1
|
González-Fernández M, Perry C, Gerhards NM, Francica P, Rottenberg S. Docetaxel response in BRCA1,p53-deficient mammary tumor cells is affected by Huntingtin and BAP1. Proc Natl Acad Sci U S A 2024; 121:e2402849121. [PMID: 39705313 DOI: 10.1073/pnas.2402849121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 10/30/2024] [Indexed: 12/22/2024] Open
Abstract
Taxanes are frequently used anticancer drugs known to kill tumor cells by inducing mitotic aberrations and segregation defects. A defining feature of specific cancers, notably triple-negative breast cancer (TNBC) and particularly those deficient in BRCA1, is chromosomal instability (CIN). Here, we focused on understanding the mechanisms of docetaxel-induced cytotoxicity, especially in the context of BRCA1-deficient TNBC. Using functional genetic screens in CIN+ cells, we identified genes that mediate docetaxel response and found an interaction between Huntingtin (HTT) and BRCA1-associated protein-1 (BAP1). We employed Brca1-/-;p53-/- mammary tumor cells, derived from genetically engineered mouse tumors that closely mimic the human disease, to investigate the role of these genes in CIN+ BRCA1-deficient cells. Specifically, we observed that loss of HTT sensitizes CIN+ BRCA1-deficient mammary tumor cells to docetaxel by shortening mitotic spindle poles and increasing spindle multipolarity. In contrast, BAP1 depletion protected cells against these spindle aberrations by restoring spindle length and enhancing mitotic clustering of the extra centrosomes. In conclusion, our findings shed light on the roles of HTT and BAP1 in controlling mitotic spindle multipolarity and centrosome clustering, specifically in the absence of BRCA1. This affects the response to microtubule-targeting agents and suggests that further studies of the interaction of these genes with the mitotic spindle may provide useful insights into how to target CIN+ cells, particularly in the challenging therapeutic landscape of BRCA1-deficient TNBC.
Collapse
Affiliation(s)
- Martín González-Fernández
- Department of Infectious Diseases and Pathobiology, Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
- Bern Center for Precision Medicine, Department of Biomedical Research, University of Bern, 3012 Bern, Switzerland
| | - Carmen Perry
- Department of Infectious Diseases and Pathobiology, Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
- Bern Center for Precision Medicine, Department of Biomedical Research, University of Bern, 3012 Bern, Switzerland
| | - Nora Merete Gerhards
- Department of Infectious Diseases and Pathobiology, Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
| | - Paola Francica
- Department of Infectious Diseases and Pathobiology, Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
- Bern Center for Precision Medicine, Department of Biomedical Research, University of Bern, 3012 Bern, Switzerland
| | - Sven Rottenberg
- Department of Infectious Diseases and Pathobiology, Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
- Bern Center for Precision Medicine, Department of Biomedical Research, University of Bern, 3012 Bern, Switzerland
| |
Collapse
|
2
|
Dubey PK, Dubey S, Singh S, Bhat PD, Pogwizd S, Krishnamurthy P. Identification and development of Tetra-ARMS PCR-based screening test for a genetic variant of OLA1 (Tyr254Cys) in the human failing heart. PLoS One 2024; 19:e0293105. [PMID: 38889130 PMCID: PMC11185490 DOI: 10.1371/journal.pone.0293105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 06/01/2024] [Indexed: 06/20/2024] Open
Abstract
Obg-like ATPase 1 (OLA1) protein has GTP and ATP hydrolyzing activities and is important for cellular growth and survival. The human OLA1 gene maps to chromosome 2 (locus 2q31.1), near Titin (TTN), which is associated with familial dilated cardiomyopathy (DCM). In this study, we found that expression of OLA1 was significantly downregulated in failing human heart tissue (HF) compared to non-failing hearts (NF). Using the Sanger sequencing method, we characterized the human OLA1 gene and screened for mutations in the OLA1 gene in patients with failing and non-failing hearts. Among failing and non-failing heart patients, we found 15 different mutations in the OLA1 gene, including two transversions, one substitution, one deletion, and eleven transitions. All mutations were intronic except for a non-synonymous 5144A>G, resulting in 254Tyr>Cys in exon 8 of the OLA1 gene. Furthermore, haplotype analysis of these mutations revealed that these single nucleotide polymorphisms (SNPs) are linked to each other, resulting in disease-specific haplotypes. Additionally, to screen the 254Tyr>Cys point mutation, we developed a cost-effective, rapid genetic screening PCR test that can differentiate between homozygous (AA and GG) and heterozygous (A/G) genotypes. Our results demonstrate that this PCR test can effectively screen for OLA1 mutation-associated cardiomyopathy in human patients using easily accessible cells or tissues, such as blood cells. These findings have important implications for the diagnosis and treatment of cardiomyopathy.
