1
|
Zheng K, Cai Y, Qu Y, Teng L, Wang C, Gao J, Chen Q. Effect of the HCT Gene on Lignin Synthesis and Fiber Development in Gossypium barbadense. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 338:111914. [PMID: 39492445 DOI: 10.1016/j.plantsci.2023.111914] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 10/07/2023] [Accepted: 10/26/2023] [Indexed: 11/05/2024]
Abstract
As one of the key enzymes in the metabolic pathway of phenylpropane, shikimate hydroxycinnamoyl transferase (HCT) is mainly involved in the biosynthesis of the plant secondary cell wall, which is closely related to cotton fiber quality. In this study, whole-genome identification and bioinformatics analysis of the HCT gene family were performed in G. barbadense. In the whole genome, we identified 136 GbHCT genes encoding 309-504 amino acids. Phylogenetic analysis divided the genome into 5 subfamilies, which were located on 25 chromosomes. Collinear analysis of polyploidization and tandem duplication events were the main driving forces for the rapid expansion and evolution of this family, and the genes underwent loose purifying selection constraints after duplication. Gene promoters identified a variety of cis-acting elements related to plant hormones and the stress response. Several members of the GbHCT family were highly expressed during the development of cotton fiber, and different members had different expression patterns in cotton fiber. After GbHCT114 gene silencing in cotton, the amount of stem surface trichomes and lignin content decreased, and the cell morphology and arrangement changed. After the GbHCT114 gene was overexpressed in Arabidopsis thaliana (L.) Heynh., the number of stem and leaf surface trichomes and the cross-sectional area of the secondary xylem duct cell wall increased. In addition, utilizing transcriptomic analysis, differentially expressed genes associated with lignin synthesis and fiber development were identified. Taken together, the results obtained in this study confirm that the GbHCT114 gene regulates plant trichome development, which lays a theoretical foundation for future studies on the function of GbHCT114 in cotton.
Collapse
Affiliation(s)
- Kai Zheng
- Engineering Research Centre of Cotton of Ministry of Education, College of Agriculture, Xinjiang Agricultural University, Urumqi, 830052, China; Hainan Yazhou Bay Seed Laboratory, Sanya, 572000, China; Postdoctoral Research Station, Xinjiang Agricultural University, Urumqi, 830052, China.
| | - Yongsheng Cai
- Engineering Research Centre of Cotton of Ministry of Education, College of Agriculture, Xinjiang Agricultural University, Urumqi, 830052, China.
| | - Yanying Qu
- Engineering Research Centre of Cotton of Ministry of Education, College of Agriculture, Xinjiang Agricultural University, Urumqi, 830052, China.
| | - Lu Teng
- Engineering Research Centre of Cotton of Ministry of Education, College of Agriculture, Xinjiang Agricultural University, Urumqi, 830052, China.
| | - Chaoyue Wang
- Engineering Research Centre of Cotton of Ministry of Education, College of Agriculture, Xinjiang Agricultural University, Urumqi, 830052, China.
| | - Jie Gao
- Postdoctoral Research Station, Xinjiang Agricultural University, Urumqi, 830052, China.
| | - Quanjia Chen
- Engineering Research Centre of Cotton of Ministry of Education, College of Agriculture, Xinjiang Agricultural University, Urumqi, 830052, China.
| |
Collapse
|
2
|
Feng YX, Tian P, Li CZ, Zhang Q, Trapp S, Yu XZ. Individual and mutual effects of elevated carbon dioxide and temperature on salt and cadmium uptake and translocation by rice seedlings. FRONTIERS IN PLANT SCIENCE 2023; 14:1161334. [PMID: 37089641 PMCID: PMC10113512 DOI: 10.3389/fpls.2023.1161334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/23/2023] [Indexed: 05/03/2023]
Abstract
Plant kingdoms are facing increasingly harsh environmental challenges marked by the coexposure of salinity and pollution in the pedosphere and elevated CO2 and temperature in the atmosphere due to the rapid acceleration of industrialization and global climate change. In this study, we deployed a hydroponics-based experiment to explore the individual and mutual effects of different temperatures (low temperature, T1: 23°C; high temperature, T2: 27°C) and CO2 concentrations (ambient CO2: 360 ppm; medium CO2: 450 ppm; high CO2: 700 ppm) on the uptake and translocation of sodium chloride (NaCl, 0.0, 0.2, 0.6, and 1.1 g Na/L) and cadmium nitrate (Cd(NO3)2·4H2O, 0.0, 0.2, 1.8, and 5.4 mg Cd/L) by rice seedlings. The results indicated that Cd and Na exposure significantly (P< 0.05) inhibited plant growth, but T2 and medium/high CO2 alleviated the effects of Cd and Na on plant growth. Neither significant synergistic nor antagonistic effects of Cd and Na were observed, particularly not at T1 or high CO2. At increasing temperatures, relative growth rates increased despite higher concentrations of Cd and Na in both rice roots and shoots. Similarly, higher CO2 stimulated the growth rate but resulted in significantly lower concentrations of Na, while the Cd concentration was highest at medium CO2. Coexposure experiments suggested that the concentration of Cd in roots slightly declined with additional Na and more at T2. Overall, our preliminary study suggested that global climate change may alter the distribution of mineral and toxic elements in rice plants as well as the tolerance of the plants.
