1
|
Yang CS, Yang N, Hao ZL, Yu D, Zhang LL. Genetic architecture of tic disorders: A systematic review of 125 observational studies. J Psychiatr Res 2025; 184:65-77. [PMID: 40043587 DOI: 10.1016/j.jpsychires.2025.02.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/21/2025] [Accepted: 02/25/2025] [Indexed: 03/17/2025]
Abstract
BACKGROUND To summarize and evaluate recent advances in the genetics of tic disorders (TDs) and to understand the possible pathogenic mechanisms behind this disorder. METHODS PubMed, EMBASE, the Cochrane Library, and four Chinese databases were searched from inception to September 2022. Observational original studies that explored genetic or chromosomal variations associated with the etiology, diagnosis, treatment, or prognosis of TDs were included. The Strengthening the Reporting of Genetic Association Studies (STREGA) statement was used to evaluate the quality of the included studies. RESULTS 125 studies were finally included with 119 of moderate quality and 6 of low quality. A total of 32,439 cases with different types of TDs and 81,923 controls were included. The results involved 98 genes, 16 chromosomes, and multiple gene sets. Genome-wide studies were also included. The top three systems were the dopamine system, nervous system development, and the serotonin system. 96 loci in 56 genes and 20 regions in 14 chromosomes were reported to be relevant to TDs, with SLC6A4 (serotonin system) and NTN4 genes being relatively strongly correlated with the occurrence of TS, and ACP1 (serotonin system) and DBH (dopamine system) being relatively strongly correlated with TS comorbid with attention deficit hyperactivity disorder (ADHD). CONCLUSION Polygenic loci were found to play a key role in the occurrence and development of TDs. However, the applicability of the findings may be limited due to the small sample size, single-center design and the limited study quality of included studies. Future research with more comprehensive study designs and improved reporting transparency is needed to confirm the findings.
Collapse
Affiliation(s)
- Chun-Song Yang
- Department of Pharmacy, Evidence-based Pharmacy Center, West China Second Hospital, Sichuan University, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, China
| | - Nan Yang
- Department of Pharmacy, Evidence-based Pharmacy Center, West China Second Hospital, Sichuan University, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, China
| | - Zi-Long Hao
- Department of Neurology, West China Hospital, Sichuan University, China.
| | - Dan Yu
- Department of Children's Genetic Endocrinology and Metabolism, West China Second Hospital, Sichuan University, China
| | - Ling-Li Zhang
- Department of Pharmacy, Evidence-based Pharmacy Center, West China Second Hospital, Sichuan University, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, China.
| |
Collapse
|
2
|
Chu L, Wu Y, Yin J, Zhang K, Zhong Y, Fan X, Wang G. Neurotransmitter system gene variants as biomarkers for the therapeutic efficacy of rTMS and SSRIs in obsessive-compulsive disorder. Front Psychiatry 2024; 15:1350978. [PMID: 38840948 PMCID: PMC11150660 DOI: 10.3389/fpsyt.2024.1350978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 05/06/2024] [Indexed: 06/07/2024] Open
Abstract
PURPOSE This study aims to examine the potential influence of RS4680 (COMT), RS16965628 (SLC6A4), and RS1019385 (GRIN2B) polymorphisms on the therapeutic response to repetitive transcranial magnetic stimulation (rTMS) and selective serotonin reuptake inhibitors (SSRIs) in individuals with obsessive-compulsive disorder (OCD). PATIENTS AND METHODS Thirty-six untreated outpatients diagnosed with OCD were recruited and allocated to active or sham rTMS groups for two weeks. The mean age of the participants was 31.61, with 17 males (47.22%) and 19 females (52.78%). Peripheral blood samples (5 mL) were collected from each participant using ethylenediaminetetraacetic acid (EDTA) vacuum tubes for genotyping purposes, clinical evaluation was taken place at baseline and second week. RESULTS The A allele of RS4680, C allele of RS16965628, and GG allele of RS1019385 were identified as potential bio-markers for predicting treatment response to OCD treatments (rTMS & SSRIs). CONCLUSION Those genes may serve as bio-markers for the combined treatment of rTMS and SSRIs in OCD. The finding hold promise for further research and the potential implementation of precision treatment of OCD. CLINICAL TRIAL REGISTRATION https://www.chictr.org.cn, identifier ChiCTR1900023641.