Collapse
Affiliation(s)
- Praveen K. Dubey
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Shubham Dubey
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Sarojini Singh
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Purnima Devaki Bhat
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Steven Pogwizd
- Comprehensive Cardiovascular Center, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Prasanna Krishnamurthy
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| |
Collapse
|
3
|
Yoshino Y, Ogoh H, Iichi Y, Sasaki T, Yoshida T, Ichimura S, Nakayama M, Xi W, Fujita H, Kikuchi M, Fang Z, Li X, Abe T, Futakuchi M, Nakamura Y, Watanabe T, Chiba N. Knockout of Brca1-interacting factor Ola1 in female mice induces tumors with estrogen suppressible centrosome amplification. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167138. [PMID: 38537683 DOI: 10.1016/j.bbadis.2024.167138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 03/06/2024] [Accepted: 03/18/2024] [Indexed: 04/08/2024]
Abstract
Obg-like ATPase 1 (OLA1) is a binding protein of Breast cancer gene 1 (BRCA1), germline pathogenic variants of which cause hereditary breast cancer. Cancer-associated variants of BRCA1 and OLA1 are deficient in the regulation of centrosome number. Although OLA1 might function as a tumor suppressor, the relevance of OLA1 deficiency to carcinogenesis is unclear. Here, we generated Ola1 knockout mice. Aged female Ola1+/- mice developed lymphoproliferative diseases, including malignant lymphoma. The lymphoma tissues had low expression of Ola1 and an increase in the number of cells with centrosome amplification. Interestingly, the proportion of cells with centrosome amplification in normal spleen from Ola1+/- mice was higher in male mice than in female mice. In human cells, estrogen stimulation attenuated centrosome amplification induced by OLA1 knockdown. Previous reports indicate that prominent centrosome amplification causes cell death but does not promote tumorigenesis. Thus, in the current study, the mild centrosome amplification observed under estrogen stimulation in Ola1+/- female mice is likely more tumorigenic than the prominent centrosome amplification observed in Ola1+/- male mice. Our findings provide a possible sex-dependent mechanism of the tumor suppressor function of OLA1.
Collapse
Affiliation(s)
- Yuki Yoshino
- Department of Cancer Biology, Institute of Aging, Development, and Cancer, Tohoku University, 4-1 Seiryomachi, Aoba-ku, Sendai 980-8575, Japan; Laboratory of Cancer Biology, Graduate School of Life Sciences, Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan; Department of Cancer Biology, Tohoku University Graduate School of Medicine, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan
| | - Honami Ogoh
- Department of Biological Science, Graduate School of Humanities and Sciences, Nara Women's University, Kitauoya-Nishimachi, Nara, 630-8506, Japan
| | - Yudai Iichi
- Department of Cancer Biology, Institute of Aging, Development, and Cancer, Tohoku University, 4-1 Seiryomachi, Aoba-ku, Sendai 980-8575, Japan; Laboratory of Cancer Biology, Graduate School of Life Sciences, Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan
| | - Tomohiro Sasaki
- Department of Cancer Biology, Institute of Aging, Development, and Cancer, Tohoku University, 4-1 Seiryomachi, Aoba-ku, Sendai 980-8575, Japan; Laboratory of Cancer Biology, Graduate School of Life Sciences, Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan
| | - Takahiro Yoshida
- Department of Cancer Biology, Institute of Aging, Development, and Cancer, Tohoku University, 4-1 Seiryomachi, Aoba-ku, Sendai 980-8575, Japan; Laboratory of Cancer Biology, Graduate School of Life Sciences, Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan
| | - Shiori Ichimura
- Department of Cancer Biology, Institute of Aging, Development, and Cancer, Tohoku University, 4-1 Seiryomachi, Aoba-ku, Sendai 980-8575, Japan; Laboratory of Cancer Biology, Graduate School of Life Sciences, Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan
| | - Masahiro Nakayama
- Department of Molecular Immunology, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan; Laboratory of Molecular Immunology, Graduate School of Life Sciences, Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan
| | - Wu Xi
- Department of Cancer Biology, Institute of Aging, Development, and Cancer, Tohoku University, 4-1 Seiryomachi, Aoba-ku, Sendai 980-8575, Japan; Laboratory of Cancer Biology, Graduate School of Life Sciences, Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan
| | - Hiroki Fujita
- Department of Cancer Biology, Institute of Aging, Development, and Cancer, Tohoku University, 4-1 Seiryomachi, Aoba-ku, Sendai 980-8575, Japan; Laboratory of Cancer Biology, Graduate School of Life Sciences, Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan
| | - Megumi Kikuchi
- Department of Cancer Biology, Institute of Aging, Development, and Cancer, Tohoku University, 4-1 Seiryomachi, Aoba-ku, Sendai 980-8575, Japan; Laboratory of Cancer Biology, Graduate School of Life Sciences, Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan
| | - Zhenzhou Fang
- Department of Cancer Biology, Institute of Aging, Development, and Cancer, Tohoku University, 4-1 Seiryomachi, Aoba-ku, Sendai 980-8575, Japan; Department of Cancer Biology, Tohoku University Graduate School of Medicine, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan
| | - Xingming Li
- Department of Cancer Biology, Institute of Aging, Development, and Cancer, Tohoku University, 4-1 Seiryomachi, Aoba-ku, Sendai 980-8575, Japan; Laboratory of Cancer Biology, Graduate School of Life Sciences, Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan
| | - Takaya Abe
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Mitsuru Futakuchi
- Department of Pathology, Yamagata University Faculty of Medicine, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Yasuhiro Nakamura
- Division of Pathology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, 1-15-1 Fukumuro, Miyagino-ku, Sendai 983-8536, Japan
| | - Toshio Watanabe
- Department of Biological Science, Graduate School of Humanities and Sciences, Nara Women's University, Kitauoya-Nishimachi, Nara, 630-8506, Japan
| | - Natsuko Chiba
- Department of Cancer Biology, Institute of Aging, Development, and Cancer, Tohoku University, 4-1 Seiryomachi, Aoba-ku, Sendai 980-8575, Japan; Laboratory of Cancer Biology, Graduate School of Life Sciences, Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan; Department of Cancer Biology, Tohoku University Graduate School of Medicine, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan.