Collapse
Affiliation(s)
- Yu-Xi Feng
- College of Environmental Science & Engineering, Guilin University of Technology, Guilin, China
| | - Peng Tian
- College of Environmental Science & Engineering, Guilin University of Technology, Guilin, China
| | - Cheng-Zhi Li
- College of Environmental Science & Engineering, Guilin University of Technology, Guilin, China
| | - Qing Zhang
- College of Environmental Science & Engineering, Guilin University of Technology, Guilin, China
| | - Stefan Trapp
- Department of Environmental and Resource Engineering, Technical University of Denmark, Kongens Lyngby, Denmark
- *Correspondence: Stefan Trapp, ; Xiao-Zhang Yu,
| | - Xiao-Zhang Yu
- College of Environmental Science & Engineering, Guilin University of Technology, Guilin, China
- *Correspondence: Stefan Trapp, ; Xiao-Zhang Yu,
| |
Collapse
|
3
|
Physiological and Transcriptomic Analysis Reveals the Responses and Difference to High Temperature and Humidity Stress in Two Melon Genotypes. Int J Mol Sci 2022; 23:ijms23020734. [PMID: 35054918 PMCID: PMC8776189 DOI: 10.3390/ijms23020734] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/05/2022] [Accepted: 01/05/2022] [Indexed: 12/29/2022] Open
Abstract
Due to the frequent occurrence of continuous high temperatures and heavy rain in summer, extremely high-temperature and high-humidity environments occur, which seriously harms crop growth. High temperature and humidity (HTH) stress have become the main environmental factors of combined stress in summer. The responses of morphological indexes, physiological and biochemical indexes, gas exchange parameters, and chlorophyll fluorescence parameters were measured and combined with chloroplast ultrastructure and transcriptome sequencing to analyze the reasons for the difference in tolerance to HTH stress in HTH-sensitive 'JIN TAI LANG' and HTH-tolerant 'JIN DI' varieties. The results showed that with the extension of stress time, the superoxide dismutase (SOD), peroxidase (POD), and ascorbate peroxidase (APX) activities of the two melon varieties increased rapidly, the leaf water content increased, and the tolerant varieties showed stronger antioxidant capacity. Among the sensitive cultivars, Pn, Fv/Fm, photosystem II, and photosystem I chlorophyll fluorescence parameters were severely inhibited and decreased rapidly with the extension of stress time, while the HTH-tolerant cultivars slightly decreased. The cell membrane and chloroplast damage in sensitive cultivars were more severe, and Lhca1, Lhca3, and Lhca4 proteins in photosystem II and Lhcb1-Lhcb6 proteins in photosystem I were inhibited compared with those in the tolerant cultivar. These conclusions may be the main reason for the different tolerances of the two cultivars. These findings will provide new insights into the response of other crops to HTH stress and also provide a basis for future research on the mechanism of HTH resistance in melon.
Collapse
|
4
|
Feng X, Cheng H, Zuo D, Zhang Y, Wang Q, Lv L, Li S, Yu JZ, Song G. Genome-wide identification and expression analysis of GL2-interacting-repressor (GIR) genes during cotton fiber and fuzz development. PLANTA 2021; 255:23. [PMID: 34923605 DOI: 10.1007/s00425-021-03737-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 09/20/2021] [Indexed: 06/14/2023]
Abstract
GL2-interacting-repressor (GIR) family members may contribute to fiber/fuzz formation via a newly discovered unique pathway in Gossypium arboreum. There are similarities between cotton fiber development and the formation of trichomes and root hairs. The GL2-interacting-repressors (GIRs) are crucial regulators of root hair and trichome formation. The GaFzl gene, annotated as GaGIR1, is negatively associated with trichome development and fuzz initiation. However, there is relatively little available information regarding the other GIR genes in cotton, especially regarding their effects on cotton fiber development. In this study, 21 GIR family genes were identified in the diploid cotton species Gossypium arboreum; these genes were divided into three groups. The GIR genes were characterized in terms of their phylogenetic relationships, structures, chromosomal distribution and evolutionary dynamics. These GIR genes were revealed to be unequally distributed on 12 chromosomes in the diploid cotton genome, with no GIR gene detected on Ga06. The cis-acting elements in the promoter regions were predicted to be responsive to light, phytohormones, defense activities and stress. The transcriptomic data and qRT-PCR results revealed that most GIR genes were not differentially expressed between the wild-type control and the fuzzless mutant line. Moreover, 14 of 21 family genes were expressed at high levels, indicating these genes may play important roles during fiber development and fuzz formation. Furthermore, Ga01G0231 was predominantly expressed in root samples, suggestive of a role in root hair formation rather than in fuzz initiation and development. The results of this study have enhanced our understanding of the GIR genes and their potential utility for improving cotton fiber through breeding.
