1
|
Cerqueira de Araujo A, Noel B, Bretaudeau A, Labadie K, Boudet M, Tadrent N, Istace B, Kritli S, Cruaud C, Olaso R, Deleuze JF, Voordouw MJ, Hervet C, Plantard O, Zamoto-Niikura A, Chertemps T, Maïbèche M, Hilliou F, Le Goff G, Chmelař J, Mazák V, Jmel MA, Kotsyfakis M, Medina JM, Hackenberg M, Šimo L, Koutroumpa FA, Wincker P, Kopáček P, Perner J, Aury JM, Rispe C. Genome sequences of four Ixodes species expands understanding of tick evolution. BMC Biol 2025; 23:17. [PMID: 39838418 PMCID: PMC11752866 DOI: 10.1186/s12915-025-02121-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 01/07/2025] [Indexed: 01/23/2025] Open
Abstract
BACKGROUND Ticks, hematophagous Acari, pose a significant threat by transmitting various pathogens to their vertebrate hosts during feeding. Despite advances in tick genomics, high-quality genomes were lacking until recently, particularly in the genus Ixodes, which includes the main vectors of Lyme disease. RESULTS Here, we present the genome sequences of four tick species, derived from a single female individual, with a particular focus on the European species Ixodes ricinus, achieving a chromosome-level assembly. Additionally, draft assemblies were generated for the three other Ixodes species, I. persulcatus, I. pacificus, and I. hexagonus. The quality of the four genomes and extensive annotation of several important gene families have allowed us to study the evolution of gene repertoires at the level of the genus Ixodes and of the tick group. We have determined gene families that have undergone major amplifications during the evolution of ticks, while an expression atlas obtained for I. ricinus reveals striking patterns of specialization both between and within gene families. Notably, several gene family amplifications are associated with a proliferation of single-exon genes-most strikingly for fatty acid elongases and sulfotransferases. CONCLUSIONS The integration of our data with existing genomes establishes a solid framework for the study of gene evolution, improving our understanding of tick biology. In addition, our work lays the foundations for applied research and innovative control targeting these organisms.
Collapse
Affiliation(s)
| | - Benjamin Noel
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France
| | | | - Karine Labadie
- Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France
| | - Matéo Boudet
- University of Rennes, INRIA, CNRS, IRISA, Rennes, France
- IGEPP, INRAE, Institut Agro, BIPAA, University of Rennes, Rennes, France
| | - Nachida Tadrent
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France
| | - Benjamin Istace
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France
| | - Salima Kritli
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France
| | - Corinne Cruaud
- Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France
| | - Robert Olaso
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, Evry, France
| | - Jean-François Deleuze
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, Evry, France
| | - Maarten J Voordouw
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| | | | | | - Aya Zamoto-Niikura
- Research Center for Biosafety, Laboratory Animal and Pathogen Bank, National Institute of Infectious Diseases, Tokyo, Japan
| | - Thomas Chertemps
- Institut d'Ecologie Et Des Sciences de L'Environnement de Paris, Sorbonne Université, INRAE, CNRS, IRD, UPEC, Paris, France
| | - Martine Maïbèche
- Institut d'Ecologie Et Des Sciences de L'Environnement de Paris, Sorbonne Université, INRAE, CNRS, IRD, UPEC, Paris, France
| | - Frédérique Hilliou
- Université Côte d'Azur, INRAE, CNRS, ISA, 06903, Sophia Antipolis, France
| | - Gaëlle Le Goff
- Université Côte d'Azur, INRAE, CNRS, ISA, 06903, Sophia Antipolis, France
| | - Jindřich Chmelař
- Department of Medical Biology, Faculty of Science, University of South Bohemia in České Budějovice, Branišovská 31, 37005, České Budějovice, Czech Republic
| | - Vilém Mazák
- Department of Medical Biology, Faculty of Science, University of South Bohemia in České Budějovice, Branišovská 31, 37005, České Budějovice, Czech Republic
| | - Mohamed Amine Jmel
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 1160/31, 37005, České Budějovice, Czech Republic
| | - Michalis Kotsyfakis
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 1160/31, 37005, České Budějovice, Czech Republic
