analysis were removed. Data were thoroughly investigated using multivariate statistics by ordination analysis, bivariate statistics by correlation, and microorganisms' shareability and uniqueness analysis. Additionally, the full deposited databases of 16S rDNA sequences were obtained to perform functional prediction. A total of 69 eligible articles was included for data analysis. The results showed that the sulfidogenic, methanogenic, acid-producing, and nitrate-reducing functional groups were the most expressive, all of which can be directly involved in MIC processes. There were significant positive correlations between microorganisms in the injection water (IW), produced water (PW), and solid deposits (SD) samples, and negative correlations in the PW and SD samples. Only the PW and SD samples displayed genera common to all petroliferous regions, Desulfotomaculum and Thermovirga (PW), and Marinobacter (SD). There was an inferred high microbial activity in the oil fields, with the highest abundances of (i) cofactor, (ii) carrier, and (iii) vitamin biosynthesis, associated with survival metabolism. Additionally, there was the presence of secondary metabolic pathways and defense mechanisms in extreme conditions. Competitive or inhibitory relationships and metabolic patterns were influenced by the physicochemical characteristics of the environments (mainly sulfate concentration) and by human interference (application of biocides and nutrients). Our worldwide baseline study of microbial communities associated with environments of the oil and gas industry will greatly facilitate the establishment of standardized approaches to control MIC.
Collapse
Affiliation(s)
- Joyce Dutra
- Graduate Program in Microbiology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Rosimeire Gomes
- Graduate Program in Microbiology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Glen Jasper Yupanqui García
- Graduate Program in Bioinformatics, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Mariana Santos Cardoso
- Graduate Program in Bioinformatics, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Vinicius Waldow
- Petrobras Research and Development Center (CENPES), Petrobras, Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Rubens N. Akamine
- Petrobras Research and Development Center (CENPES), Petrobras, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maira Sousa
- Petrobras Research and Development Center (CENPES), Petrobras, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Henrique Figueiredo
- Veterinary School, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Vasco Azevedo
- Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Aristóteles Góes-Neto
- Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
5
|
Semenova EM, Grouzdev DS, Sokolova DS, Tourova TP, Poltaraus AB, Potekhina NV, Shishina PN, Bolshakova MA, Avtukh AN, Ianutsevich EA, Tereshina VM, Nazina TN. Physiological and Genomic Characterization of Actinotalea subterranea sp. nov. from Oil-Degrading Methanogenic Enrichment and Reclassification of the Family Actinotaleaceae. Microorganisms 2022; 10:microorganisms10020378. [PMID: 35208832 PMCID: PMC8878594 DOI: 10.3390/microorganisms10020378] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 01/27/2022] [Accepted: 02/03/2022] [Indexed: 11/16/2022] Open
Abstract
The goal of the present work was to determine the diversity of prokaryotes involved in anaerobic oil degradation in oil fields. The composition of the anaerobic oil-degrading methanogenic enrichment obtained from an oil reservoir was determined by 16S rRNA-based survey, and the facultatively anaerobic chemoorganotrophic bacterial strain HO-Ch2T was isolated and studied using polyphasic taxonomy approach and genome sequencing. The strain HO-Ch2T grew optimally at 28 °C, pH 8.0, and 1–2% (w/v) NaCl. The 16S rRNA gene sequence of the strain HO-Ch2T had 98.8% similarity with the sequence of Actinotalea ferrariae CF5-4T. The genomic DNA G + C content of strain HO-Ch2T was 73.4%. The average nucleotide identity (ANI) and digital DNA–DNA hybridization (dDDH) values between the genome of strain HO-Ch2T and Actinotalea genomes were 79.8–82.0% and 20.5–22.2%, respectively, i.e., below the thresholds for species delineation. Based on the phylogenomic, phenotypic, and chemotaxonomic characterization, we propose strain HO-Ch2T (= VKM Ac-2850T = KCTC 49656T) as the type strain of a new species within the genus Actinotalea, with the name Actinotalea subterranea sp. nov. Based on the phylogenomic analysis of 187 genomes of Actinobacteria we propose the taxonomic revision of the genera Actinotalea and Pseudactinotalea and of the family Actinotaleaceae. We also propose the reclassification of Cellulomonas carbonis as Actinotalea carbonis comb. nov., Cellulomonas bogoriensis as Actinotalea bogoriensis comb. nov., Actinotalea caeni as Pseudactinotalea caeni comb. nov., and the transfer of the genus Pseudactinotalea to the family Ruaniaceae of the order Ruaniales.