Collapse
Affiliation(s)
- Lingjun Chu
- Clinical Research Center for Mental Disorders, Shanghai Pudong New Area Mental Health Center, School of Medicine, Tongji University, Shanghai, China
| | - Yidan Wu
- Clinical Research Center for Mental Disorders, Shanghai Pudong New Area Mental Health Center, School of Medicine, Tongji University, Shanghai, China
| | - Jiajun Yin
- Brain Science Basic Laboratory, The Affiliated Wuxi Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, Jiangsu, China
| | - Kai Zhang
- Department of Psychiatry, Chaohu Hospital of Anhui Medical University, 64 Chaohu North Road, Hefei, Anhui, China
| | - Yiwen Zhong
- Clinical Research Center for Mental Disorders, Shanghai Pudong New Area Mental Health Center, School of Medicine, Tongji University, Shanghai, China
| | - Xiwang Fan
- Clinical Research Center for Mental Disorders, Shanghai Pudong New Area Mental Health Center, School of Medicine, Tongji University, Shanghai, China
| | - Guoqiang Wang
- Brain Science Basic Laboratory, The Affiliated Wuxi Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, Jiangsu, China
| |
Collapse
|
3
|
Tu G, Fu T, Zheng G, Xu B, Gou R, Luo D, Wang P, Xue W. Computational Chemistry in Structure-Based Solute Carrier Transporter Drug Design: Recent Advances and Future Perspectives. J Chem Inf Model 2024; 64:1433-1455. [PMID: 38294194 DOI: 10.1021/acs.jcim.3c01736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Solute carrier transporters (SLCs) are a class of important transmembrane proteins that are involved in the transportation of diverse solute ions and small molecules into cells. There are approximately 450 SLCs within the human body, and more than a quarter of them are emerging as attractive therapeutic targets for multiple complex diseases, e.g., depression, cancer, and diabetes. However, only 44 unique transporters (∼9.8% of the SLC superfamily) with 3D structures and specific binding sites have been reported. To design innovative and effective drugs targeting diverse SLCs, there are a number of obstacles that need to be overcome. However, computational chemistry, including physics-based molecular modeling and machine learning- and deep learning-based artificial intelligence (AI), provides an alternative and complementary way to the classical drug discovery approach. Here, we present a comprehensive overview on recent advances and existing challenges of the computational techniques in structure-based drug design of SLCs from three main aspects: (i) characterizing multiple conformations of the proteins during the functional process of transportation, (ii) identifying druggability sites especially the cryptic allosteric ones on the transporters for substrates and drugs binding, and (iii) discovering diverse small molecules or synthetic protein binders targeting the binding sites. This work is expected to provide guidelines for a deep understanding of the structure and function of the SLC superfamily to facilitate rational design of novel modulators of the transporters with the aid of state-of-the-art computational chemistry technologies including artificial intelligence.
Collapse
Affiliation(s)
- Gao Tu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Tingting Fu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | | | - Binbin Xu
- Chengdu Sintanovo Biotechnology Co., Ltd., Chengdu 610200, China
| | - Rongpei Gou
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Ding Luo
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Panpan Wang
- College of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian 463000, China
| | - Weiwei Xue
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| |
Collapse
|
4
|
Mohammadi AH, Karimian M, Mirzaei H, Milajerdi A. Epigenetic modifications and obsessive-compulsive disorder: what do we know? Brain Struct Funct 2023:10.1007/s00429-023-02649-4. [PMID: 37204485 DOI: 10.1007/s00429-023-02649-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/21/2023] [Indexed: 05/20/2023]
Abstract
Obsessive-Compulsive Disorder (OCD) is a chronic, severe disabling neuropsychiatric disorder whose pathophysiology is not yet well defined. Generally, the symptom onset occurs during pre-adult life and affects subjects in different life aspects, including professional and social relationships. Although robust evidence indicates the presence of genetic factors in the etiopathology of OCD, the entirely mechanisms are not totally clarified. Thus, the possible interactions between genes and environmental risk factors mediated by epigenetic mechanisms should be sought. Therefore, we provide a review of genetic and epigenetic mechanisms related to OCD with a deep focus on the regulation of critical genes of the central nervous system seeking possible potential biomarkers.