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, N. Plastira 100, 70013, Heraklion, Crete, Greece
| | - José María Medina
- Dpto. de Genética, Facultad de Ciencias, Universidad de Granada, Campus de Fuentenueva S/N, 18071, Granada, Spain
- Lab. de Bioinformática, Centro de Investigación Biomédica, PTS, Instituto de Biotecnología, Avda. del Conocimiento S/N, 18100, Granada, Spain
| | - Michael Hackenberg
- Dpto. de Genética, Facultad de Ciencias, Universidad de Granada, Campus de Fuentenueva S/N, 18071, Granada, Spain
- Lab. de Bioinformática, Centro de Investigación Biomédica, PTS, Instituto de Biotecnología, Avda. del Conocimiento S/N, 18100, Granada, Spain
| | - Ladislav Šimo
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, 22 Rue Pierre Et Marie Curie, Maisons-Alfort, France
| | - Fotini A Koutroumpa
- INRAE, Université de Tours, UMR1282 Infectiologie Et Santé Publique, 37380, Nouzilly, France
| | - Patrick Wincker
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France
| | - Petr Kopáček
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 1160/31, 37005, České Budějovice, Czech Republic
| | - Jan Perner
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 1160/31, 37005, České Budějovice, Czech Republic
| | - Jean-Marc Aury
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France
| | | |
Collapse
|
2
|
Sun H, Fan J, Chu H, Gao Y, Fang J, Wu Q, Ding H, Zhuo X, Kong Q, Lv H, Zheng B, Lu S. RPA-CRISPR/Cas12a-LFA combined with a digital visualization instrument to detect Toxoplasma gondii in stray dogs and cats in Zhejiang province, China. Microbiol Spectr 2024; 12:e0399823. [PMID: 38809001 PMCID: PMC11218441 DOI: 10.1128/spectrum.03998-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/14/2024] [Indexed: 05/30/2024] Open
Abstract
Toxoplasma gondii, which causes toxoplasmosis, is prevalent in warm-blooded animals, such as cats, dogs, and humans. T. gondii causes economic losses to livestock production and represents a potential risk to public health. Dogs and cats are common hosts in the epidemiology of toxoplasmosis. The current molecular diagnostic tools for T. gondii infection require high technical skills, a laboratory environment, and complex instruments. Herein, we developed a recombinase polymerase amplification (RPA)-clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 12a (Cas12a) assay to detect T. gondii. The lowest limit of detection of the assay was 31 copies/μL for the T. gondii B1 gene. In addition, we established a visual RPA-CRISPR/Cas12a lateral flow band assay (RPA-CRISPR/Cas12a-LFA) combined with a digital visualization instrument, which minimized the problem of false-negative results for weakly positive samples and avoided misinterpretation of the results by the naked eye, making the LFA assay results more accurate. The assay established in this study could identify T. gondii within 55 min with high accuracy and sensitivity, without cross-reaction with other tested parasites. The developed assay was validated by establishing a mouse model of toxoplasmosis. Finally, the developed assay was used to investigate the prevalence of T. gondii in stray cats and dogs in Zhejiang province, Eastern China. The positive rates of T. gondii infection in stray cats and dogs were 8.0% and 4.0%, respectively. In conclusion, the RPA-CRISPR/Cas12a-LFA is rapid, sensitive, and accurate for the early diagnosis of T. gondii, showing promise for on-site surveillance. IMPORTANCE Toxoplasma gondii is a virulent pathogen that puts millions of infected people at risk of chronic disease reactivation. Hosts of T. gondii are distributed worldwide, and cats and dogs are common hosts of T. gondii. Therefore, rapid diagnosis of early T. gondii infection and investigation of its prevalence in stray dogs and cats are essential. Here, we established a visual recombinase polymerase amplification-clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 12a-assay combined with a lateral flow band assay and a digital visualization instrument. Detailed analyses found that the assay could be used for the early diagnosis of T. gondii without false-negative results. Moreover, we detected the prevalence of T. gondii in stray cats and dogs in Zhejiang province, China. Our developed assay provides technical support for the early diagnosis of T. gondii and could be applied in prevalence surveys of T. gondii in stray dogs and cats.