Collapse
Affiliation(s)
- Ekaterina M. Semenova
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia; (E.M.S.); (D.S.S.); (T.P.T.); (E.A.I.); (V.M.T.)
| | | | - Diyana S. Sokolova
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia; (E.M.S.); (D.S.S.); (T.P.T.); (E.A.I.); (V.M.T.)
| | - Tatiyana P. Tourova
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia; (E.M.S.); (D.S.S.); (T.P.T.); (E.A.I.); (V.M.T.)
| | - Andrey B. Poltaraus
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia;
| | | | - Polina N. Shishina
- Geological Faculty, Lomonosov Moscow State University, 119991 Moscow, Russia; (P.N.S.); (M.A.B.)
| | - Maria A. Bolshakova
- Geological Faculty, Lomonosov Moscow State University, 119991 Moscow, Russia; (P.N.S.); (M.A.B.)
| | - Alexander N. Avtukh
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, Pushchino, 142290 Moscow, Russia;
| | - Elena A. Ianutsevich
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia; (E.M.S.); (D.S.S.); (T.P.T.); (E.A.I.); (V.M.T.)
| | - Vera M. Tereshina
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia; (E.M.S.); (D.S.S.); (T.P.T.); (E.A.I.); (V.M.T.)
| | - Tamara N. Nazina
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia; (E.M.S.); (D.S.S.); (T.P.T.); (E.A.I.); (V.M.T.)
- Correspondence: ; Tel.: +7-499-135-0341
| |
Collapse
|
6
|
Singh NK, Choudhary S. Bacterial and archaeal diversity in oil fields and reservoirs and their potential role in hydrocarbon recovery and bioprospecting. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:58819-58836. [PMID: 33410029 DOI: 10.1007/s11356-020-11705-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023]
Abstract
Hydrocarbon is a primary source of energy in the current urbanized society. Considering the increasing demand, worldwide oil productions are declining due to maturity of oil fields and because of difficulty in discovering new oil fields to substitute the exploited ones. To meet current and future energy demands, further exploitation of oil resources is highly required. Microorganisms inhabiting in these areas exhibit highly diverse catabolic activities to degrade, transform, or accumulate various hydrocarbons. Enrichment of hydrocarbon-utilizing bacteria in oil basin is caused by continuous long duration and low molecular weight hydrocarbon microseepage which plays a very important role as an indicator for petroleum prospecting. The important microbial metabolic processes in most of the oil reservoir are sulfate reduction, fermentation, acetogenesis, methanogenesis, NO3- reduction, and Fe (III) and Mn (IV) reduction. The microorganisms residing in these sites have critical control on petroleum composition, recovery, and production methods. Physical characteristics of heavy oil are altered by microbial biotransformation and biosurfactant production. Considering oil to be one of the most vital energy resources, it is important to have a comprehensive understanding of petroleum microbiology. This manuscript reviews the recent research work referring to the diversity of bacteria in oil field and reservoir sites and their applications for enhancing oil transformation in the target reservoir and geomicrobial prospecting scope for petroleum exploration.
Collapse
Affiliation(s)
- Nishi Kumari Singh
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Vanasthali, Rajasthan, 304022, India
| | - Sangeeta Choudhary
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Vanasthali, Rajasthan, 304022, India.