Collapse
Affiliation(s)
- Amir Hossein Mohammadi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran.
| | - Mohammad Karimian
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Alireza Milajerdi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
5
|
González Delgado S, Garza-Veloz I, Trejo-Vazquez F, Martinez-Fierro ML. Interplay between Serotonin, Immune Response, and Intestinal Dysbiosis in Inflammatory Bowel Disease. Int J Mol Sci 2022; 23:ijms232415632. [PMID: 36555276 PMCID: PMC9779345 DOI: 10.3390/ijms232415632] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Inflammatory Bowel Disease (IBD) is a chronic gastrointestinal disorder characterized by periods of activity and remission. IBD includes Crohn's disease (CD) and ulcerative colitis (UC), and even though IBD has not been considered as a heritable disease, there are genetic variants associated with increased risk for the disease. 5-Hydroxytriptamine (5-HT), or serotonin, exerts a wide range of gastrointestinal effects under both normal and pathological conditions. Furthermore, Serotonin Transporter (SERT) coded by Solute Carrier Family 6 Member 4 (SLC6A4) gene (located in the 17q11.1-q12 chromosome), possesses genetic variants, such as Serotonin Transporter Gene Variable Number Tandem Repeat in Intron 2 (STin2-VNTR) and Serotonin-Transporter-linked promoter region (5-HTTLPR), which have an influence over the functionality of SERT in the re-uptake and bioavailability of serotonin. The intestinal microbiota is a crucial actor in normal human gut physiology, exerting effects on serotonin, SERT function, and inflammatory processes. As a consequence of abnormal serotonin signaling and SERT function under these inflammatory processes, the use of selective serotonin re-uptake inhibitors (SSRIs) has been seen to improve disease activity and extraintestinal manifestations, such as depression and anxiety. The aim of this study is to integrate scientific data linking the intestinal microbiota as a regulator of gut serotonin signaling and re-uptake, as well as its role in the pathogenesis of IBD. We performed a narrative review, including a literature search in the PubMed database of both review and original articles (no date restriction), as well as information about the SLC6A4 gene and its genetic variants obtained from the Ensembl website. Scientific evidence from in vitro, in vivo, and clinical trials regarding the use of selective serotonin reuptake inhibitors as an adjuvant therapy in patients with IBD is also discussed. A total of 194 articles were used between reviews, in vivo, in vitro studies, and clinical trials.
Collapse
|
6
|
A Pilot Study on Plasma and Urine Neurotransmitter Levels in Children with Tic Disorders. Brain Sci 2022; 12:brainsci12070880. [PMID: 35884687 PMCID: PMC9313232 DOI: 10.3390/brainsci12070880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 12/03/2022] Open
Abstract
Background: Tic disorders (TDs), including Tourette syndrome, are childhood-onset neuropsychiatric disorders characterized by motor and/or vocal tics that commonly affect children’s physical and mental health. The pathogenesis of TDs may be related to abnormal neurotransmitters in the cortico-striatal-thalamo-cortical circuitry, especially dopaminergic, glutamatergic, and serotonergic neurotransmitters. The purpose of this study was to preliminarily investigate the differences in the three types of neurotransmitters in plasma and urine between children with TD and healthy children. Methods: We collected 94 samples of plasma and 69 samples of urine from 3–12-year-old Chinese Han children with TD before treatment. The plasma and urine of the same number of healthy Chinese Han children, matched for age and sex, participating in a physical examination, were collected. Ultra-performance liquid chromatography-tandem mass spectrometry was used to detect the three types of neurotransmitters in the above samples. Results: The plasma levels of norepinephrine, glutamic acid, and γ-aminobutyric acid, and the urine levels of normetanephrine and 5-hydroxyindoleacetic acid were higher in the TD children than in healthy children. The area under the curve (AUC) values of the above neurotransmitters in plasma and urine analyzed by receiver operating characteristic curve analysis were all higher than 0.6, with significant differences. Among them, the combined AUC of dopamine, norepinephrine, normetanephrine, glutamic acid, and γ-aminobutyric acid in the 8–12-year-old subgroup was 0.930, and the sensitivity and specificity for TD were 0.821 and 0.974, respectively (p = 0.000). Conclusions: There are differences in plasma and urine neurotransmitters between TD children and healthy children, which lays a foundation for further research on the pathogenesis of TD.