| |
Collapse
|
4
|
Niarakis A, Ostaszewski M, Mazein A, Kuperstein I, Kutmon M, Gillespie ME, Funahashi A, Acencio ML, Hemedan A, Aichem M, Klein K, Czauderna T, Burtscher F, Yamada TG, Hiki Y, Hiroi NF, Hu F, Pham N, Ehrhart F, Willighagen EL, Valdeolivas A, Dugourd A, Messina F, Esteban-Medina M, Peña-Chilet M, Rian K, Soliman S, Aghamiri SS, Puniya BL, Naldi A, Helikar T, Singh V, Fernández MF, Bermudez V, Tsirvouli E, Montagud A, Noël V, Ponce-de-Leon M, Maier D, Bauch A, Gyori BM, Bachman JA, Luna A, Piñero J, Furlong LI, Balaur I, Rougny A, Jarosz Y, Overall RW, Phair R, Perfetto L, Matthews L, Rex DAB, Orlic-Milacic M, Gomez LCM, De Meulder B, Ravel JM, Jassal B, Satagopam V, Wu G, Golebiewski M, Gawron P, Calzone L, Beckmann JS, Evelo CT, D’Eustachio P, Schreiber F, Saez-Rodriguez J, Dopazo J, Kuiper M, Valencia A, Wolkenhauer O, Kitano H, Barillot E, Auffray C, Balling R, Schneider R. Drug-target identification in COVID-19 disease mechanisms using computational systems biology approaches. Front Immunol 2024; 14:1282859. [PMID: 38414974 PMCID: PMC10897000 DOI: 10.3389/fimmu.2023.1282859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/22/2023] [Indexed: 02/29/2024] Open
Abstract
Introduction The COVID-19 Disease Map project is a large-scale community effort uniting 277 scientists from 130 Institutions around the globe. We use high-quality, mechanistic content describing SARS-CoV-2-host interactions and develop interoperable bioinformatic pipelines for novel target identification and drug repurposing. Methods Extensive community work allowed an impressive step forward in building interfaces between Systems Biology tools and platforms. Our framework can link biomolecules from omics data analysis and computational modelling to dysregulated pathways in a cell-, tissue- or patient-specific manner. Drug repurposing using text mining and AI-assisted analysis identified potential drugs, chemicals and microRNAs that could target the identified key factors. Results Results revealed drugs already tested for anti-COVID-19 efficacy, providing a mechanistic context for their mode of action, and drugs already in clinical trials for treating other diseases, never tested against COVID-19. Discussion The key advance is that the proposed framework is versatile and expandable, offering a significant upgrade in the arsenal for virus-host interactions and other complex pathologies.
Collapse
Affiliation(s)
- Anna Niarakis
- Université Paris-Saclay, Laboratoire Européen de Recherche pour la Polyarthrite rhumatoïde - Genhotel, Univ Evry, Evry, France
- Lifeware Group, Inria, Saclay-île de France, Palaiseau, France
| | - Marek Ostaszewski
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Alexander Mazein
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Inna Kuperstein
- Institut Curie, P.S.L. Research University, Paris, France
- INSERM, Paris, France
- MINES ParisTech, PSL Research University, CBIO-Centre for Computational Biology, Paris, France
| | - Martina Kutmon
- Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, Maastricht, Netherlands
| | - Marc E. Gillespie
- Ontario Institute for Cancer Research, Toronto, ON, Canada
- St. John’s University, Queens, NY, United States
| | - Akira Funahashi
- Department of Biosciences and Informatics, Keio University, Kanagawa, Japan
| | - Marcio Luis Acencio
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Ahmed Hemedan
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Michael Aichem
- Department of Computer and Information Science, University of Konstanz, Konstanz, Germany
| | - Karsten Klein
- Department of Computer and Information Science, University of Konstanz, Konstanz, Germany
| | - Tobias Czauderna
- Faculty of Applied Computer Sciences & Biosciences, University of Applied Sciences Mittweida, Mittweida, Germany
| | - Felicia Burtscher
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Takahiro G. Yamada
- Department of Biosciences and Informatics, Keio University, Kanagawa, Japan
| | - Yusuke Hiki
- Center for Biosciences and Informatics, Graduate School of Fundamental Science and Technology, Keio University, Kanagawa, Japan
| | - Noriko F. Hiroi
- Faculty of Creative Engineering, Kanagawa Institute of Technology, Kanagawa, Japan
- Keio University School of Medicine, Tokyo, Japan
| | - Finterly Hu
- Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, Maastricht, Netherlands
- Department of Bioinformatics - BiGCaT, NUTRIM, Maastricht University, Maastricht, Netherlands
| | - Nhung Pham
- Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, Maastricht, Netherlands
- Department of Bioinformatics - BiGCaT, NUTRIM, Maastricht University, Maastricht, Netherlands
| | - Friederike Ehrhart
- Department of Bioinformatics - BiGCaT, NUTRIM, Maastricht University, Maastricht, Netherlands
| | - Egon L. Willighagen
- Department of Bioinformatics - BiGCaT, NUTRIM, Maastricht University, Maastricht, Netherlands
| | - Alberto Valdeolivas
- Institute for Computational Biomedicine, Heidelberg University, Faculty of Medicine, Heidelberg University Hospital, Bioquant, Heidelberg, Germany
| | - Aurelien Dugourd
- Institute for Computational Biomedicine, Heidelberg University, Faculty of Medicine, Heidelberg University Hospital, Bioquant, Heidelberg, Germany
| | - Francesco Messina
- Department of Epidemiology, Preclinical Research and Advanced Diagnostic, National Institute for Infectious Diseases’ Lazzaro Spallanzani’ - IRCCS, Rome, Italy
| | - Marina Esteban-Medina
- Computational Medicine Platform, Andalusian Public Foundation Progress and Health-FPS, Sevilla, Spain
- Computational Systems Medicine, Institute of Biomedicine of Seville (IBIS), Hospital Virgen del Rocío, Sevilla, Spain