Collapse
Affiliation(s)
- Hao Sun
- Laboratory of Pathogen Biology, School of Basic Medicine and Forensics, Hangzhou Medical College, Hangzhou, China
| | - Jiyuan Fan
- Laboratory of Pathogen Biology, School of Basic Medicine and Forensics, Hangzhou Medical College, Hangzhou, China
| | - Hongkun Chu
- Laboratory of Pathogen Biology, School of Basic Medicine and Forensics, Hangzhou Medical College, Hangzhou, China
| | - Yafan Gao
- Laboratory of Pathogen Biology, School of Basic Medicine and Forensics, Hangzhou Medical College, Hangzhou, China
| | - Jiawen Fang
- Laboratory of Pathogen Biology, School of Basic Medicine and Forensics, Hangzhou Medical College, Hangzhou, China
| | - Qinli Wu
- Laboratory of Pathogen Biology, School of Basic Medicine and Forensics, Hangzhou Medical College, Hangzhou, China
| | - Haojie Ding
- Laboratory of Pathogen Biology, School of Basic Medicine and Forensics, Hangzhou Medical College, Hangzhou, China
- Research Center of Novel Vaccine of Zhejiang Province, School of Basic Medicine and Forensics, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Bio-tech Vaccine of Zhejiang Province, School of Basic Medicine and Forensics, Hangzhou Medical College, Hangzhou, China
| | - Xunhui Zhuo
- Laboratory of Pathogen Biology, School of Basic Medicine and Forensics, Hangzhou Medical College, Hangzhou, China
- Research Center of Novel Vaccine of Zhejiang Province, School of Basic Medicine and Forensics, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Bio-tech Vaccine of Zhejiang Province, School of Basic Medicine and Forensics, Hangzhou Medical College, Hangzhou, China
| | - QingMing Kong
- Laboratory of Pathogen Biology, School of Basic Medicine and Forensics, Hangzhou Medical College, Hangzhou, China
- Research Center of Novel Vaccine of Zhejiang Province, School of Basic Medicine and Forensics, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Bio-tech Vaccine of Zhejiang Province, School of Basic Medicine and Forensics, Hangzhou Medical College, Hangzhou, China
| | - HangJun Lv
- Laboratory of Pathogen Biology, School of Basic Medicine and Forensics, Hangzhou Medical College, Hangzhou, China
- Research Center of Novel Vaccine of Zhejiang Province, School of Basic Medicine and Forensics, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Bio-tech Vaccine of Zhejiang Province, School of Basic Medicine and Forensics, Hangzhou Medical College, Hangzhou, China
| | - Bin Zheng
- Laboratory of Pathogen Biology, School of Basic Medicine and Forensics, Hangzhou Medical College, Hangzhou, China
- Research Center of Novel Vaccine of Zhejiang Province, School of Basic Medicine and Forensics, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Bio-tech Vaccine of Zhejiang Province, School of Basic Medicine and Forensics, Hangzhou Medical College, Hangzhou, China
| | - Shaohong Lu
- Laboratory of Pathogen Biology, School of Basic Medicine and Forensics, Hangzhou Medical College, Hangzhou, China
- Research Center of Novel Vaccine of Zhejiang Province, School of Basic Medicine and Forensics, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Bio-tech Vaccine of Zhejiang Province, School of Basic Medicine and Forensics, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|