Collapse
|
7
|
Fan F, Han F, Hao L. Mechanisms of Action of Semen Ziziphi spinosae in the Treatment of Tourette Syndrome. Degener Neurol Neuromuscul Dis 2022; 12:85-96. [PMID: 35875687 PMCID: PMC9297330 DOI: 10.2147/dnnd.s370278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 07/09/2022] [Indexed: 11/23/2022] Open
Abstract
Background Semen Ziziphi spinosae, known as Suanzaoren (SZR) in Chinese, is a Chinese herbal medicine widely used in sedatives and tranquilizers. Although SZR is important for the clinical treatment of Tourette syndrome (TS), its mechanism of action remains unclear. Therefore, we investigated the pharmacological mechanisms of SZR in TS treatment using network pharmacology and systems biology approaches. Methods The bioactive components and potential targets of SZR were screened using the TCMSP database. UniProt was used to identify targets by mapping the known genes related to SZR. The known genes related to TS were identified by GeneCards and OMIM databases. A protein-protein interaction network was constructed using information from STRING 11.0 database. Cytoscape 3.8.0 software and Bioinformatics online platform were used for plotting this network. Gene ontology and KEGG enrichment analyses were performed using Metascape. Finally, AutoDock was used to verify the molecular docking. Results We found that SZR had 10 active compounds. There were 30 overlapping target genes between TS and SZR. These genes were associated with several signaling and metabolic pathways. AChE, SLC6A4, and HTR3A were the top three hub genes. The active components in SZR had a high binding affinity for the key targets. Conclusion SZR therapy for TS could achieve network regulation through the action of various active components of Chinese medicine on different targets and generate a complex regulatory relationship via interaction with potential targets, thereby playing a therapeutic role. Thus, SZR is a potential candidate for treating TS because it regulates nervous system functions.
Collapse
Affiliation(s)
- Fei Fan
- Department of Pediatrics, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Fei Han
- Department of Pediatrics, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Long Hao
- Department of Paediatrics, Beijing Fangshan District Liangxiang Hospital, Beijing, People’s Republic of China
- Correspondence: Long Hao, Department of Paediatrics, Beijing Fangshan District Liangxiang Hospital, No. 45 Gongchen Street, Fangshan District, Beijing, People’s Republic of China, Tel +86 10-813560000, Email
| |
Collapse
|
8
|
Current Understanding of the Genetics of Tourette Syndrome. Biomed J 2022; 45:271-279. [PMID: 35042017 PMCID: PMC9250083 DOI: 10.1016/j.bj.2022.01.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/09/2022] [Accepted: 01/10/2022] [Indexed: 12/13/2022] Open
Abstract
Gilles de la Tourette syndrome (TS) is a common, childhood-onset psychiatric disorder characterized by persistent motor and vocal tics. It is a heterogeneous disorder in which the phenotypic expression may be affected by environmental factors, such as immune responses. Furthermore, several studies have shown that genetic factors play a vital role in the etiology of TS, as well as its comorbidity with other disorders, including attention deficit hyperactivity disorder, obsessive-compulsive disorder, and autism spectrum disorder. TS has a complex inheritance pattern and, according to various genetic studies, several genes and loci have been correlated with TS. Genome-wide linkage studies have identified Slit and Trk-like 1 (SLITRK1) and histidine decarboxylase (HDC) genes, and candidate gene association studies have extensively investigated the dopamine and serotonin system genes, but there have been no consistent results. Moreover, genome-wide association studies have implicated several genetic loci; however, larger study cohorts are needed to confirm this. Copy number variations, which are polymorphisms in the number of gene copies due to chromosomal deletions or duplications, are considered another significant source of mutations in TS. In the last decade, whole genome/exome sequencing has identified several novel genetic mutations in patients with TS. In conclusion, more studies are needed to reveal the exact mechanisms of underlying TS, which may help to provide more information on the prognosis and therapeutic plans for TS.