| | - Maria Peña-Chilet
- Computational Medicine Platform, Andalusian Public Foundation Progress and Health-FPS, Sevilla, Spain
- Computational Systems Medicine, Institute of Biomedicine of Seville (IBIS), Hospital Virgen del Rocío, Sevilla, Spain
- Bioinformatics in Rare Diseases (BiER), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), FPS, Hospital Virgen del Rocio, Seville, Spain
| | - Kinza Rian
- Computational Medicine Platform, Andalusian Public Foundation Progress and Health-FPS, Sevilla, Spain
| | - Sylvain Soliman
- Lifeware Group, Inria, Saclay-île de France, Palaiseau, France
| | - Sara Sadat Aghamiri
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Bhanwar Lal Puniya
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Aurélien Naldi
- Lifeware Group, Inria, Saclay-île de France, Palaiseau, France
| | - Tomáš Helikar
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Vidisha Singh
- Université Paris-Saclay, Laboratoire Européen de Recherche pour la Polyarthrite rhumatoïde - Genhotel, Univ Evry, Evry, France
| | | | - Viviam Bermudez
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Eirini Tsirvouli
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Arnau Montagud
- Barcelona Supercomputing Center (BSC.), Barcelona, Spain
| | - Vincent Noël
- Institut Curie, P.S.L. Research University, Paris, France
- INSERM, Paris, France
- MINES ParisTech, PSL Research University, CBIO-Centre for Computational Biology, Paris, France
| | | | | | | | - Benjamin M. Gyori
- Harvard Medical School, Laboratory of Systems Pharmacology, Boston, MA, United States
| | - John A. Bachman
- Harvard Medical School, Laboratory of Systems Pharmacology, Boston, MA, United States
| | - Augustin Luna
- Computational Biology Branch, National Library of Medicine, Bethesda, MD, United States
- Department of Systems Biology, Harvard Medical School, Boston, MA, United States
| | - Janet Piñero
- Medbioinformatics Solutions SL, Barcelona, Spain
- Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM), Dept. of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Laura I. Furlong
- Medbioinformatics Solutions SL, Barcelona, Spain
- Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM), Dept. of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Irina Balaur
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Adrien Rougny
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Aomi, Tokyo, Japan
- Com. Bio Big Data Open Innovation Lab. (CBBD-OIL), AIST, Aomi, Tokyo, Japan
| | - Yohan Jarosz
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Rupert W. Overall
- Institute for Biology, Humboldt University of Berlin, Berlin, Germany
| | - Robert Phair
- Integrative Bioinformatics, Inc., Mountain View, CA, United States
| | - Livia Perfetto
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Rome, Italy
| | - Lisa Matthews
- Department of Biochemistry & Molecular Pharmacology, NYU. Langone Medical Center, New York, NY, United States
| | | | | | - Luis Cristobal Monraz Gomez
- Institut Curie, P.S.L. Research University, Paris, France
- INSERM, Paris, France
- MINES ParisTech, PSL Research University, CBIO-Centre for Computational Biology, Paris, France
| | | | - Jean Marie Ravel
- Institut Curie, P.S.L. Research University, Paris, France
- INSERM, Paris, France
- MINES ParisTech, PSL Research University, CBIO-Centre for Computational Biology, Paris, France
| | - Bijay Jassal
- Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Venkata Satagopam
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Frankfurt Institute for Advanced Studies, Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt am Main, Germany
| | - Guanming Wu
- Oregon Health Sciences University, Portland, OR, United States
| | - Martin Golebiewski
- Heidelberg Institute for Theoretical Studies (HITS), Heidelberg, Germany
| | - Piotr Gawron
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Laurence Calzone
- Institut Curie, P.S.L. Research University, Paris, France
- INSERM, Paris, France
- MINES ParisTech, PSL Research University, CBIO-Centre for Computational Biology, Paris, France
| | | | - Chris T. Evelo
- Department of Bioinformatics - BiGCaT, NUTRIM, Maastricht University, Maastricht, Netherlands
| | - Peter D’Eustachio
- Department of Biochemistry & Molecular Pharmacology, NYU. Langone Medical Center, New York, NY, United States
| | - Falk Schreiber
- Department of Computer and Information Science, University of Konstanz, Konstanz, Germany
- Faculty of Information Technology, Monash University, Clayton, Victoria, VIC, Australia
| | - Julio Saez-Rodriguez
- Institute for Computational Biomedicine, Heidelberg University, Faculty of Medicine, Heidelberg University Hospital, Bioquant, Heidelberg, Germany
| | - Joaquin Dopazo
- Computational Medicine Platform, Andalusian Public Foundation Progress and Health-FPS, Sevilla, Spain
- Computational Systems Medicine, Institute of Biomedicine of Seville (IBIS), Hospital Virgen del Rocío, Sevilla, Spain
- Bioinformatics in Rare Diseases (BiER), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), FPS, Hospital Virgen del Rocio, Seville, Spain
- FPS/ELIXIR-es, Hospital Virgen del Rocío, Sevilla, Spain
| | - Martin Kuiper
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Alfonso Valencia
- Barcelona Supercomputing Center (BSC.), Barcelona, Spain
- I.C.R.E.A., Pg. Lluís Companys 23, Barcelona, Spain
| | - Olaf Wolkenhauer
- Department of Systems Biology & Bioinformatics, University of Rostock, Rostock, Germany
- Leibniz Institute for Food Systems Biology, at the Technical University Munich, Munich, Germany
| | | | - Emmanuel Barillot
- Institut Curie, P.S.L. Research University, Paris, France
