1
|
Chen R, Li D, Fu J, Fu C, Qin P, Zhang X, Sun Z, He K, Li L, Zhou W, Wang Y, Wang K, Liu X, Yang Y. Exploration of quality variation and stability of hybrid rice under multi-environments. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2024; 44:4. [PMID: 38225950 PMCID: PMC10788329 DOI: 10.1007/s11032-024-01442-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/25/2023] [Indexed: 01/17/2024]
Abstract
Improving quality is an essential goal of rice breeding and production. However, rice quality is not solely determined by genotype, but is also influenced by the environment. Phenotype plasticity refers to the ability of a given genotype to produce different phenotypes under different environmental conditions, which can be a representation of the stability of traits. Seven quality traits of 141 hybrid combinations, deriving from the test-crossing of 7 thermosensitive genic male sterile (TGMS) and 25 restorer lines, were evaluated at 5 trial sites with intermittent sowing of three to five in Southern China. In the Yangtze River Basin, it was observed that delaying the sowing time of hybrid rice combinations leads to an improvement in their overall quality. Twelve parents were identified to have lower plasticity general combing ability (GCA) values with increased ability to produce hybrids with a more stable quality. The parents with superior quality tend to exhibit lower GCA values for plasticity. The genome-wide association study (GWAS) identified 13 and 15 quantitative trait loci (QTLs) associated with phenotype plasticity and BLUP measurement, respectively. Notably, seven QTLs simultaneously affected both phenotype plasticity and BLUP measurement. Two cloned rice quality genes, ALK and GL7, may be involved in controlling the plasticity of quality traits in hybrid rice. The direction of the genetic effect of the QTL6 (ALK) on alkali spreading value (ASV) plasticity varies in different cropping environments. This study provides novel insights into the dynamic genetic basis of quality traits in response to different cropping regions, cultivation practices, and changing climates. These findings establish a foundation for precise breeding and production of stable and high-quality rice. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-024-01442-3.
Collapse
Affiliation(s)
- Rirong Chen
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, College of Biology, Hunan University, Changsha, 410082 Hunan China
- State Key Laboratory of Hybrid Rice, Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs, Hunan Engineering Laboratory of Disease and Pest Resistant Rice Breeding, Yuan Longping High-Tech Agriculture Co., Ltd, Changsha, 410128 China
| | - Dongxu Li
- State Key Laboratory of Hybrid Rice, Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs, Hunan Engineering Laboratory of Disease and Pest Resistant Rice Breeding, Yuan Longping High-Tech Agriculture Co., Ltd, Changsha, 410128 China
- Software Engineering Institute, East China Normal University, Shanghai, 200062 China
| | - Jun Fu
- State Key Laboratory of Hybrid Rice, Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs, Hunan Engineering Laboratory of Disease and Pest Resistant Rice Breeding, Yuan Longping High-Tech Agriculture Co., Ltd, Changsha, 410128 China
| | - Chenjian Fu
- State Key Laboratory of Hybrid Rice, Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs, Hunan Engineering Laboratory of Disease and Pest Resistant Rice Breeding, Yuan Longping High-Tech Agriculture Co., Ltd, Changsha, 410128 China
| | - Peng Qin
- State Key Laboratory of Hybrid Rice, Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs, Hunan Engineering Laboratory of Disease and Pest Resistant Rice Breeding, Yuan Longping High-Tech Agriculture Co., Ltd, Changsha, 410128 China
| | - Xuanwen Zhang
- State Key Laboratory of Hybrid Rice, Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs, Hunan Engineering Laboratory of Disease and Pest Resistant Rice Breeding, Yuan Longping High-Tech Agriculture Co., Ltd, Changsha, 410128 China
| | - Zhenbiao Sun
- State Key Laboratory of Hybrid Rice, Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs, Hunan Engineering Laboratory of Disease and Pest Resistant Rice Breeding, Yuan Longping High-Tech Agriculture Co., Ltd, Changsha, 410128 China