Collapse
|
9
|
EWAS of Monozygotic Twins Implicate a Role of mTOR Pathway in Pathogenesis of Tic Spectrum Disorder. Genes (Basel) 2021; 12:genes12101510. [PMID: 34680906 PMCID: PMC8535383 DOI: 10.3390/genes12101510] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 11/17/2022] Open
Abstract
Tic spectrum disorder (TSD) is an umbrella term which includes Gilles de la Tourette syndrome (GTS) and chronic tic disorder (CTD). They are considered highly heritable, yet the genetic components remain largely unknown. In this study we aimed to investigate disease-associated DNA methylation differences to identify genes and pathways which may be implicated in TSD aetiology. For this purpose, we performed an exploratory analysis of the genome-wide DNA methylation patterns in whole blood samples of 16 monozygotic twin pairs, of which eight were discordant and six concordant for TSD, while two pairs were asymptomatic. Although no sites reached genome-wide significance, we identified several sites and regions with a suggestive significance, which were located within or in the vicinity of genes with biological functions associated with neuropsychiatric disorders. The two top genes identified (TSC1 and CRYZ/TYW3) and the enriched pathways and components (phosphoinosides and PTEN pathways, and insulin receptor substrate binding) are related to, or have been associated with, the PI3K/AKT/mTOR pathway. Genes in this pathway have previously been associated with GTS, and mTOR signalling has been implicated in a range of neuropsychiatric disorders. It is thus possible that altered mTOR signalling plays a role in the complex pathogenesis of TSD.
Collapse
|
10
|
Abstract
Tic disorders and Tourette syndrome are the most common movement disorders in children and are characterized by movements or vocalizations. Clinically, Tourette syndrome is frequently associated with comorbid psychiatric symptoms. Although dysfunction of cortical–striatal–thalamic–cortical circuits with aberrant neurotransmitter function has been considered the proximate cause of tics, the mechanism underlying this association is unclear. Recently, many studies have been conducted to elucidate the epidemiology, clinical course, comorbid symptoms, and pathophysiology of tic disorders by using laboratory studies, neuroimaging, electrophysiological testing, environmental exposure, and genetic testing. In addition, many researchers have focused on treatment for tics, including behavioral therapy, pharmacological treatment, and surgical treatment. Here, we provide an overview of recent progress on Tourette syndrome.
Collapse
Affiliation(s)
- Keisuke Ueda
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kevin J Black
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
- Department of Radiology, Washington University School of Medicine, St Louis, MO, USA
- Department of Neuroscience, Washington University School of Medicine, St Louis, MO, USA
| |
Collapse
|
11
|
Levy AM, Paschou P, Tümer Z. Candidate Genes and Pathways Associated with Gilles de la Tourette Syndrome-Where Are We? Genes (Basel) 2021; 12:1321. [PMID: 34573303 PMCID: PMC8468358 DOI: 10.3390/genes12091321] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/05/2021] [Accepted: 08/25/2021] [Indexed: 12/21/2022] Open
Abstract
Gilles de la Tourette syndrome (GTS) is a childhood-onset neurodevelopmental and -psychiatric tic-disorder of complex etiology which is often comorbid with obsessive-compulsive disorder (OCD) and/or attention deficit hyperactivity disorder (ADHD). Twin and family studies of GTS individuals have shown a high level of heritability suggesting, that genetic risk factors play an important role in disease etiology. However, the identification of major GTS susceptibility genes has been challenging, presumably due to the complex interplay between several genetic factors and environmental influences, low penetrance of each individual factor, genetic diversity in populations, and the presence of comorbid disorders. To understand the genetic components of GTS etiopathology, we conducted an extensive review of the literature, compiling the candidate susceptibility genes identified through various genetic approaches. Even though several strong candidate genes have hitherto been identified, none of these have turned out to be major susceptibility genes yet.
Collapse
Affiliation(s)
- Amanda M. Levy
- Kennedy Center, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, 2600 Glostrup, Denmark;
| | - Peristera Paschou
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Zeynep Tümer
- Kennedy Center, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, 2600 Glostrup, Denmark;
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|