- INSERM, Paris, France
- MINES ParisTech, PSL Research University, CBIO-Centre for Computational Biology, Paris, France
| | | | - Rudi Balling
- Institute of Molecular Psychiatry, University of Bonn, Bonn, Germany
| | - Reinhard Schneider
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | | |
Collapse
|
5
|
Fang Z, Li X, Yoshino Y, Suzuki M, Qi H, Murooka H, Katakai R, Shirota M, Mai Pham TA, Matsuzawa A, Otsuka K, Ishioka C, Mori T, Chiba N. Aurora A polyubiquitinates the BRCA1-interacting protein OLA1 to promote centrosome maturation. Cell Rep 2023; 42:112850. [PMID: 37481721 DOI: 10.1016/j.celrep.2023.112850] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 06/03/2023] [Accepted: 07/07/2023] [Indexed: 07/25/2023] Open
Abstract
The BRCA1-interacting protein Obg-like ATPase 1 (OLA1) functions in centriole duplication. In this study, we show the role of the mitotic kinase Aurora A in the reduction of centrosomal OLA1. Aurora A binds to and polyubiquitinates OLA1, targeting it for proteasomal degradation. NIMA-related kinase 2 (NEK2) phosphorylates the T124 residue of OLA1, increases binding of OLA1 to Aurora A and OLA1 polyubiquitination by Aurora A, and reduces centrosomal OLA1 in G2 phase. The kinase activity of Aurora A suppresses OLA1 polyubiquitination. The decrease in centrosomal OLA1 caused by Aurora A-mediated polyubiquitination promotes the recruitment of pericentriolar material proteins in G2 phase. The E3 ligase activity of Aurora A is critical for centrosome amplification induced by its overexpression. The results suggest a dual function of Aurora A as an E3 ubiquitin ligase and a kinase in the regulation of centrosomal OLA1, which is essential for proper centrosome maturation in G2 phase.
Collapse
Affiliation(s)
- Zhenzhou Fang
- Department of Cancer Biology, Institute of Development, Aging and Cancer (IDAC), Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan; Department of Cancer Biology, Tohoku University Graduate School of Medicine, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan
| | - Xingming Li
- Department of Cancer Biology, Institute of Development, Aging and Cancer (IDAC), Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan; Laboratory of Cancer Biology, Graduate School of Life Sciences, Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan
| | - Yuki Yoshino
- Department of Cancer Biology, Institute of Development, Aging and Cancer (IDAC), Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan; Department of Cancer Biology, Tohoku University Graduate School of Medicine, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan; Laboratory of Cancer Biology, Graduate School of Life Sciences, Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan
| | - Moe Suzuki
- Department of Cancer Biology, Institute of Development, Aging and Cancer (IDAC), Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan; Laboratory of Cancer Biology, Graduate School of Life Sciences, Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan
| | - Huicheng Qi
- Department of Cancer Biology, Institute of Development, Aging and Cancer (IDAC), Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan; Department of Cancer Biology, Tohoku University Graduate School of Medicine, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan
| | - Hinari Murooka
- Department of Cancer Biology, Institute of Development, Aging and Cancer (IDAC), Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan; Laboratory of Cancer Biology, Graduate School of Life Sciences, Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan
| | - Riko Katakai
- Department of Cancer Biology, Institute of Development, Aging and Cancer (IDAC), Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan; Laboratory of Cancer Biology, Graduate School of Life Sciences, Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan
| | - Matsuyuki Shirota
- Division of Interdisciplinary Medical Science, Tohoku University Graduate School of Medicine, 2-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan
| | - Thi Anh Mai Pham
- Department of Cancer Biology, Institute of Development, Aging and Cancer (IDAC), Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan; Laboratory of Cancer Biology, Graduate School of Life Sciences, Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan
| | - Ayako Matsuzawa
- Department of Molecular Immunology, Institute of Development, Aging and Cancer (IDAC), Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan
| | - Kei Otsuka
- Department of Cancer Biology, Institute of Development, Aging and Cancer (IDAC), Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan; Laboratory of Cancer Biology, Graduate School of Life Sciences, Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan
| | - Chikashi Ishioka
- Department of Clinical Oncology, Tohoku University Graduate School of Medicine, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan
| | - Takahiro Mori
- Department of Clinical Oncology, Tohoku University Graduate School of Medicine, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan; Departemt of Medical Oncology and Hematology, Okinawa Chubu Hospital, 281 Miyazato, Uruma, Okinawa 904-2293, Japan; Genome Medical Science Project, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku, Tokyo 162-8655, Japan
| | - Natsuko Chiba
- Department of Cancer Biology, Institute of Development, Aging and Cancer (IDAC), Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan; Department of Cancer Biology, Tohoku University Graduate School of Medicine, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan; Laboratory of Cancer Biology, Graduate School of Life Sciences, Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan.