Collapse
Affiliation(s)
- Xiaoxu Feng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
- Plant Genetics, Gembloux Agro Bio-Tech, University of Liège, 5030, Gembloux, Belgium
| | - Hailiang Cheng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Dongyun Zuo
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Youping Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Qiaolian Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Limin Lv
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Shuyan Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - John Z Yu
- Southern Plains Agricultural Research Center, USDA-ARS, Crop Germplasm Research Unit, 2881 F&B Road, College Station, Texas, 77845, USA.
| | - Guoli Song
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.
| |
Collapse
|
5
|
Liang Y, Gong Z, Wang J, Zheng J, Ma Y, Min L, Chen Q, Li Z, Qu Y, Chen Q, Li X. Nanopore-Based Comparative Transcriptome Analysis Reveals the Potential Mechanism of High-Temperature Tolerance in Cotton (Gossypium hirsutum L.). PLANTS 2021; 10:plants10112517. [PMID: 34834881 PMCID: PMC8618236 DOI: 10.3390/plants10112517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 11/16/2022]
Abstract
Extreme high temperatures are threatening cotton production around the world due to the intensification of global warming. To cope with high-temperature stress, heat-tolerant cotton cultivars have been bred, but the heat-tolerant mechanism remains unclear. This study selected heat-tolerant (‘Xinluzao36′) and heat-sensitive (‘Che61-72′) cultivars of cotton treated with high-temperature stress as plant materials and performed comparative nanopore sequencing transcriptome analysis to reveal the potential heat-tolerant mechanism of cotton. Results showed that 120,605 nonredundant sequences were generated from the raw reads, and 78,601 genes were annotated. Differentially expressed gene (DEG) analysis showed that a total of 19,600 DEGs were screened; the DEGs involved in the ribosome, heat shock proteins, auxin and ethylene signaling transduction, and photosynthesis pathways may be attributed to the heat tolerance of the heat-tolerant cotton cultivar. This study also predicted a total of 5118 long non-coding RNAs (lncRNAs)and 24,462 corresponding target genes. Analysis of the target genes revealed that the expression of some ribosomal, heat shock, auxin and ethylene signaling transduction-related and photosynthetic proteins may be regulated by lncRNAs and further participate in the heat tolerance of cotton. This study deepens our understandings of the heat tolerance of cotton.
Collapse
Affiliation(s)
- Yajun Liang
- Engineering Research Centre of Cotton of Ministry of Education, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi 830001, China; (Y.L.); (Q.C.); (Y.Q.)
- Xinjiang Academy of Agricultural Science, Urumqi 830001, China; (Z.G.); (J.W.); (J.Z.)
| | - Zhaolong Gong
- Xinjiang Academy of Agricultural Science, Urumqi 830001, China; (Z.G.); (J.W.); (J.Z.)
| | - Junduo Wang
- Xinjiang Academy of Agricultural Science, Urumqi 830001, China; (Z.G.); (J.W.); (J.Z.)
| | - Juyun Zheng
- Xinjiang Academy of Agricultural Science, Urumqi 830001, China; (Z.G.); (J.W.); (J.Z.)
| | - Yizan Ma
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; (Y.M.); (L.M.)
| | - Ling Min
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; (Y.M.); (L.M.)
| | - Qin Chen
- Engineering Research Centre of Cotton of Ministry of Education, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi 830001, China; (Y.L.); (Q.C.); (Y.Q.)
| | - Zhiqiang Li
- Adsen Biotechnology Co., Ltd., Urumqi 830022, China;
| | - Yanying Qu
- Engineering Research Centre of Cotton of Ministry of Education, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi 830001, China; (Y.L.); (Q.C.); (Y.Q.)
| | - Quanjia Chen
- Engineering Research Centre of Cotton of Ministry of Education, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi 830001, China; (Y.L.); (Q.C.); (Y.Q.)
- Correspondence: (Q.C.); (X.L.)
| | - Xueyuan Li
- Xinjiang Academy of Agricultural Science, Urumqi 830001, China; (Z.G.); (J.W.); (J.Z.)
- Correspondence: (Q.C.); (X.L.)
| |
Collapse
|