| | - Kui He
- State Key Laboratory of Hybrid Rice, Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs, Hunan Engineering Laboratory of Disease and Pest Resistant Rice Breeding, Yuan Longping High-Tech Agriculture Co., Ltd, Changsha, 410128 China
| | - Liang Li
- State Key Laboratory of Hybrid Rice, Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs, Hunan Engineering Laboratory of Disease and Pest Resistant Rice Breeding, Yuan Longping High-Tech Agriculture Co., Ltd, Changsha, 410128 China
| | - Wei Zhou
- State Key Laboratory of Hybrid Rice, Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs, Hunan Engineering Laboratory of Disease and Pest Resistant Rice Breeding, Yuan Longping High-Tech Agriculture Co., Ltd, Changsha, 410128 China
| | - Yingjie Wang
- State Key Laboratory of Hybrid Rice, Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs, Hunan Engineering Laboratory of Disease and Pest Resistant Rice Breeding, Yuan Longping High-Tech Agriculture Co., Ltd, Changsha, 410128 China
- College of Life Sciences, Hunan Normal University, Changsha, 410081 Hunan China
| | - Kai Wang
- State Key Laboratory of Hybrid Rice, Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs, Hunan Engineering Laboratory of Disease and Pest Resistant Rice Breeding, Yuan Longping High-Tech Agriculture Co., Ltd, Changsha, 410128 China
- College of Life Sciences, Hunan Normal University, Changsha, 410081 Hunan China
| | - Xuanming Liu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, College of Biology, Hunan University, Changsha, 410082 Hunan China
| | - Yuanzhu Yang
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, College of Biology, Hunan University, Changsha, 410082 Hunan China
- State Key Laboratory of Hybrid Rice, Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs, Hunan Engineering Laboratory of Disease and Pest Resistant Rice Breeding, Yuan Longping High-Tech Agriculture Co., Ltd, Changsha, 410128 China
- College of Life Sciences, Hunan Normal University, Changsha, 410081 Hunan China
| |
Collapse
|
2
|
Liao G, Ning X, Yang Y, Wang Z, Fan G, Wang X, Fu D, Liu J, Tang M, Chen S, Wang J. Main Habitat Factors Driving the Phenotypic Diversity of Litsea cubeba in China. PLANTS (BASEL, SWITZERLAND) 2023; 12:3781. [PMID: 37960137 PMCID: PMC10648399 DOI: 10.3390/plants12213781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/15/2023]
Abstract
Litsea cubeba (Lour.) Pers. is an important woody spice tree in southern China, and its fruit is a rich source of valuable essential oil. We surveyed and sampled L. cubeba germplasm resources from 36 provenances in nine Chinese provinces, and detected rich phenotypic diversity. The survey results showed that plants of SC-KJ, SC-HJ, and SC-LS provenance presented higher leaf area (LA); YN-SM and YN-XC plants had larger thousand-grain fresh weight (TFW); and HN-DX plants had the highest essential oil content (EOC). To explain the large differences in the phenotypes of L. cubeba among different habitats, we used Pearson's correlation analysis, multiple stepwise regression path analysis, and redundancy analysis to evaluate the phenotypic diversity of L. cubeba. It was found that compared to other traits, leaf and fruit traits had more significant geographical distributions, and that leaf phenotypes were correlated to fruit phenotypes. The results showed that elevation, latitude, longitude, total soil porosity (SP), soil bulk density (SBD), and average annual rainfall (AAR, mm) contributed significantly to the phenotypic diversity of L. cubeba. Geographical factors explained a higher percentage of variation in phenotypic diversity than did soil factors and climate factors. Plants of SC-KJ and HN-DX provenances could be important resources for domestication and breeding to develop new high-yielding varieties of this woody aromatic plant. This study describes significant phenotypic differences in L. cubeba related to adaptation to different environments, and provides a theoretical basis for the development of a breeding strategy and for optimizing L. cubeba cultivation.
Collapse
Affiliation(s)
- Guoxiang Liao
- Jiangxi Key Laboratory of Silviculture, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China; (G.L.); (X.N.)