| |
Collapse
|
6
|
Qi H, Kikuchi M, Yoshino Y, Fang Z, Ohashi K, Gotoh T, Ideta R, Ui A, Endo S, Otsuka K, Shindo N, Gonda K, Ishioka C, Miki Y, Iwabuchi T, Chiba N. BRCA1 transports the DNA damage signal for CDDP-induced centrosome amplification through the centrosomal Aurora A. Cancer Sci 2022; 113:4230-4243. [PMID: 36082621 PMCID: PMC9746055 DOI: 10.1111/cas.15573] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 12/15/2022] Open
Abstract
Breast cancer gene 1 (BRCA1) plays roles in DNA repair and centrosome regulation and is involved in DNA damage-induced centrosome amplification (DDICA). Here, the centrosomal localization of BRCA1 and the kinases involved in centrosome duplication were analyzed in each cell cycle phase after treatment with DNA crosslinker cisplatin (CDDP). CDDP treatment increased the centrosomal localization of BRCA1 in early S-G2 phase. BRCA1 contributed to the increased centrosomal localization of Aurora A in S phase and that of phosphorylated Polo-like kinase 1 (PLK1) in late S phase after CDDP treatment, resulting in centriole disengagement and overduplication. The increased centrosomal localization of BRCA1 and Aurora A induced by CDDP treatment involved the nuclear export of BRCA1 and BRCA1 phosphorylation by ataxia telangiectasia mutated (ATM). Patient-derived variants and mutations at phosphorylated residues of BRCA1 suppressed the interaction between BRCA1 and Aurora A, as well as the CDDP-induced increase in the centrosomal localization of BRCA1 and Aurora A. These results suggest that CDDP induces the phosphorylation of BRCA1 by ATM in the nucleus and its transport to the cytoplasm, thereby promoting the centrosomal localization Aurora A, which phosphorylates PLK1. The function of BRCA1 in the translocation of the DNA damage signal from the nucleus to the centrosome to induce centrosome amplification after CDDP treatment might support its role as a tumor suppressor.
Collapse
Affiliation(s)
- Huicheng Qi
- Department of Cancer Biology; Institute of Development, Aging and CancerTohoku UniversitySendaiJapan
- Department of Cancer BiologyTohoku University Graduate School of MedicineSendaiJapan
| | - Megumi Kikuchi
- Department of Cancer Biology; Institute of Development, Aging and CancerTohoku UniversitySendaiJapan
- Laboratory of Cancer Biology, Graduate School of Life SciencesTohoku UniversitySendaiJapan
| | - Yuki Yoshino
- Department of Cancer Biology; Institute of Development, Aging and CancerTohoku UniversitySendaiJapan
- Department of Cancer BiologyTohoku University Graduate School of MedicineSendaiJapan
- Laboratory of Cancer Biology, Graduate School of Life SciencesTohoku UniversitySendaiJapan
| | - Zhenzhou Fang
- Department of Cancer Biology; Institute of Development, Aging and CancerTohoku UniversitySendaiJapan
- Department of Cancer BiologyTohoku University Graduate School of MedicineSendaiJapan
| | - Kazune Ohashi
- Department of Cancer Biology; Institute of Development, Aging and CancerTohoku UniversitySendaiJapan
- Laboratory of Cancer Biology, Graduate School of Life SciencesTohoku UniversitySendaiJapan
| | - Takato Gotoh
- Department of Cancer Biology; Institute of Development, Aging and CancerTohoku UniversitySendaiJapan
- Laboratory of Cancer Biology, Graduate School of Life SciencesTohoku UniversitySendaiJapan
| | - Ryo Ideta
- Department of Cancer Biology; Institute of Development, Aging and CancerTohoku UniversitySendaiJapan
- Tohoku University School of MedicineSendaiJapan
| | - Ayako Ui
- Department of Molecular Oncology, Institute of Development, Aging and CancerTohoku UniversitySendaiJapan
| | - Shino Endo
- Department of Cancer Biology; Institute of Development, Aging and CancerTohoku UniversitySendaiJapan
- Department of Cancer BiologyTohoku University Graduate School of MedicineSendaiJapan
| | - Kei Otsuka
- Department of Cancer Biology; Institute of Development, Aging and CancerTohoku UniversitySendaiJapan
- Laboratory of Cancer Biology, Graduate School of Life SciencesTohoku UniversitySendaiJapan
| | - Norihisa Shindo
- Division of Molecular and Cellular OncologyMiyagi Cancer Center Research InstituteNatoriJapan
| | - Kohsuke Gonda
- Department of Medical PhysicsTohoku University Graduate School of MedicineSendaiJapan
| | - Chikashi Ishioka
- Department of Clinical OncologyTohoku University Graduate School of MedicineSendaiJapan
| | - Yoshio Miki
- Department of Molecular Genetics, Medical Research InstituteTokyo Medical and Dental UniversityTokyoJapan
| | - Tokuro Iwabuchi
- Faculty of Bioscience and BiotechnologyTokyo University of TechnologyTokyoJapan
| | - Natsuko Chiba
- Department of Cancer Biology; Institute of Development, Aging and CancerTohoku UniversitySendaiJapan
- Department of Cancer BiologyTohoku University Graduate School of MedicineSendaiJapan
- Laboratory of Cancer Biology, Graduate School of Life SciencesTohoku UniversitySendaiJapan