| |
Collapse
|
7
|
Hu B, Zhao JY, Nie Y, Qin XY, Zhang KD, Xing JM, Wu XL. Bioemulsification and Microbial Community Reconstruction in Thermally Processed Crude Oil. Microorganisms 2021; 9:microorganisms9102054. [PMID: 34683375 PMCID: PMC8539444 DOI: 10.3390/microorganisms9102054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/10/2021] [Accepted: 09/11/2021] [Indexed: 11/16/2022] Open
Abstract
Utilization of low-cost, environmental-friendly microbial enhanced oil recovery (MEOR) techniques in thermal recovery-processed oil reservoirs is potentially feasible. However, how exogenous microbes facilitate crude oil recovery in this deep biosphere, especially under mesophilic conditions, is scarcely investigated. In this study, a thermal treatment and a thermal recurrence were processed on crude oil collected from Daqing Oilfield, and then a 30-day incubation of the pretreated crude oil at 37 °C was operated with the addition of two locally isolated hydrocarbon-degrading bacteria, Amycolicicoccus subflavus DQS3-9A1T and Dietzia sp. DQ12-45-1b, respectively. The pH, surface tension, hydrocarbon profiles, culture-dependent cell densities and taxonomies, and whole and active microbial community compositions were determined. It was found that both A. subflavus DQS3-9A1T and Dietzia sp. DQ12-45-1b successfully induced culture acidification, crude oil bioemulsification, and residual oil sub-fraction alteration, no matter whether the crude oil was thermally pretreated or not. Endogenous bacteria which could proliferate on double heated crude oil were very few. Compared with A. subflavus, Dietzia sp. was substantially more effective at inducing the proliferation of varied species in one-time heated crude oil. Meanwhile, the effects of Dietzia sp. on crude oil bioemulsification and hydrocarbon profile alteration were not significantly influenced by the ploidy increasing of NaCl contents (from 5 g/L to 50 g/L), but the reconstructed bacterial communities became very simple, in which the Dietzia genus was predominant. Our study provides useful information to understand MEOR trials on thermally processed oil reservoirs, and proves that this strategy could be operated by using the locally available hydrocarbon-degrading microbes in mesophilic conditions with different salinity degrees.
Collapse
Affiliation(s)
- Bing Hu
- Group of Biochemical Engineering, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102401, China;
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology of China, Beijing 102401, China
| | - Jie-Yu Zhao
- College of Engineering, Peking University, Beijing 100871, China; (J.-Y.Z.); (X.-Y.Q.); (K.-D.Z.)
| | - Yong Nie
- College of Engineering, Peking University, Beijing 100871, China; (J.-Y.Z.); (X.-Y.Q.); (K.-D.Z.)
- Correspondence: (Y.N.); (X.-L.W.)
| | - Xiao-Yu Qin
- College of Engineering, Peking University, Beijing 100871, China; (J.-Y.Z.); (X.-Y.Q.); (K.-D.Z.)
| | - Kai-Duan Zhang
- College of Engineering, Peking University, Beijing 100871, China; (J.-Y.Z.); (X.-Y.Q.); (K.-D.Z.)
| | - Jian-Min Xing
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China;
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiao-Lei Wu
- College of Engineering, Peking University, Beijing 100871, China; (J.-Y.Z.); (X.-Y.Q.); (K.-D.Z.)
- Institute of Ecology, Peking University, Beijing 100871, China
- Correspondence: (Y.N.); (X.-L.W.)
| |
Collapse
|
8
|
Pal S, Dutta A, Sarkar J, Roy A, Sar P, Kazy SK. Exploring the diversity and hydrocarbon bioremediation potential of microbial community in the waste sludge of Duliajan oil field, Assam, India. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:50074-50093. [PMID: 33945094 DOI: 10.1007/s11356-021-13744-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 03/26/2021] [Indexed: 06/12/2023]
Abstract
Microbial community analysis of crude oil containing sludge collected from Duliajan oil field, Assam, India, showed the predominance of hydrocarbon-degrading bacteria such as Pseudomonas (20.1%), Pseudoxanthomonas (15.8%), Brevundimonas (1.6%), and Bacillus (0.8%) alongwith anaerobic, fermentative, nitrogen-fixing, nitrate-, sulfate-, and metal-reducing, syntrophic bacteria, and methanogenic archaea. Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) analysis indicated gene collection for potential hydrocarbon degradation, lipid, nitrogen, sulfur, and methane metabolism. The culturable microbial community was predominated by Pseudomonas and Bacillus with the metabolic potential for utilizing diverse hydrocarbons, crude oil, and actual petroleum sludge as sole carbon source during growth and tolerating various environmental stresses prevailing in such contaminated sites. More than 90% of the isolated strains could produce biosurfactant and exhibit catechol 2,3-dioxygenase activity. Nearly 30% of the isolates showed alkane hydroxylase activity with the maximum specific activity of 0.54 μmol min-1 mg-1. The study provided better insights into the microbial diversity and functional potential within the crude oil containing sludge which could be exploited for in situ bioremediation of contaminated sites.
