1
|
Zhou Y, Yan X, Wu Y, Qi Y, Yu T, Pan F, He L, Guo Z, Hu Z. Bacteria escape macrophage-mediated phagocytosis via targeting apurinic/apyrimidinic endonuclease 1 in sepsis. Int J Biol Macromol 2025; 305:141278. [PMID: 39984093 DOI: 10.1016/j.ijbiomac.2025.141278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 02/07/2025] [Accepted: 02/17/2025] [Indexed: 02/23/2025]
Abstract
Sepsis is a serious disease resulting from an imbalanced host response to bacterial infection, in which macrophages play a crucial role. However, the connection between bacterial infection and macrophage phagocytosis remains largely unknown. Here, we provide evidence supporting the role of apurinic/apyrimidinic endonuclease 1 (APE1) in regulating bacterial infection and macrophage immune function during sepsis. We confirmed down-regulation of APE1 expression in macrophages from both in vitro and in vivo septic models. APE1 deficiency significantly increases the mortality rate of septic mice. Experiments using fluorescent latex beads and Escherichia coli uptake demonstrated that reduced APE1 levels inhibit macrophage phagocytosis. Specifically, APE1 deficiency activates GSK3β, leading to the ubiquitination and subsequent proteasomal degradation of NRF2, thereby reducing the expression of phagocytic receptors. Additionally, APE1 participates in the process through its redox function. In conclusion, APE1 is a critical protein involved in the evasion of macrophage phagocytosis by bacteria. Our study suggests that targeting the APE1/NRF2 axis could serve as a promising therapeutic strategy for sepsis and bacterial infections.
Collapse
Affiliation(s)
- Yu Zhou
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing 210023, China
| | - Xinyu Yan
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing 210023, China
| | - Ya Wu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing 210023, China
| | - Yannan Qi
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing 210023, China
| | - Tingting Yu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing 210023, China
| | - Feiyan Pan
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing 210023, China
| | - Lingfeng He
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing 210023, China
| | - Zhigang Guo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing 210023, China.
| | - Zhigang Hu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing 210023, China.
| |
Collapse
|
2
|
Al-Mutawa J. Genetic contribution between APE1 variants in polycystic ovarian syndrome. Saudi J Biol Sci 2023; 30:103563. [PMID: 36816727 PMCID: PMC9929583 DOI: 10.1016/j.sjbs.2023.103563] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/02/2022] [Accepted: 01/08/2023] [Indexed: 01/15/2023] Open
Abstract
Introduction Polycystic Ovarian Syndrome (PCOS) has been identified as a gynecological, hormonal, and metabolic condition in women of reproductive age. Genetic studies can contribute to understand the pathogenesis of PCOS; which can be beneficial in early diagnosis and long-term management of the disease. Apurinic/apyrimidinic endonuclease 1 (APE1) has been related in the literature to polycystic ovarian syndrome. Aim The purpose of this study was to investigate the effects of -656 T > G and 1349 T > G single nucleotide polymorphisms (SNPs) in the APE1 gene in Saudi women with PCOS. Methods This study includes 100 PCOS women and 100 healthy controls were genotyped for -656 T > G and 1349 T > G SNPs using PCR-RFLP method. Serum sample was used for FBG and lipid profile tests. The obtained biochemical and genotypes data were entered into Excel and utilized for statistical analysis. Results Clinical data presented in Table 1 was used to calculate the t-tests between PCOS and control subjects and results indicate age, weight, BMI, TG, LDLC and PCOS family history was associated (p < 0.0001). Genotype and allele frequencies showed the negative association in -656 T > G SNP (GG vs TT: OR-1.15 (0.61-2.17); p = 0.65 and GG + TG vs TT: OR-1.17 (0.67-2.04); p = 0.57) and positive association in 1349 T > G SNP (GG vs TT: OR-3.52 (1.48-8.36); p = 0.003 and GG + TG vs TT: OR-2.84 (1.27-6.31); p = 0.008) in APE1 gene. Anova analysis was not associated with any one of the involved parameters (p > 0.05). Conclusion This study found that the 1349 T > G SNP was related with PCOS in Saudi women. However, the -656SNP had no favorable effect on the APE1 gene.
Collapse
Affiliation(s)
- Johara Al-Mutawa
- Obstetrics and Gynecology Department, College of Medicine, King Khalid University Hospital, Riyadh, Saudi Arabia
| |
Collapse
|
3
|
Oliveira TT, Coutinho LG, de Oliveira LOA, Timoteo ARDS, Farias GC, Agnez-Lima LF. APE1/Ref-1 Role in Inflammation and Immune Response. Front Immunol 2022; 13:793096. [PMID: 35296074 PMCID: PMC8918667 DOI: 10.3389/fimmu.2022.793096] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 02/07/2022] [Indexed: 12/12/2022] Open
Abstract
Apurinic/apyrimidinic endonuclease 1/redox effector factor 1 (APE1/Ref-1) is a multifunctional enzyme that is essential for maintaining cellular homeostasis. APE1 is the major apurinic/apyrimidinic endonuclease in the base excision repair pathway and acts as a redox-dependent regulator of several transcription factors, including NF-κB, AP-1, HIF-1α, and STAT3. These functions render APE1 vital to regulating cell signaling, senescence, and inflammatory pathways. In addition to regulating cytokine and chemokine expression through activation of redox sensitive transcription factors, APE1 participates in other critical processes in the immune response, including production of reactive oxygen species and class switch recombination. Furthermore, through participation in active chromatin demethylation, the repair function of APE1 also regulates transcription of some genes, including cytokines such as TNFα. The multiple functions of APE1 make it an essential regulator of the pathogenesis of several diseases, including cancer and neurological disorders. Therefore, APE1 inhibitors have therapeutic potential. APE1 is highly expressed in the central nervous system (CNS) and participates in tissue homeostasis, and its roles in neurodegenerative and neuroinflammatory diseases have been elucidated. This review discusses known roles of APE1 in innate and adaptive immunity, especially in the CNS, recent evidence of a role in the extracellular environment, and the therapeutic potential of APE1 inhibitors in infectious/immune diseases.