| |
Collapse
|
7
|
Benito-Sánchez B, Barroso A, Fernández V, Mercadillo F, Núñez-Torres R, Pita G, Pombo L, Morales-Chamorro R, Cano-Cano JM, Urioste M, González-Neira A, Osorio A. Apparent regional differences in the spectrum of BARD1 pathogenic variants in Spanish population and importance of copy number variants. Sci Rep 2022; 12:8547. [PMID: 35595798 PMCID: PMC9122922 DOI: 10.1038/s41598-022-12480-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 05/11/2022] [Indexed: 12/22/2022] Open
Abstract
Only up to 25% of the cases in which there is a familial aggregation of breast and/or ovarian cancer are explained by germline mutations in the well-known BRCA1 and BRCA2 high-risk genes. Recently, the BRCA1-associated ring domain (BARD1), that partners BRCA1 in DNA repair, has been confirmed as a moderate-risk breast cancer susceptibility gene. Taking advantage of next-generation sequencing techniques, and with the purpose of defining the whole spectrum of possible pathogenic variants (PVs) in this gene, here we have performed a comprehensive mutational analysis of BARD1 in a cohort of 1946 Spanish patients who fulfilled criteria to be tested for germline pathogenic mutations in BRCA1 and BRCA2. We identified 22 different rare germline variants, being 5 of them clearly pathogenic or likely pathogenic large deletions, which account for 0.26% of the patients tested. Our results show that the prevalence and spectrum of mutations in the BARD1 gene might vary between different regions of Spain and expose the relevance to test for copy number variations.
Collapse
Affiliation(s)
- B Benito-Sánchez
- Familial Cancer Clinical Unit, Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), 28029, Madrid, Spain
| | - A Barroso
- Familial Cancer Clinical Unit, Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), 28029, Madrid, Spain
| | - V Fernández
- Familial Cancer Clinical Unit, Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), 28029, Madrid, Spain
| | - F Mercadillo
- Familial Cancer Clinical Unit, Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), 28029, Madrid, Spain
| | - R Núñez-Torres
- Human Genotyping Unit (CEGEN), Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), 28029, Madrid, Spain
| | - G Pita
- Human Genotyping Unit (CEGEN), Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), 28029, Madrid, Spain
| | - L Pombo
- Medical Oncology Section, Universitary Hospital Complex of Albacete, Albacete, Spain
| | - R Morales-Chamorro
- Medical Oncology Section, Hospitalary Compex La Mancha Centro, Alcázar de San Juan, Ciudad Real, Spain
| | - J M Cano-Cano
- Medical Oncology Service, Universitary General Hospital of Ciudad Real, Ciudad Real, Spain
| | - M Urioste
- Familial Cancer Clinical Unit, Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), 28029, Madrid, Spain
| | - A González-Neira
- Human Genotyping Unit (CEGEN), Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), 28029, Madrid, Spain
| | - A Osorio
- Familial Cancer Clinical Unit, Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), 28029, Madrid, Spain.
- Spanish Network On Rare Diseases (CIBERER), 28029, Madrid, Spain.
- Familial Cancer Clinical Unit, Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), C/Melchor Fernández Almagro 3, 29029, Madrid, Spain.
| |
Collapse
|
8
|
Russi M, Marson D, Fermeglia A, Aulic S, Fermeglia M, Laurini E, Pricl S. The fellowship of the RING: BRCA1, its partner BARD1 and their liaison in DNA repair and cancer. Pharmacol Ther 2021; 232:108009. [PMID: 34619284 DOI: 10.1016/j.pharmthera.2021.108009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 08/22/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022]
Abstract
The breast cancer type 1 susceptibility protein (BRCA1) and its partner - the BRCA1-associated RING domain protein 1 (BARD1) - are key players in a plethora of fundamental biological functions including, among others, DNA repair, replication fork protection, cell cycle progression, telomere maintenance, chromatin remodeling, apoptosis and tumor suppression. However, mutations in their encoding genes transform them into dangerous threats, and substantially increase the risk of developing cancer and other malignancies during the lifetime of the affected individuals. Understanding how BRCA1 and BARD1 perform their biological activities therefore not only provides a powerful mean to prevent such fatal occurrences but can also pave the way to the development of new targeted therapeutics. Thus, through this review work we aim at presenting the major efforts focused on the functional characterization and structural insights of BRCA1 and BARD1, per se and in combination with all their principal mediators and regulators, and on the multifaceted roles these proteins play in the maintenance of human genome integrity.