Collapse
Affiliation(s)
- Siddhartha Pal
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, WB, 713209, India
| | - Avishek Dutta
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, WB, 721302, India
- School of Bio Science, Indian Institute of Technology Kharagpur, Kharagpur, WB, 721302, India
| | - Jayeeta Sarkar
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, WB, 721302, India
| | - Ajoy Roy
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, WB, 713209, India
| | - Pinaki Sar
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, WB, 721302, India
| | - Sufia K Kazy
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, WB, 713209, India.
| |
Collapse
|
9
|
Li A, Li G, Yang J, Yang Y, Liang Y, Zhang D. Geo-distribution pattern of microbial carbon cycling genes responsive to petroleum contamination in continental horizontal oilfields. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 731:139188. [PMID: 32402908 DOI: 10.1016/j.scitotenv.2020.139188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 05/01/2020] [Accepted: 05/01/2020] [Indexed: 06/11/2023]
Abstract
Contamination significantly affects soil microbial community structures, and the metabolisms of organic contaminants might particularly alter soil carbon cycling by shaping microbial carbon cycling genes. Although numerous studies have discussed the impacts of petroleum contamination on soil bacterial communities and relevant degrading genes, there is no work addressing how soil carbon cycling genes are affected by petroleum contamination. In this study, 77 soil samples were collected from five typical oilfields horizontally located in China to explore the influence of environmental variables and petroleum contamination on microbial carbon cycling genes. Results from Geochip suggested a geographic-determined distribution of carbon cycling genes. Although no significant correlation was observed between carbon cycling genes and soil physio-chemical properties for all soils, some relationships were identified in specific oilfield. Principle component analysis indicated that soil physio-chemical properties, rather than petroleum contamination disturbance, are the key factors determining the degree of sample dispersion, whereas environmental variables predominantly control the degree of sample aggregation. Co-occurrence ecological network analysis revealed a more complex interactions of all functional genes in petroleum-contaminated soils, and carbon cycling genes were grouped with nitrogen related genes in petroleum-contaminated communities. Soil moisture and heterogeneity were identified as the main drivers for the abundance and diversity of carbon cycling genes, particularly in petroleum-contaminated soils. These results are attributing to the fewer impacts of petroleum contamination on the diversity of carbon cycling genes than soil physio-chemical properties, and soil carbon cycling genes are mainly driven by geographic location and petroleum contamination together. Our findings provide deeper insight into the influence of petroleum contamination in soil microbial functions related to carbon cycling.
Collapse
Affiliation(s)
- Aiyang Li
- School of Environment, Tsinghua University, Beijing 100084, People's Republic of China; State Key Joint Lab of Environment Simulation & Pollution Control, Tsinghua University, Beijing 100084, People's Republic of China
| | - Guanghe Li
- School of Environment, Tsinghua University, Beijing 100084, People's Republic of China; State Key Joint Lab of Environment Simulation & Pollution Control, Tsinghua University, Beijing 100084, People's Republic of China; National Engineering Laboratory for Site Remediation Technologies, Beijing 100015, People's Republic of China
| | - Juejie Yang
- School of Environment, Tsinghua University, Beijing 100084, People's Republic of China; State Key Joint Lab of Environment Simulation & Pollution Control, Tsinghua University, Beijing 100084, People's Republic of China
| | - Yunfeng Yang
- School of Environment, Tsinghua University, Beijing 100084, People's Republic of China; State Key Joint Lab of Environment Simulation & Pollution Control, Tsinghua University, Beijing 100084, People's Republic of China
| | - Yuting Liang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, People's Republic of China.
| | - Dayi Zhang
- School of Environment, Tsinghua University, Beijing 100084, People's Republic of China; State Key Joint Lab of Environment Simulation & Pollution Control, Tsinghua University, Beijing 100084, People's Republic of China; National Engineering Laboratory for Site Remediation Technologies, Beijing 100015, People's Republic of China.