Collapse
Affiliation(s)
- Thais Teixeira Oliveira
- Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte (UFRN), Natal, Brazil
| | - Leonam Gomes Coutinho
- Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Norte (IFRN), São Paulo do Potengi, Brazil
| | | | | | - Guilherme Cavalcanti Farias
- Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte (UFRN), Natal, Brazil
| | - Lucymara Fassarella Agnez-Lima
- Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte (UFRN), Natal, Brazil
- *Correspondence: Lucymara Fassarella Agnez-Lima,
| |
Collapse
|
4
|
Li Y, Zhao X, Xiao H, Yang B, Liu J, Rao W, Dai X, Li M, Dai N, Yang Y, Wang D. APE1 may influence CD4+ naïve T cells on recurrence free survival in early stage NSCLC. BMC Cancer 2021; 21:233. [PMID: 33676448 PMCID: PMC7937314 DOI: 10.1186/s12885-021-07950-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 02/22/2021] [Indexed: 11/20/2022] Open
Abstract
Background It was demonstrated that multifunctional protein APE1 (Apurinic/apyrimidinic endonuclease 1) is closely related to tumor immune microenvironment in a number of investigations, Meanwhile, the abundance of tumor infiltrating lymphocytes (TILs) has been shown as a prognosis indicator in some researches. However, it remains unclear whether APE1 is involved in the process of TILs affecting the prognosis of patients. To this end, we investigated the associations between APE1 and TILs in non-small cell lung cancer (NSCLC) and explored whether APE1 would influence the associations of CD4+ T cells infiltration with the prognosis of patients. Methods Genome-wide expression datasets were obtained from the Gene Expression Omnibus (GEO) public database under accession number GSE68465, GSE30219, GSE31210 and GSE50081. MCPcounter and CIBERSORT analysis was conducted to evaluate the abundance of TILs in 1006 NSCLC patients of GEO database. Spearman correlation tests were used to evaluate correlations between abundance of various TILs and APE1 expression. RFS (recurrence free survival) was estimated using the Kaplan–Meier method and the Cox proportional-hazards model. The expression level of APE1 and tumor-infiltrating CD4+ T cells was evaluated by immunohistochemistry (IHC). Results The results showed that the abundance of CD4+ naïve T cells was negatively associated with the APE1 expression. CD4+ naïve T cells infiltration was a favorable prognostic factor for RFS, however, there was no effect of CD4+ T cells infiltration on RFS in patients with high APE1 expression. Subsequently, it was further confirmed that CD4+ T cells infiltration was negatively associated with the APE1 expression level in 108 NSCLC tissue samples; high CD4+ T cells infiltration was associated with longer RFS in low APE1 expression group but not in APE1 high expression group. Conclusion These results suggested that APE1 may affect the relationship between CD4+ T cells infiltration and prognosis in NSCLC. This study provides new insights into predictors of outcome in patients with NSCLC, and suggests that combining immunotherapy and APE1-targeted therapy may be a promising treatment for NSCLC. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-07950-1.
Collapse
Affiliation(s)
- Yanping Li
- School of Nursing, Chongqing Medical and Pharmaceutical College, No. 82, Daxuecheng Rd, Shapingba Dist, Chongqing, 401331, China
| | - Xiaolong Zhao
- Cancer Center, Daping Hospital, Army Medical University (Third Military Medical University), No. 10 Changjiang Zhi Rd., Yuzhong Dist, Chongqing, 400042, China
| | - He Xiao
- Cancer Center, Daping Hospital, Army Medical University (Third Military Medical University), No. 10 Changjiang Zhi Rd., Yuzhong Dist, Chongqing, 400042, China
| | - Bo Yang
- Cancer Center, Daping Hospital, Army Medical University (Third Military Medical University), No. 10 Changjiang Zhi Rd., Yuzhong Dist, Chongqing, 400042, China
| | - Jie Liu
- Cancer Center, Daping Hospital, Army Medical University (Third Military Medical University), No. 10 Changjiang Zhi Rd., Yuzhong Dist, Chongqing, 400042, China
| | - Wen Rao
- Cancer Center, Daping Hospital, Army Medical University (Third Military Medical University), No. 10 Changjiang Zhi Rd., Yuzhong Dist, Chongqing, 400042, China
| | - Xiaoyan Dai
- Cancer Center, Daping Hospital, Army Medical University (Third Military Medical University), No. 10 Changjiang Zhi Rd., Yuzhong Dist, Chongqing, 400042, China
| | - Mengxia Li
- Cancer Center, Daping Hospital, Army Medical University (Third Military Medical University), No. 10 Changjiang Zhi Rd., Yuzhong Dist, Chongqing, 400042, China
| | - Nan Dai
- Cancer Center, Daping Hospital, Army Medical University (Third Military Medical University), No. 10 Changjiang Zhi Rd., Yuzhong Dist, Chongqing, 400042, China
| | - Yuxin Yang
- Cancer Center, Daping Hospital, Army Medical University (Third Military Medical University), No. 10 Changjiang Zhi Rd., Yuzhong Dist, Chongqing, 400042, China
| | - Dong Wang
- Cancer Center, Daping Hospital, Army Medical University (Third Military Medical University), No. 10 Changjiang Zhi Rd., Yuzhong Dist, Chongqing, 400042, China.
| |
Collapse
|