Collapse
Affiliation(s)
- Maria Russi
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Domenico Marson
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Alice Fermeglia
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Suzana Aulic
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Maurizio Fermeglia
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Erik Laurini
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Sabrina Pricl
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy; Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland.
| |
Collapse
|
9
|
Yoshino Y, Fang Z, Qi H, Kobayashi A, Chiba N. Dysregulation of the centrosome induced by BRCA1 deficiency contributes to tissue-specific carcinogenesis. Cancer Sci 2021; 112:1679-1687. [PMID: 33606355 PMCID: PMC8088922 DOI: 10.1111/cas.14859] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/11/2021] [Accepted: 02/16/2021] [Indexed: 12/12/2022] Open
Abstract
Alterations in breast cancer gene 1 (BRCA1), a tumor suppressor gene, increase the risk of breast and ovarian cancers. BRCA1 forms a heterodimer with BRCA1-associated RING domain protein 1 (BARD1) and functions in multiple cellular processes, including DNA repair and centrosome regulation. BRCA1 acts as a tumor suppressor by promoting homologous recombination (HR) repair, and alterations in BRCA1 cause HR deficiency, not only in breast and ovarian tissues but also in other tissues. The molecular mechanisms underlying BRCA1 alteration-induced carcinogenesis remain unclear. Centrosomes are the major microtubule-organizing centers and function in bipolar spindle formation. The regulation of centrosome number is critical for chromosome segregation in mitosis, which maintains genomic stability. BRCA1/BARD1 function in centrosome regulation together with Obg-like ATPase (OLA1) and receptor for activating protein C kinase 1 (RACK1). Cancer-derived variants of BRCA1, BARD1, OLA1, and RACK1 do not interact, and aberrant expression of these proteins results in abnormal centrosome duplication in mammary-derived cells, and rarely in other cell types. RACK1 is involved in centriole duplication in the S phase by promoting polo-like kinase 1 activation by Aurora A, which is critical for centrosome duplication. Centriole number is higher in cells derived from mammary tissues compared with in those derived from other tissues, suggesting that tissue-specific centrosome characterization may shed light on the tissue specificity of BRCA1-associated carcinogenesis. Here, we explored the role of the BRCA1-containing complex in centrosome regulation and the effect of its deficiency on tissue-specific carcinogenesis.
Collapse
Affiliation(s)
- Yuki Yoshino
- Department of Cancer BiologyInstitute of Aging, Development, and CancerTohoku UniversitySendaiJapan
- Laboratory of Cancer BiologyGraduate School of Life SciencesTohoku UniversitySendaiJapan
- Department of Cancer BiologyTohoku University Graduate School of MedicineSendaiJapan
| | - Zhenzhou Fang
- Department of Cancer BiologyInstitute of Aging, Development, and CancerTohoku UniversitySendaiJapan
- Department of Cancer BiologyTohoku University Graduate School of MedicineSendaiJapan
| | - Huicheng Qi
- Department of Cancer BiologyInstitute of Aging, Development, and CancerTohoku UniversitySendaiJapan
- Department of Cancer BiologyTohoku University Graduate School of MedicineSendaiJapan
| | - Akihiro Kobayashi
- Department of Cancer BiologyInstitute of Aging, Development, and CancerTohoku UniversitySendaiJapan
- Department of Cancer BiologyTohoku University Graduate School of MedicineSendaiJapan
| | - Natsuko Chiba
- Department of Cancer BiologyInstitute of Aging, Development, and CancerTohoku UniversitySendaiJapan
- Laboratory of Cancer BiologyGraduate School of Life SciencesTohoku UniversitySendaiJapan
- Department of Cancer BiologyTohoku University Graduate School of MedicineSendaiJapan
| |
Collapse
|
10
|
Anderson G. Tumour Microenvironment: Roles of the Aryl Hydrocarbon Receptor, O-GlcNAcylation, Acetyl-CoA and Melatonergic Pathway in Regulating Dynamic Metabolic Interactions across Cell Types-Tumour Microenvironment and Metabolism. Int J Mol Sci 2020; 22:E141. [PMID: 33375613 PMCID: PMC7795031 DOI: 10.3390/ijms22010141] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 02/07/2023] Open
Abstract
This article reviews the dynamic interactions of the tumour microenvironment, highlighting the roles of acetyl-CoA and melatonergic pathway regulation in determining the interactions between oxidative phosphorylation (OXPHOS) and glycolysis across the array of cells forming the tumour microenvironment. Many of the factors associated with tumour progression and immune resistance, such as yin yang (YY)1 and glycogen synthase kinase (GSK)3β, regulate acetyl-CoA and the melatonergic pathway, thereby having significant impacts on the dynamic interactions of the different types of cells present in the tumour microenvironment. The association of the aryl hydrocarbon receptor (AhR) with immune suppression in the tumour microenvironment may be mediated by the AhR-induced cytochrome P450 (CYP)1b1-driven 'backward' conversion of melatonin to its immediate precursor N-acetylserotonin (NAS). NAS within tumours and released from tumour microenvironment cells activates the brain-derived neurotrophic factor (BDNF) receptor, TrkB, thereby increasing the survival and proliferation of cancer stem-like cells. Acetyl-CoA is a crucial co-substrate for initiation of the melatonergic pathway, as well as co-ordinating the interactions of OXPHOS and glycolysis in all cells of the tumour microenvironment. This provides a model of the tumour microenvironment that emphasises the roles of acetyl-CoA and the melatonergic pathway in shaping the dynamic intercellular metabolic interactions of the various cells within the tumour microenvironment. The potentiation of YY1 and GSK3β by O-GlcNAcylation will drive changes in metabolism in tumours and tumour microenvironment cells in association with their regulation of the melatonergic pathway. The emphasis on metabolic interactions across cell types in the tumour microenvironment provides novel future research and treatment directions.
Collapse
Affiliation(s)
- George Anderson
- Clinical Research Communications (CRC) Scotland & London, Eccleston Square, London SW1V 6UT, UK
| |
Collapse
|