| |
Collapse
|
10
|
Viggor S, Jõesaar M, Soares-Castro P, Ilmjärv T, Santos PM, Kapley A, Kivisaar M. Microbial Metabolic Potential of Phenol Degradation in Wastewater Treatment Plant of Crude Oil Refinery: Analysis of Metagenomes and Characterization of Isolates. Microorganisms 2020; 8:E652. [PMID: 32365784 PMCID: PMC7285258 DOI: 10.3390/microorganisms8050652] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/24/2020] [Accepted: 04/28/2020] [Indexed: 01/30/2023] Open
Abstract
The drilling, processing and transportation of oil are the main sources of pollution in water and soil. The current work analyzes the microbial diversity and aromatic compounds degradation potential in the metagenomes of communities in the wastewater treatment plant (WWTP) of a crude oil refinery. By focusing on the degradation of phenol, we observed the involvement of diverse indigenous microbial communities at different steps of the WWTP. The anaerobic bacterial and archaeal genera were replaced by aerobic and facultative anaerobic bacteria through the biological treatment processes. The phyla Proteobacteria, Bacteroidetes and Planctomycetes were dominating at different stages of the treatment. Most of the established protein sequences of the phenol degradation key enzymes belonged to bacteria from the class Alphaproteobacteria. From 35 isolated strains, 14 were able to grow on aromatic compounds, whereas several phenolic compound-degrading strains also degraded aliphatic hydrocarbons. Two strains, Acinetobacter venetianus ICP1 and Pseudomonas oleovorans ICTN13, were able to degrade various aromatic and aliphatic pollutants and were further characterized by whole genome sequencing and cultivation experiments in the presence of phenol to ascertain their metabolic capacity in phenol degradation. When grown alone, the intermediates of catechol degradation, the meta or ortho pathways, accumulated into the growth environment of these strains. In the mixed cultures of the strains ICP1 and ICTN13, phenol was degraded via cooperation, in which the strain ICP1 was responsible for the adherence of cells and ICTN13 diminished the accumulation of toxic intermediates.
Collapse
Affiliation(s)
- Signe Viggor
- Institute of Molecular and Cell Biology, University of Tartu, 23 Riia Street, 51010 Tartu, Estonia; (M.J.); (T.I.); (M.K.)
| | - Merike Jõesaar
- Institute of Molecular and Cell Biology, University of Tartu, 23 Riia Street, 51010 Tartu, Estonia; (M.J.); (T.I.); (M.K.)
| | - Pedro Soares-Castro
- Centre of Molecular and Environmental Biology (CBMA), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (P.S.-C.); (P.M.S.)
| | - Tanel Ilmjärv
- Institute of Molecular and Cell Biology, University of Tartu, 23 Riia Street, 51010 Tartu, Estonia; (M.J.); (T.I.); (M.K.)
| | - Pedro M. Santos
- Centre of Molecular and Environmental Biology (CBMA), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (P.S.-C.); (P.M.S.)
| | - Atya Kapley
- Director’s Research Division, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440 020, India;
| | - Maia Kivisaar
- Institute of Molecular and Cell Biology, University of Tartu, 23 Riia Street, 51010 Tartu, Estonia; (M.J.); (T.I.); (M.K.)
| |
Collapse
|
11
|
Innovating Computational Biology and Intelligent Medicine: ICIBM 2019 Special Issue. Genes (Basel) 2020; 11:genes11040437. [PMID: 32316483 PMCID: PMC7231250 DOI: 10.3390/genes11040437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 12/03/2022] Open
Abstract
The International Association for Intelligent Biology and Medicine (IAIBM) is a nonprofit organization that promotes intelligent biology and medical science. It hosts an annual International Conference on Intelligent Biology and Medicine (ICIBM), which was established in 2012. The ICIBM 2019 was held from 9 to 11 June 2019 in Columbus, Ohio, USA. Out of the 105 original research manuscripts submitted to the conference, 18 were selected for publication in a Special Issue in Genes. The topics of the selected manuscripts cover a wide range of current topics in biomedical research including cancer informatics, transcriptomic, computational algorithms, visualization and tools, deep learning, and microbiome research. In this editorial, we briefly introduce each of the manuscripts and discuss their contribution to the advance of science and technology.
Collapse
|