- East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xiaodan Ning
- Jiangxi Key Laboratory of Silviculture, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China; (G.L.); (X.N.)
- East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yuling Yang
- East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China
| | - Zongde Wang
- East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China
| | - Guorong Fan
- East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xuefang Wang
- Jiangxi Key Laboratory of Silviculture, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China; (G.L.); (X.N.)
- East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China
| | - Dan Fu
- Jiangxi Key Laboratory of Silviculture, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China; (G.L.); (X.N.)
- East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China
| | - Juan Liu
- Jiangxi Key Laboratory of Silviculture, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China; (G.L.); (X.N.)
- East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China
| | - Ming Tang
- East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China
| | - Shangxing Chen
- East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jiawei Wang
- Jiangxi Key Laboratory of Silviculture, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China; (G.L.); (X.N.)
- East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
3
|
Jin M, Liu H, Liu X, Guo T, Guo J, Yin Y, Ji Y, Li Z, Zhang J, Wang X, Qiao F, Xiao Y, Zan Y, Yan J. Complex genetic architecture underlying the plasticity of maize agronomic traits. PLANT COMMUNICATIONS 2023; 4:100473. [PMID: 36642074 DOI: 10.1016/j.xplc.2022.100473] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/21/2022] [Accepted: 11/07/2022] [Indexed: 05/11/2023]
Abstract
Phenotypic plasticity is the ability of a given genotype to produce multiple phenotypes in response to changing environmental conditions. Understanding the genetic basis of phenotypic plasticity and establishing a predictive model is highly relevant to future agriculture under a changing climate. Here we report findings on the genetic basis of phenotypic plasticity for 23 complex traits using a diverse maize population planted at five sites with distinct environmental conditions. We found that latitude-related environmental factors were the main drivers of across-site variation in flowering time traits but not in plant architecture or yield traits. For the 23 traits, we detected 109 quantitative trait loci (QTLs), 29 for mean values, 66 for plasticity, and 14 for both parameters, and 80% of the QTLs interacted with latitude. The effects of several QTLs changed in magnitude or sign, driving variation in phenotypic plasticity. We experimentally validated one plastic gene, ZmTPS14.1, whose effect was likely mediated by the compensation effect of ZmSPL6 from a downstream pathway. By integrating genetic diversity, environmental variation, and their interaction into a joint model, we could provide site-specific predictions with increased accuracy by as much as 9.9%, 2.2%, and 2.6% for days to tassel, plant height, and ear weight, respectively. This study revealed a complex genetic architecture involving multiple alleles, pleiotropy, and genotype-by-environment interaction that underlies variation in the mean and plasticity of maize complex traits. It provides novel insights into the dynamic genetic architecture of agronomic traits in response to changing environments, paving a practical way toward precision agriculture.
Collapse
Affiliation(s)
- Minliang Jin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Haijun Liu
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, 1030 Vienna, Austria
| | - Xiangguo Liu
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun 130033, China
| | - Tingting Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Jia Guo
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun 130033, China
| | - Yuejia Yin
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun 130033, China
| | - Yan Ji
- Key Laboratory of Tobacco Improvement and Biotechnology, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266000, China
| | - Zhenxian Li
- Institute of Agricultural Sciences of Xishuangbanna Prefecture of Yunnan Province, Jinghong 666100, China
| | - Jinhong Zhang
- Institute of Agricultural Sciences of Xishuangbanna Prefecture of Yunnan Province, Jinghong 666100, China
| | - Xiaqing Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Feng Qiao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Yingjie Xiao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Yanjun Zan
- Umeå Plant Science Center, Department of Forestry Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90736 Umeå, Sweden; Key Laboratory of Tobacco Improvement and Biotechnology, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266000, China.
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China.
| |
Collapse
|
4
|
Khan SU, Khan MU, Kalsoom F, Khan MI, Gao S, Unar A, Zubair M, Bilal M. Mechanisms of gene regulation by histone degradation in adaptation of yeast: an overview of recent advances. Arch Microbiol 2022; 204:287. [PMID: 35482104 DOI: 10.1007/s00203-022-02897-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/12/2022] [Accepted: 04/04/2022] [Indexed: 02/07/2023]
Abstract
Histones are important component of eukaryotic cells chromatin and consist of arginine and lysine residues. Histones play an important role in the protection of DNA. Their contents significantly affect high-level chromatin structure formation, gene expression, DNA replication, and other important life activities. Protein degradation is an important regulatory mechanism of histone content. Recent studies have revealed that modification of amino acid sequence is directly related to histone breakdown. In addition, histone degradation is closely related to covalent modifications, such as ubiquitination and acetylation, which are considered to be driving factors in gene regulation. Gene regulation is an important mechanism in adaptation to the environment and survival of species. With the introduction of highly efficient technology, various mutations in histones have been identified in yeast. In the field of epigenetics and the transmission of chromatin states, two widely used model organisms are the budding yeast Saccharomyces cerevisiae and Schizosaccharomyces pombe. Higher eukaryotes can use their silent loci to maintain their epigenetic states and providing the base to investigate mechanisms underlying development. Therfore, both species have contributed a plethora of information on these mechanisms in both yeast and higher eukaryotes. This study focuses on the role of histone modifications in controlling telomeric silencing in Saccharomyces cerevisiae and centromeric silencing in S. pombe as examples of genetic loci that demonstrate epigenetic inheritance. In view of recent advances, this review focuses on the post-translational modification of histone amino acid residues and reviews the relationship between histone degradation and amino acid residue modification.
Collapse
Affiliation(s)
- Safir Ullah Khan
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, People's Republic of China
| | - Munir Ullah Khan
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Fadia Kalsoom
- Department of Microbiology, Ajou University School of Medicine, Suwon, 16499, Republic of Korea
| | - Muhammad Imran Khan
- School of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, People's Republic of China.
- Hefei National Laboratory for Physical Sciences at Microscale and the Center for Biomedical Engineering, University of Science and Technology of China, Hefei, 230027, People's Republic of China.
- Department of Pathology, District headquarters hospital, Jhang, 35200, Punjab Province, Islamic Republic of Pakistan.
| | - Shuang Gao
- School of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, People's Republic of China
| | - Ahsanullah Unar
- School of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, People's Republic of China
| | - Muhammad Zubair
- School of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, People's Republic of China
- The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, University of Science and Technology of China, Hefei, 230027, People's Republic of China
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, People's Republic of China.
| |
Collapse
|
5
|
The Role of Ancestral Duplicated Genes in Adaptation to Growth on Lactate, a Non-Fermentable Carbon Source for the Yeast Saccharomyces cerevisiae. Int J Mol Sci 2021; 22:ijms222212293. [PMID: 34830177 PMCID: PMC8622941 DOI: 10.3390/ijms222212293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 11/26/2022] Open
Abstract
The cell central metabolism has been shaped throughout evolutionary times when facing challenges from the availability of resources. In the budding yeast, Saccharomyces cerevisiae, a set of duplicated genes originating from an ancestral whole-genome and several coetaneous small-scale duplication events drive energy transfer through glucose metabolism as the main carbon source either by fermentation or respiration. These duplicates (~a third of the genome) have been dated back to approximately 100 MY, allowing for enough evolutionary time to diverge in both sequence and function. Gene duplication has been proposed as a molecular mechanism of biological innovation, maintaining balance between mutational robustness and evolvability of the system. However, some questions concerning the molecular mechanisms behind duplicated genes transcriptional plasticity and functional divergence remain unresolved. In this work we challenged S. cerevisiae to the use of lactic acid/lactate as the sole carbon source and performed a small adaptive laboratory evolution to this non-fermentative carbon source, determining phenotypic and transcriptomic changes. We observed growth adaptation to acidic stress, by reduction of growth rate and increase in biomass production, while the transcriptomic response was mainly driven by repression of the whole-genome duplicates, those implied in glycolysis and overexpression of ROS response. The contribution of several duplicated pairs to this carbon source switch and acidic stress is also discussed.
Collapse
|